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Foreword

Mathematics and Statistics: Sets, functions and relations. Methods of proof.
Complex numbers. Divisibility theory for integers and modular arithmetic.
Divisibility theory for polynomials. Rings, ideals and quotient rings. Fields
and construction of fields from polynomial rings. Groups, subgroups and
cosets; homomorphisms and quotient groups. This note includes all the
lectures for fall 2024.

This note includes a few terminologies. The following is the brief descrip-
tion of each terms:

1. Definition: An explanation of a mathematical term.
2. Theorem: An important statement that can be proven to be true.
3. Corollary: A deduction from a theorem that can be proven to be true.

4. Proposition: A less important statement that can be proven to be
true.

5. Lemma: A statement that can be proven to be true (relevant to prove
another result).

6. Proof: An explanation of why statement is true.

Prerequisites: MATH 133 (linear algebra) and or equivalent.






Contents

Foreword

1 Sets and Functions
1.1 OperationsofSet . .........................
1.1.1 Propertiesof Operations . . . . .. ... .........
1.2 CartesianProduct. . ... .. ... ... ... .. ......
1.2.1 Propertiesof Function . . .. ...............
1.2.2 Compositionof Function . .. ..............
1.3 Inverseof Functions ... .....................
1.4 EquivalenceRelation . . . ... ... ...............

2 Integers and Induction
2.1 EuclideanDivision . ... .....................
2.2 Fundamental Theorem of Arithmetic . .. ... ........
22,1 SomeExercise . .. ... ... ... ... ... ...,

3 Groups
3.1 SymmetricGroup . . . . ... . L
3.2 TheGroupZ/nZand U, . . ... ... ...,
3.3 Orderofanelement . .......................
34 CyclicGroups . . . .. .. v vt
3.4.1 Subgroup generatedbygeG ... ............
3.4.2 Fermat’s and Euler’s Theorem . . . . . ... ... ....
3.5 NormalSubgroups . ........................
3.5.1 Simple and QuotientGroup . . . . . ... ........
3.6 Permutation and Alternating Groups . . ... .........
3.6.1 SignofaPermutation ...................

4 Group Isomorphism
4.1 Group Homomorphism . ... ..................
4.2 Group Isomorphism . .......................
421 Kernel.......... ... ... . ... ... . . ...
4.2.2 Isomorphism Theorem . .................

iii

N O O O 0N e

11
12
15
17

19
21
23
26
32
32
35
35
37
38
39



Contents iv
5 Group Action 49
5.1 The Orbit-Stabilizer Theorem . . . . .. ... .......... 50
5.2 CauchysTheorem ......................... 52
5.3 CosetRepresentations . . . .................... 54
54 P-Groups . . ... ... . e 55
55 Sylow'sTheorems . . ... ... ... ... ... ......... 58

6 Ring and Fields 63
6.1 Rings . . ... ... .. 63
6.2 Integral DomainandField. ... ... .............. 64
6.3 UnitinaRing ...... ... ... .. ... .. ... .. .. .. 65
6.4 ComplexNumbers . .................... ... 67
65 Ideals . . ...... ... . ... 67
6.5.1 IdealsofZ . ......... .. ... .. ... .. ... . 68

6.5.2 QuotientRings ......... ... ... . ... ... 68

6.6 RingHomomorphisms . . . ... ................. 70
6.7 CharacteristicofRing. . . ... ... ... ............ 72
6.7.1 Chinese Remainder Theorem ForRings . . . . . .. .. 74

6.8 RingsofPolynomials . ... ... ................. 75
6.8.1 DegreeofaPolynomial .................. 75

6.9 Ideal Quotient and Principal . . ................. 76
6.10 Division Algorithm . . ... ... .. ... ............ 77
6.11 Irreducible Polynomials . . ... .. ... ............ 78
6.11.1 Finite Fields and PolynomialsRings . . .. ... .. .. 79

6.12 Prime Ideals and Chinese Remainder Theorem . .. ... .. 81
6.12.1 Primeldeal . . . . ... ... ... ... .. ..., . 83



August 28 2024

Lecture 1

1 Sets and Functions

Definition 1.1. A set is a well-defined collection of objects. It’s defined in a
way that allows us to determine whether or not a abstract object x belongs
to a set. N.B. Most of the time, if not all, a set is symbolized as a capital
letter e.g. A, B, H, etc.

Definition 1.2. When an object belongs to a set, we call said object ele-
ment and is written as
XeEA (1.1)

read as "x belongs to A" (where x is the element of A). On the contrary, if
an object x does not belong to a set A, we denote it as

x¢A (1.2)

read as "x does not belong to A".

Remark 1.1. A set is specified by either: listing its elements (if possible) or by
stating a property that its elements have to satisfy.

Example 1.0.1. A={1,2,3,4}, E = {set of even numbers}. For the set E, we
can make it "mathematics-like". To do so, notice that even numbers are
all divisible by 2 which means we can construct a set of even numbers by
using 2 as a multiple for all the integers. Thatis, E = {2x: x € Z}.

N.B. the symbol ":" means "such that". There are variations of this too like:
"s.t." or "|".

We can represent intervals in set notations too like:

e A=[1,3]={x:1<sx=<3}

e B=(1,3]={x:1<x=3}!

The following are important sets that we may use through out the course.

1. The Natural Number: N = {1,2,3,...} = {x : x are positive integers}?

n this course, you can either use open square bracket "][" or parentheses "()" for an open
interval.
2The set of natural number we'll be using, does not include 0
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2. TheInteger: Z={...,—1,0,1,...} = {x: x are integers}
3. The Rational Number: Q = {x: x are rationals} = {5 p,qE,q# 0}

4. The Real Number: R = {x : x are reals} = (—oo, +00)

Definition 1.3. A set A is a subset of a set B if Vx € = x € B.3 We denote
Ais asubset of B as
AcB (1.3)

Example 1.0.2. {1,2} c{1,2,3}, NcZcQcR, and [2,3) cRbut ¢ N.

Definition 1.4. If set A and B have the same element, then A and B are
said to be equal which is denoted as

A=B (1.4)

Remark 1.2. In a typical proof, if you want to show that A = B, you must
first prove that Ac B and B c A. This is similar to saying 1 = 1 because only
l1<landl=1.

Example 1.0.3. Let E={2n:neZ}and A={4n:neZ}. Showthat Ae E.

Proof. Let x € A then we can find an 7n: x = 4n which also means x =4n =
2(2n). Since n is an integer, 2n is also an integer which means x is even and
divisibleby2 = x€ E.Sox€ A = x€ Ehence AcE. O

The opposite is not true since we can find a counterexample, that is,
2eEbut¢ A.

1.1 Operations of Set

Definition 1.5. Let A and B be sets then, the union of A is B is defined and
written as:
AUB={x:x€e Aor x€ B} (1.5)

and the intersection of A and B is defined as:
ANB={x:x€ Aand x € B} (1.6)

Example 1.1.1. {1,2,3}n{3,4,5} ={3} and {1,2,3} U {3,4,5} = {1,2,3,4,5}.

3"y" means "forall", and " = " means "implies".



3 1.1. Operations of Set

1.1.1 Properties of Operations

Like any arithmetic operations (+,-,etc.), these 2 set operations also have
its own law and properties.

Theorem 1.1. (Distributive Law) Let A, B1 and By be sets. Then,

AU (B1NBy)=(AUB;)N(AUBy) (1.7)

Proof.

AU(B1NBy)=Au{x:x€ B; and x € By}
={x:x€ Aor(x€ B; and x € By)}
={x:(xeAorxeB;)and (x€ Aor x€ By)}
=(AUB;)N(AUB))

An alternative way of proving it is the following:

Proof. We must show that Au (B; N Bz) € (AUB;)N (AU Bjy). So, let x €
AU(B1NBy) = xe Aor xe (BN By).

o Ifxe Athen, x€ AUB; and x€ AUB; hence x€ (AU B;) N (AU By).

e Ifxe(BinBy)then,xeBjandxe B, — xeBjuAandxe€B,UA
hence xe (AUB;) N (AU By).

Definition 1.6. Let A be a set then the complement of a set is defined as
Al={x:x¢ A (1.8)
Example 1.1.2. Let U =R and A=[1,3) then A’ = (—00,1) U [3,00)
Theorem 1.2. (De Morgan’s Law). If A and B are sets then
1. (AuB)Y =A'nB’

2. (AnB)=A'"UB’

91N1097 JO puyg
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Proof. We first prove that (AU B) € A'nB’. Let x € (AU B)'. We need to
show that x€ A’ UB'.

x€(AUB) = xec A andxe B’
— x¢ Aand x¢ B
= x¢ AUB
= x¢(AUB)

So (AU B)' € A’ n B'. To make sure that they’re equal, we need to also show
A'nB'c(AuB).

Letxe AnB' = xe A'xe B’ (1.9
— x¢ ANX¢B (1.10)
= x¢ AUB (1.11)
= xe(AuB) (1.12)

So A'n B’ < (Au B)'. With the above, we will get that x€ (AUB)' < x¢€
A’ B'.* For the proof of the (An B)' = AU B, it follows the same structure
as the first. O

1.2 Cartesian Product

Definition 1.7. Let A and B be sets then the Cartesian product of A and B
is defined by
AxB={(a,b):ac ANb€E B} (1.13)

Example 1.2.1. A = {1,2} and B = {a,b,c} so Ax B = {(1,a),(1,b),(1,c),
2,a),2,b),2,0)}

Definition 1.8. A function f: A — Bis asubset f ¢ A x B such that Va e
A,3b: (a,b) € f.5 We write
f@=b (1.14)

Example 1.2.2. Using the same set A and B as example 1.2.1 then,
1. f={1,a),Q1,b),(2,a)}is not a function from A — B.

2. f=1{1,a),(2,a)}is afunction from A — B.

4The symbol " <= " stands for "if and only if" or "implies both way".
5"31" means "there exists uniquely one". If "!" is removed, it will be "there exists".



5 1.2. Cartesian Product

1.2.1 Properties of Function

Definition 1.9. Let A and B be sets and f : A — B. Then, f is said to be
injective (one-to-one) if Vay, a € A, f(a1) = f(ay) < a; = ay.

Example1.2.3. f:R—-R, f(x) = x2. f is not injective since f(1) = f(-1) =
L. For f:R§ =R, f(x) = x%. f is injective (see the following proof)

Proof. Let ay, a, € R} such that f(a) = f(az). Then, a? = a? = \/a? =
\ a5 = lai| = |az| so ar = ap. O

Definition 1.10. f: A — B is said to be surjective (onto) if Vb e B,3ac A:
f(a) = bi.e. For every b € B, there have to be at least 1 pre-image in A.

Example 1.2.4. The following mappings are either not surjective or surjec-
tive

1—>a
11— a
f: 2 b is surjective, fio p lissurjective
33— ¢ ;
3
d

Definition 1.11. A function f : A — B is said to be bijective if f is both
surjective and injective

Example 1.2.5. The following function is bijective.

1 a
f22>€b
3 c

1.2.2 Composition of Function

Definition 1.12. Let A,Band Cbesetsand f: A— Band g: B — C be
functions then the composition of f and g is denoted as

gofiA—C (1.15)

Which simply means
(g fla)=g(f(a) (1.16)



Chapter 1. Sets and Functions 6

Example 1.2.6. Consider the following function composition (go f)(a) :=

g(f(a) r g
l—a— «

2—5 b B

><

33— ¢ Y

Then, (g0 (1) =g(f(1))=g(a)=aand (go /IB)=p
Theorem 1.3. Let f: A— B and g: B — C be functions.

1. If f and g are injective thensoisgo f.

2. If f and g are surjective then sois go f.

3. Ifgo f isinjective then f is injective.

4. Ifgo f isinjective and f is surjective then g is surjective.

5. Ifgo f is surjective and g is injective then f is surjective.
Proof. 1. We need to show thatif a;,a, € Aand go f(a;) = (go f)(az) then
a = a.

(8o Nlar) =(go fllan)
g(f(am)) = g(f(az)
flay) = f(ap) since g is injective

a, = ap since f is injective

1.3 Inverse of Functions
Definition 1.13. Let S be a set and let 15 or Idg be the function 1g: S —
S,1s(x) = x,Vx € S. We call this function the identity function of S.

Definition 1.14. Let f: A — B be a function. We say that f: B — Ais the

inverse of f if
fog=1p (1.17)

i.e. f(g(b)) =bVbe B;and,
gof=1a (1.18)

ie. g(f(a)=aVac A

91N1097 JO puyg
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Example 1.3.1. The function f:Rj — R, x — Inx is the inverse of the func-
tion g:R— Ry, y— e’ and v.v.

Proof. f(g(y)) =lneY = yand g(f(x)) = elnx — 5 -

Theorem 1.4. Let f: A — B be a function. Then, f is bijective <= f has
an inverse.

Proof. (<) Supposed that f has an inverse, let g: B — A be an inverse of
f- We then wants to show that f is bijective i.e. both injective and surjec-
tive. First, let ay,a» € A: f(a1) = f(ap) then,

g(f(m)) =g(f(a)
1a(ay) =14(az)
ay=ap

Hence f is injective. Now, let b € B so that g(b) € A then,
(fog)b)=f(g)=1pb)=b

Soifwelet g(b) =a = f(a) = b hence, f is surjective. If f is both surjec-
tive and injective, it’s bijective. O

Theorem 1.5. Let f : A — B be a bijective function then the inverse of f,
denoted as f~! is unique.

Proof. ... O

1.4 Equivalence Relation

Definition 1.15. Let X be a set then, an equivalence relation on X is a
subset R c X x X with the following properties.

a) (Reflexivity) If x € X then (x,x) € R.
b) (Symmetry) If x,y€ X then (x,y) e R = (y,x) €R.
¢) (Transitivity) If x, y,z€ X then (x,y€ R) and (y,z2) e R = (x,z) € R.

Remark 1.3. We say that x ~p y if (x,y) € R. ©

6Another convention of writing this is using the R i.e. x ~p y is the same as writing xRy.
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Example 1.4.1. Let Xbeasetand x,y€ X thenx~ yifx=y

Proof. Let x€ X then x =x = x ~ x (reflexivity). f x ~ ythenx=y —
y=x = y~x (symmetry). fx~y = x=yand y~z = y=zthen
X =z = X~ z (transitivity). O

Example 1.4.2. Let x=Zandletx,ye€ Zthen x~ yif3|x—y.”

Proof. x~x = x—x=0and3|0. x~y = x—-y = —(x—y) which
are both divisible by 3, but —(x —y) = y— x so then y = x. Supposed
X~y = x—y=3band y~z = y—2z=3c for some b,c € Z. Then,
X—z=x-y+y—-2=3b+3l=3(b+1)s03|x—zsox~z. O

Definition 1.16. Let x € X and ~ be an equivalence reaation on X. Then,
the equivalence class of X, denoted as [X] or [x]R, is defined as

(Xlg={yeX:x~y} (1.19)

Example 1.4.3. Let X =Z and x ~ y if 3| x — y. Then, we can defined the
equivalence class of 0 and 1 as

[0={yez:3|y-0} 1]={yeZ:y—1=3aforsomeacz}
={yez:y=3aforsome ac 7} ={.,-2,1,4,7,...}
={..,=3,0,3,...} ={..,-3,0,3,6,...}-1=3Z-1

=3{..,,-10,1,...} =3Z

You'll realize also that [0] = [3]=3Z and [1] = [4] =3Z+1

Theorem 1.6. Let x,y € X, then
1 [xlg#0
2. Ify€[x]g then[x]r = [yIr
3. [xIrN[ylr =0 orlxlg = [yIr

Proof. 1) x € [x]g since x ~gr xS0 [X]g #OD

2) Let y € [x]r, we need to show [x]r = [y]r which means we need to show
[x]r € [ylr and [ylg < [x]r. So let z € [y]g then we need to show z € [x]g. If
z € [ylr then z~p y and y € [x]g (or y ~g x). So by properties of R, z ~p

7 alb means b is divisible by a

91N1097 JO puyg
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9 1.4. Equivalence Relation

x = ze€[x]g = [ylg < [x]g. The fact that [x]g < [y]g also holds since
Xx ~pg ythen y ~p x. We've already shown that y ~g x, then by symmetry of
R, x~gpy = [x]r S [ylr. Thus [x]r = [y]r.

3) If [x]g N [y]g = then there’s nothing to prove. If [x]r N [y]g # thenlet z €
[x]g N [y]Rr. This means z € [x]g = [z]g = [X] and similarly, z€ [y]g =
[z]gr = [y]r- Thus [z]g = [x]g = [yIr = [x]r = [y]Rr. O

Example 1.4.4. Recall, let x, y € Z and x ~p yif 3| x— y. From last time, we
know that [0] = 3Z. Since 3 € [0] then [3] = [0]. Similarly for [1] and [4], and
[2] and [8], etc.

Notice that when writing out all the equivalence class, 1 element will
appear. This also means that when we take the union of all the equivalence
class, we will get the original set.

Remark 1.4. x for [x]g is called the representative of its equivalence class.

Definition 1.17. Let X be a set. A partition of X is a collection of subsets
{X;} of X such that

1. X; #0,Yi

2. XinXj=0ifi#j

3. X=U; X;
Theorem 1.7.

1. Let R be an equivalence relation on X. Then, the equivalence class of
X forms a partition of X. And X = U;¢;[xi]r is a set of representatives
of equivalence classes.

2. Let{X;};e; beapartition of X. Then 3R on X whose equivalence classes
arethe X.

where I is an index set.

Hint: x ~ yifx,y € X; forsome i € I.






Lecture 5: September 9th, 2024.

2 Integers and Induction

Well-Ordering Principle. Let S < N is not @. Then S has a minimal ele-
ment.
First Principle of Mathematical Induction. Let S = N such that

1. 1€8S.
2. IfneSthenn+1€S.
Then S=N

Theorem 2.1. The well-ordering principle implies the first principle of math-
ematical induction.

Proof. Suppose that S < N with the following porperties: 1 € S and n €
S = n+1€S. Suppose that S #N. Then, S’ # @ which by the well-
ordering principles, S’ has a least element m e N. m—1 ¢ S’ since m is the
least element thus m —1 € S. Then, (m—1)+1 = m € S which is a contra-
diction. O

Definition 2.1. Leta,be Z,b#0. We say bdividesauf3ke Z: a= kb. We
denote thisas b | a.

Example 2.0.1. 2|4,
Theorem 2.2. Leta,b,ceZ:a,b#0.Ifa|bandb|cthenalc.

Proof. If a| bthen b = kaforsome ke Z. If b| c then ¢ = rb for some r € Z.
Thus, ¢ = r(ka) = (rk)a hence c| a. O

Definition 2.2. Let p > 1 and p € N Then p is a prime number if the only
divisor for pis +1and +p

Example 2.0.2. 2isa prime, 7 is a prime and 4 is not a prime

Theorem 2.3. Letn > 1 be an integer that is not prime. Then, n has a prime
divisorp andp < v/n

11
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Proof. Let S be the set of positive divisors of n that are strictly bigger than
1. This also means that SSNand S # @ (since n € S). S has a least element
p; which we need to show p is prime. Suppose p is not prime then 3d e N
such that 1 < d < p and d|p, but also p|n which means that d|n which is a
contradiction since p is not the least element anymore. So p is a prime.

Now, p|n is simply n = pq for some g € N. We can also say g | nand g <1
whichmeans ge S = g=p = n=pq=p?> = p<=</n. Hence every
n € Nwith n > 1 has prime divisor. O

Corollary 2.1. There are infinitely many prime numbers

Definition 2.3. Suppose that there are finitely many prime numbers: p; <
p2 << pp. Let N=pip2---pp+1. Nisnota prime since N > p, and it
must have a prime divisor i.e. 3p; for some i € {1,2,..., n} such that p; | N.
pi | Nand p;lp1:--pn = pi| N—=(p1---pn) = 1 which is a contradiction
sine p; > 1. Therefore, there are infinitely many prime numbers.

2.1 EFEuclidean Division

Theorem 2.4. Leta,be Z withb>0. Then,3\q,r with0 < r < b such that
a=bqg+r 2.1)

r is called the remainder of Euclidean division of a by b.

Proof. Homework exercise 1. O

Example 2.1.1. 34=6x5+4,101=14x7+3.

Definition 2.4. Let a and b be 2 integers not both 0. The greatest common
divisor of a and b is the largest positive divisor that divides both a and b.
This is denoted as GCD(a, b).

Example 2.1.2. GCD(2,5) =1, GCD(7,14) =7.

Theorem 2.5. (Bezout’s Theorem). Let a,b € Z and not both 0. Au,ve Z:
au+ bv = GCD(a, b). Moreover, if d is a common divisor of a and b then d
divides gcd(a, b).

Proof. Let S={ma+nb:m,neZand ma+nb>0}. So, S#® and S<N.
Then, for m = a and n = b then a? + b? > 0 since (a, b) # (0,0). So, S has a
least element D = au + bv for some u,v e Z.

91N1097 JO puyg
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Claim: D | a
IfD|athena=qgD+rwhereqeZand0=r<d. Thusr=a-¢gD =
a—qlau+bv)=010-qua-(vg)b

Claim: r =0

Assume r # 0, then 0 < r < D. r is an integer linear combination of a and
r >0 = r € S which is a contradiction since D is the minimal element in
S=r=0= a=qgD+r=qgD = D] a. Similarly, we can do that claim
for bthus D | b.

claim: Ifd|aand d | band D = au+ bv. D is a common divisor of @ and b
then d < gcd(a, b).

Since gcd(a, b) divides both a and b = gcd(a, b) divides both au and bv.
Then gecd(a, b) | au+bv = Dso ged(a, b) < D. Then, gcd(a, b) = D = au+bv.
(This proved the first part of the theorem).

Claim: Let d be a common divisor of a and b then d | gcd(a, b).
If d is a common divisor of a and bthend |aand d | b — d | au and
d|bv = d|au+bv=D=gcd(a,b) O

How do you find u and v? Well...let’s look at an example.

Example2.1.3. gcd(2,1)=1 = 2x1+1x(-1)=1o0or2x3+1x(-5).

Obviously, determining u and d would be challenging as writing it as a
linear combination would yield a host of different unique solution. Luckily,
we have the Euclidean algorithm.

Example 2.1.4. gcd(120,14) = 2 then 120 = 14 x8+8, we will now do the Eu-
clidean division between the divisor 14 (of 120) and remainder 8 (of 120/14)
whichmeans14=8x1+6then8=6x1+2then6=2x3+0.

Similarly, gcd(150,9) = 3 which means 150 =9x16+6 — 9=6x1+
3=>6=2x3+0

What we'll notice that the algorithm will lead to a remainder of 0 and
the remainder prior to that is the gcd. Now let’s figure out how to format it.
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We'll first look back at example 2.1.4 for gcd (120, 14) = 2 that
2=8-6x1
=8-(14-8x1)x1
=-144+2x8
=-14+2x%x(120—-14x 8)
=2x120—-14x17

Basically, we're getting the linear combination of the 2 element in gcd.

Example 2.1.5. gcd(252,105), then 252 = 105x2+42 — 105=42x2+
21 = 42=21x24+0
= 21=105-42x21=105—-(252—-105x%x2) x 2
=105-252x2+105 x 4
=105x5-252x2
Theorem 2.6. (Euclidean Algorithm). Leta,b € Z with b > 0. Construct the
following algorithm to find gcd(a, b) = d by performing repeated divisions
to obtain a decreasing sequence of positive integers ry > 1, > -+ > rp, = d;
that is,
b=aq+n
a=riqx+rnr

r=rqs+rs

Tn-2=Tpn-1q9n+7n
"'n-1=Tnqdn+1

To find r and s such that ar + bs = d, we begin with this last equation and
substitute the results obtained from previous equations:

d=ry
=TIn-2—Tn-19n
=Tn, —qn(rp—3 — qn-1rn-2)

=—qnrp-3+ A+ gngn-1)rn-2

=ra+sb
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Finding the value of d and writing it as the linear combination of a and
b is called the Euclidean algorithm.

End of Lecture

2.2 Fundamental Theorem of Arithmetic

Before getting into the fundamental theorem of arithmetic, let’s look at
some example and theorems.

Example 2.2.1. Say we want to break the number 12 into its multiple, we
canwrite that12=2x6=2x2x3 oreven 12 =3 x4 =3 x 2 x 2. Notice that
2 and 3 are prime and regardless of if we start with 3 x 4 or 2 x 6, we will
always end with the same multiple of primes.

Theorem 2.7. Let p be a prime number and leta,be Z. If p| ab then p | a
andp|b.

Proof. If p | am then the theorem holds. If p  a, we need to show that p | b.
In this case pgcd(a, p) | p so ged(a, p) must be 1 or p since p is prime. So
gcd(a, p) =1 becauseifgcd(a,p) =p = pla. Then3Ju,veZs.t.

av+pu=gcd(a,p)=1
bav+pu)=>b
bau+bvp=>b

plab = plabuandp|p = p|pbu = . Thus, p|(abu+bvp)=b O

Corollary 2.2. Leta,,...,ap€ Z and p is a prime. Ifp|la,---a, then p| a;
forsomeie{l,2,...,n}

Proof. Will be used as exercise. O

Theorem 2.8. (Strong Induction). Let P(n) be a statement/proposition for
n e N. Suppose that

1. P(1) is true

2. IfneN,P(1),P(2),...,P(n) aretrue = P(n+1) is true
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Then P(n) is trueVn € N.

Theorem 2.9. (Fundamental Theorem of Arithmetic). Let n = 2 be an in-
teger. Then,

1. (Existence) 3l eN and x;,..., x; that are prime withn = x; ... Xx;.

2. (Uniqueness) Suppose that n = xy,...,X; where x; < --- < x; where
X1,...,X] are prime. Then, ifn=y,-- -y, where y; < --- < y; where
Y1,...,yr areprimethent=1and y; = X1, Y2 = X2,...

i.e. any integer n = 2 can be factored uniquely into products of prime num-
bers.

Proof. (Existence) We'll prove using strong induction.
1. (n=2):2=2, already a prime

2. n = n+1: Supposed the statement is true for all integer < n. Then,
we need to show that n + 1 is a product of prime number.
If n+ 1 is prime then the existence holds. If n + 1 is not prime, then
n+1=axbwherel < ab < n+1. By the induction hypothesis,
a=ayay---ag where d € N and ay,...,ay are prime. Similarly for
b="Db1bs---bgetc. Thenn+1=ay---azb;---bg. So n+1is a product
of prime numbers.

Thus by strong induction, every n € N, n = 2 is a product of prime numbers.

(Uniqueness) If n = a;---a; = B1--- Br where a; - a; are prime with a; <
---<ajand B; --- B; are primewith 1 <---< ;. Thent=land a; = §;Vi €
{1,..., n}. By strong induction:

1. n=2:Thisis clear since 2 = 2.

2. n—1 = n: Supposed that this hold for all integers 2,3,...,n—1. Let
n=a--a; =P P; where a;---a; are prime with a; <--- < a;
and B, --- B; are prime with 8; < --- < 8;. We need to show that a; =
p1 = ailnsoay|py-f;. a;isprime so a; | f; for some j €
{1,2,..., t}. Since §; is prime then a; and §; are equal and are prime
by definition. §; | n = f1 | a;---a; is prime so 8 | a; for some
i€f{l,....1l}. So 1 = a;. Since a; = f; = f1 = a; = a; then a; = f;.
Then az---a; = B2--- B; (cancel out @; and B1).

By the induction hypothesis, [ = ¢t and a; = a»,...a; = (; for some i €
{1,..., t}. Hence we've proved the statement. O
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2.2.1 Some Exercise

1. Leta,be Z. Then, gcd(a, b) =1 if and only if Ju, v € Z such that au +
bv =1.

2. Leta,b,ce Z. Prove thatif gcd(a,b) =1 and a| bc, then a | c.

End of Lecture
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3 Groups

Definition 3.1. Let G be a set. A binary operation o on G is a function
0:GxG— Gthatmaps (g1,82)— g1°82

Example 3.0.1. Consider G = Z, then + is a binary operation and similarly
to x.

Definition 3.2. A group G is a non-empty set equipped with a binary op-
erations o such that

1. (Identity) dece G:Vg€e G, goeg=egog=g§
2. (Inverse) Vge G, dheG:goh=hog=eg.

3. (Associativity) Vg1, 82,83 € G, g10(g2083) = (g1082) 0 gs.

Example 3.0.2. (Z,+) is a group

Proof. 1) Letge Z,3g+0=0+ g = g. In this case (eg =0).
2)LetgeZ,theng+(—-g)=(-g)+g=0.

3) The integers are closed under associative by definition.

Because it satisfies all of these axioms, (Z, +) is group. O

We can also check if (Z, x) is a group or not.

Proof. Letge Zthen gx1=1xg=g. Let g € Z then there’s not necessarily
he Z: gxh=1.Infact, the only case this applied is for 1 and —1. Thus this
axiom does not hold.We do not need to continue as axiom 2 does not hold
thus (Z, x) is not closed under multiplication and thus is not a group. O

From then, we can use the same argument to prove that (R, +) is a group.
What about (R, x)? It is not a group as it won't satisfy axiom 2 because of 0.

Now we can ask ourselves, is (R\{0}, x) a group? Well We first consider
thata,b# = axb#0.

Proof. 1,Let xe Rthen xx1=1x x = x. 2,Letx€[R\{0}thenxx(%):

% x x = 1. 3, The real number has associative properties. Thus (R\{0}, x) is

a group. O

Let’s construct some groups.

19
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Example 3.0.3. Let n € N and let GL,(R) denote the set of invertible n x n
matrices with real entries. Then, (GL,(R), x) is a group. 1

Proof. Firstif A and B are invertible matrices then AB is an invertible ma-
trices. This is because (B"'A™!)(AB) = I,x,. Another thing is detAB =
detAdetB # 0. Now we can begin proving that it’s a group.

1. Let Ae GL,(R) then A x I,xp = Inxn x A= A.

2. Let Ae GL,(R) then A~! € GL,(R) and det(4A™!) = detlA‘l . This means
Ax A =A% A=Tup.
3. Ax(BxC)=(AxB)xC.
Since GL, (R) satisfy all 3 conditions, it’s a group. O

Example 3.0.4. Let X be a set then consider G to be the set of bijections
from X — X. Then, G is a group under the law of composition of function.
Proof. Let f,g€G, f,g: X — X are bijectionsand go f: X — X.
1. LetIdx =15: X — X,x— x. Then foidx = f. Let x € X, (foidx)(x) =
f@dd(x)) = f(x). Similarly id, o f = f via the same argument.
2. Let f € G, then f: X — X isbijective. Hence f~!: X — X is a bijection
so f1eG.Thus f~lof=fof ! =Idy.
3. Let f,g,h: X — X be bijections. Then, fo(goh)=(fog)oh.
Thus G, a set of bijections from X — X is a group under the law of compo-

sition. O

Example 3.0.5. If X ={1,2,...,n}, we call S, the group of bijective func-
tions from X — X. (Symmetric group on 7 letters). S,, has n! element.

Proposition 3.1. Let (G,0) be a group. Then, the identity element eg is
unique.

Proof. Suppose that e, and eg are 2 identities. we need to show that eg =
e;- S0, e, =egoe, =ec = eg = e. O
Proposition 3.2. Letge G. Then,Ihe G:goh=hog=eg. Wecall h the
inverse of g and we write ho g~".

Proof. Let h; and h; satisfy go h; = hj o g = e and similarly for hy. Then,
hy=hjog=hjo(gohy)=(hoglohy=eochy=hy O

1GL stands for "general linear".

91N1097 JO puyg
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3.1 Symmetric Group

Definition 3.3. Let X be a set. The set of bijections X — X or sym(X) is a
group under the law of composition of function. This group is called the
symmetric group.If X = {1,2,..., n},sym(X) = S,,. Which is the symmetric
group on n letters.

Example 3.1.1. Consider the following f € Ss:

1 1
frzzz f
3 3

For the function f, the first row is the input while the second row is the out-
put. We can even further simplify this notation as f = (123). We interpret
this as f maps 1 to 2, then 2 to 3, finally 3 would loop around back to 1. This
creates 1 loop/cycle i.e. anything in the parentheses is a loop of number.

1l
—_—
N =
w N
—_
~—_—

Example 3.1.2. f € Sy:

f=013)(24)

=W N =
=W N

Basically, the function has 2 loops: first is the loop between 1 and 3 and the
other is a loop between 2 and 4.

Remark 3.1. When there’s a loop with only 1 inpute.g. 1 — 1, then we can
ignore said loop.

Example 3.1.3. f € Sy:

f=0134)(2)=(134)

=W N -
=W N

Example 3.1.4. 7,0 € S3:



Chapter 3. Groups 22

>< ! !

> >4
3—— 3

We can see that 7 = (12)(3) = (12) and o = (132) So To0o = (12)(132) =

(13)(2) = (13)

Example 3.1.5. 0 = (1234) and 7 = (13)(24). Then, oot = (1234)(13)(1432) =
(1432). e.g. (o)) =0(t(1)) =0(3) =

T g

W N =
B W N -
BwWw N -
BwWw N -
B W N -

Example 3.1.6. Let o = (12)(345) and 7 = (14)(23).
Then, o1 = (12)(345)(14)(23) = (153)(24).

Example 3.1.7. Let o = (123456) and 1 = (12)(34)(56).
Then ot = (123456)(12)(34) (56) = (135)(2) (4)(6).

Example 3.1.8. Let o = (12)(34)(56) and 7 = (1234567).
Then, 7o = (1234567)(12)(34) (56) = (1357)(2)(4)(6) = (1357)

With this kind of notation, it will be easy to find the inverse function:

Example 3.1.9. 7 = (1357), thent™! = (7531). 177! =1 =().

Definition 3.4. Let (G, o) be a group, a subgroup of G is a nonempty subset
H such that

1. ege H
2. Ifa,be Hthenaobe H
3. fac H,thena e H
Thus we can also say that (H, o) is a group itself

Example 3.1.10. Consider the group (R, +). Then (Z, +) and (@, +) are sub-
groups of R.

91N1097 JO puyg
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Definition 3.5. A group (G, o) is abelian 2if Vg,heG,wehave goh=hog.

Example 3.1.11. (R, +) is abelian, (R\0, x) is abelian. Contrarily, GL; (R) is
not abelian, and so is S, for n = 3. e.g. (12)(13) = (132) while (13)(12) =
(123) which are different.

3.2 TheGroup Z/nZ and U,

Definition 3.6. Let n € N, we say that a,b € Z are congruent modulo 7,
denotes as a= b mod n, iff a— b is divisible by n

Recall: Define arelation on Z,a ~ b if a— b is divisible by n or simply a = b
mod n. Thus = modn is an equivalence relation on Z.

Example 3.2.1. Forn=3,[0]3={x€Z:x=0 mod 3} = 3Z. Simiarly,

[1l3={xeZ:x=1 mod3}
=1+3Z

[2]3=2+3Z

[5l3=5+3Z2=2+3Z

If n =5, you would have 5 equivalence classes.

Example 3.2.2. 7=2 mod5 since 7 —2 = 5 which is divisible by 5. Simi-
larlyor 7=12 mod5,7=17 mod5.

7=3 mod4and9=1 mod4. We know that9+7=16=0 mod4 and
same for 3+1=4=0 mod 4. What about multiplication? Well...we get that
7%x9=63=3 mod4and3x1=3=3 mod4.

Proposition 3.3. Let a,b,c,d € Z and n € N. Suppose that a=b mod n
andc=d mod n. Then

a+c=b+d modn (3.1)
and
ac=bd modn (3.2)

2 Another way to say it "commutative".
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Proof. Let’s prove for (3.1). We need to show that a + ¢ — (b + d) is divisible
by n. We have that

a+c=(b+d)= (a-b) + (c—d)
~—— N——
divisible by n  divisible by n
Another way to show this is because let a = b+ kn and ¢ = d + gn. Then,
a+c=Mb+d)=(a-c)+(b-4d)
=kn+qgn
=(k+q)n

which is divisibleby n = a+c=b+d mod n.
For the product, we need to show that ac — bc is divisible by n. Then,

ac—bn=(b+kn)(d+qn)—bd
=bd +bgn+knd + kqn® — bd
=n(bg+kd+ kqn)
which is divisible byn = ac=bd modn O

Example 3.2.3. If a = nqg+r where 0 < r < n. Then, a =r modn. e.g.
66=4x12+2 = 66=2 mod4;

Definition 3.7. The set of equivalence classes of congruence modulo 7 is
a set of n elements:
[0]}17 [l]n; [2]11;---; [n_ l]l’l

We denotes the set with the above elements as Z/nZ or sometimes Z,,.

Example 3.2.4. We can define an addition on Z/nZ. Consider the equiva-
lence classes of mod 5: [0]s,..., [4]5/ Then we get

[1]5 + [4]5 = [1 +4]5 = [5]5 = [0]5

[2]5 + [4]5 = [2+4]5 = [6]5 = [1]5
We can also define a multiplication:

[3]5 x [2]5 = [3 x 2]5 = [6]5 = [1]5

[3]5 x [3]5 = [3 x 3]5 = [9]5 = [4]5

Remember, we also have to show that your operation does not depend on
the element you choose to present your class.

(115 + [4]5 = [1 +4]5 = [0]5
[6]5 + [24]5 = [30]5 = [0]5
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Example 3.2.5. Let’s see a counter example where the operation depends
on the element you choose and is not a well-defined function:

f:ZinZ—27,[xl,— x

Here’s the problem: [n],, — n but [0], = [n], and [0],, — 0 = 0 = n (con-
tradiction). Thus it’s not well-defined.

Proposition 3.4. +:Z/nZ — ZInZ,(x], + [Y]n = [x + y], is well-defined.
Simiarly, x : ZInZ — ZInZ,[x], x [yl = [xy], is well-defined.

Proof. Suppose that [x], = [al, and [y], = [b],. We need to show that [x +
¥ln = [a+ b],,. We know that

[x]p,=lal, < x=a modn
(yYIn=I[bly <= y=b modn

Then, by proposition 3.3, [x+ y], = [a+ b],,. We can use the same structure
of argument along with proposition 3.3, to prove [xy], = [ab], O

Corollary 3.1. (Z/nZ,+) is a group
Proof. We want to show that it satisfies all 3 properties of groups:
1. Vx€Z:[x],+[0], =[x+0], = [x],.
2. VxeZ:[xlp+[-xlp=[x—x],=[0],
3. VX, y,ze€Z: [X]p+y+zly = [x+(y+2D)]n = [(x+y)+zl, = [x+yln+(2]n
Thus, (Z/nZz,+) is a group. O
How abouot (Z/nZ, x), is it a group? Well...we can tell right away that
no since there’s no inverse for 0.

Proposition 3.5. Let a € Z then the equation ax =1 mod n has a solution
iffged(a, n) = 1.

Proof. We will need to show it implies in both direction.

(=) let xg be such that axo =1 mod n. Then Ja € Z such that axy =
1+kn = axo—kn=1.Then gcd(a,b)laxo—bn=1 = gcd(a,n)=1.
(<) Suppose gcd(a,n) =1. ThenJ,u,beZ:au+vn=1 = au=1
mod n. Hence the equation ax =1 mod 7 has a solution. O

Definition 3.8. Let U(n) = {[al, : gcd(a, n) = 1}. Then we call U(n) the set
of numbers co-prime to 7. 3

3These numbers are less than n

91N1097 JO puyg
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Example 3.2.6. U(5) ={1,2,3,4},U(8) ={1,3,5,7}
Proposition 3.6. (U(n), x) is a group.

Proof. Firstnote thatifgcd(a,n) =1 mod nand gcd(b,n) =1 mod n then
by homeword 2, gcd(ab,n) =1 mod n. Hence [ab], € U(n). Then U(n) is
a group under x mod 7 through the followings:

1. Letx€ Z,[x], x [1], =[x x 1], = [x] 5.

2. LetxeZ:gcd(x,n)=1. ThenJup: xup =1 mod n = [x], x[upl, =
[xuoln = [1]5.

3. Letx,y,zeZ: [xlp+y+zlp=x+(y+2]p=[(x+y)+ 2zl =[x+ Y]+
[z]n

O

Remark 3.2. U(n) is a subset of Z/ nZ but is not its subgroup.

3.3 Order of an element

Definition 3.9. The order of an element g € G is the smallest integer n € N
if it exists such that g” = eg and g” =gogo---og
—

n times

Remark 3.3. Note from author: Similar examples and more of order of an
element is given in the next lecture recap.

Proposition 3.7. Let G be a group and g € G have order n.
1. Ifgk=eg, thenn| k.

2. Orderof g™ =

_n_
ged(m,n) *

Proof. 1) Let ke Z: gk = eg. Write k= gn+r where ge Zand 0 < 1 < n.
Then, gk = g7 — gk = gi"g" — e;=egg”. So g" = e hence r =
0= nl|k.

2) We will first show that the order of g” divides First,(g™) gedimm =

—_n__
ged(m,n) *

mn m %
ggcd(m,n) — (gn) ged(m,n) — eéc (m,n)

= eg. We will now show that they’re exactly

equal. Let k = order(g™) hence (g"™)* = eg. Then g"* = e, then also by
the proposition 1 above, the order of g divides mk = n|mk and m| mk
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so mb is a common multiple of m and n. Hence by homework 2, mk is a
multiple of lem(m, n) = %. So,

mn

gcd(m, n) a=
n

mk forgeN

" a=k
ged(m, n) q

and hence k = order(g™). Thus, the order of g"* is O

—_n___ —_n___
ged(m,n) ged(m,n)

Definition 3.10. The order of an element g € G is the smallest integer n € N
if it exists such that g” = eg and g" = gogo---0g
N———
n times
If for addition then g”" = gn

Example 3.3.1. Consider the following group and its order.

e The order of (12) € S, is () since (12)(12) = ()

e The order of( 0

(1) ) € GL2(R) will be

o )0 )G

¢ 2 € R\{0} does not have a finite order.

)

¢ The order of 1 € Z is infinite.

e The order of [3]5 = U(5) = {[1]5, [2]s, [3]5, [4]5,} is 4 since 3! # 1,3 =
9=4,33=33x3=4x3=12=2,3*=33x3=2%x3=6=1

e The order of [4]g € Z/8Z is 2, since [4]g # 0 but [4]g + [4]g = 2[4]g = 0.
e The order of [3]4, € Z/47Z is 4.

* The order of [3]g € U(8) = {[1]g, [3]s, [5]s, [7]s,} is 2.

¢ The order of (1234) € S, is 4, since

(1234) #0
(1234)% = (1234)(1234) = (13)(24)
(1234)% = (1234)2(1234) = (1432)
(1234)* = (1234)3(1234) = ()
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Corollary 3.2. The order of (ayay---ay) € Sy, is k.

Proposition 3.8. Ifg has order n then g* has order m
Example 3.3.2. We know that in U(5),[3]5 has order 4 since 3 # 1,32 =
4,33 =2, 34 = 1. Then, the order of 32 is = d‘(l4 5 = = 2. Similarly, the order

of 3% is gcd(“) =4

Example 3.3.3. The order of [2]5 € Z/5Z has order 5 since [2]5 = [1]5 + [1]5
will have order m =5

Theorem 3.1. (Lagrange’s). Let G be a finite group and H a subgroup of G.
Then, |H| divides |G|.

Before doing the proof, we define the following relation on G. We say
that x~ yif y~'x e H.
Claim: ~ is an equivalence relation.

Proof. We need to show it satisfies the following properties
1. (Reflexive) Let x€ G,x 'x = eg € Hsince Hisa subgroup of G.

2. (Symmetric) Suppose x ~ y. Then y"'x € H hence (y 'x)™' € H
Thus,
(y_lx)_ly_lx = (x_ly)y_lx =eg

3. (Transitive) Let x, ¥,z € G and suppose x ~ yand y ~ z. Then, y 'x €
Hand z7'y € H. Since H is a subgroup,

'y lx)=zlxeH
Thus z ~ x
Then ~ is an equivalence relation. O
Hence G can be partitioned into the equivalence classes of ~. Then we get
(X]~ ={yeG:y~x}
:{yeG:x_lye H}

={yeG:y=xhforsome h e H}
=xH={xh,he H}

We will continue from the proof of last lecture.
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Definition 3.11. A subset of G of the form xH (where H is a subgroup of G
i.e. H < Q) is called a left coset of H.

Hence we can partition G into a disjoint union of equivalence classes
i.e. into a disjoint union of left cosets of H. Note that H = egH is also a left
coset of H.

Let x; = eg, X2,..., X} be representatives of the distinct equivalence classes
of ~. We will show that there is a bijection from H to xH.

Lemma 3.1. There exists a bijection from H to xH

Proof. Let f: H— xH, f: h— xh where x € G. f is injective. If f(h;) =
f(hy) then xh; = xhy = x 'xh; = x 'xh, = h; = h, = f isinjective
f is surjective. Let g € xH. Then, there exists h' € H such that g = xI/,
hence g = f(h') = f is surjective. Thus f is bijective. O

Proof. (Lagrange’s Theorem) From the above proof, we can see that |H| =
|xH| for all x € G. Therefore |H| = |x,H| = |x3H| =--- = |xH|. H=egH,
X2H, x3H,...,x; H partition G. Thus, *

|Gl =|H|+|xoH|+ -+ |x H| = k| H| (3.3)
Thus |G| divides | H|. O

Definition 3.12. The numbers of left cosets of H in G is called the index of
H in G denoted as [G : H]. If G is finite, then

el

G:H]=—
[ ] H

(3.4)
Definition 3.13. The order of a group G is the number of elements of G. If
G is finite

Corollary 3.3. (Of Lagrange’s Theorem) Let G be a finite group and let g € G.
Then, g has a finite order and the order of g divides |G|.

Proof. g has finite order. Consider the following subset of G, {g" : n e N}
G. Since G is finite so {g" : n € N} is also finite. Then, 3n;,ny eN:ny <n <2
and g =g" = g ™M =¢g.

Let S={meN: g™ = e} then S is non-empty since n, —n; € S. So S has a
minimal element and hence g has finite order. ° O

4According to the professor, the proof of Lagrange’s theorem was used often in finals...
5We will continue this proof in the next lecture.
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Corollary 3.4. IfG is a finite group and g € G. Then, order of g divides |G|.
Particular, g'°' = eg.

Proof. Last time we saw that g has finite order if G is finite. Consider the
set T={g":nezZ0<n<ord(g)}=1{g’%g',g>%...,gmd®"1}.

The elements in the set T are distinct since if x,y € {0,1,...,ord(g) — 1},
g¥=g’then g*V =ec = ord(g) | x—y. Now, 0 < x < ord(g) and 0 <
y<ord(g) = —ord(g)<x—-y<ord(y).So, x—y=0 = x=1y.

We'll thus see that T is a subgroup of Gwitheg € T. Lets, £ €{0,1,...,ord(g)—
1}; suppose g°g’ = g**'. Let r be such that 0 < r < ord(g) and s+t =

qord(g) +r = gs+t — gqord(g)+r — (gord(g))qgr — gr_

We'll now check for inverse. (g%)~! = g~ = g°"d®~5 Hence T is a group

with ord(g) elements. By Lagrange’s theorem, |T'| divides |G| = ord(g)

divides |G|. Hence, g'¢! = gkord®) = ek = ¢ (G| = kord(g)). O

Definition 3.14. Aright coset is a subset of G of the form Hx = {hx, h € H}

Proposition 3.9. Consider the following relation on G, x ~zy y ifxy~' € H
where H < G. This relation is an equivalence relation on G

Proof. Exercise. O
Notice that
X~y ={y€G:yx € H

Z{yEG:yxflzhforsomehEH}
={hx,he H = Hx

G can be thus partitioned into disjoin right cosets (In general, it’s not
necessarily true that xH = Hx, only true if G is abelian).

Exercise. Consider the set Ng(H) = {x € G: xH = Hx}. Show that Ng(H) is
a subgroup of G.

Proposition 3.10. Let G be a group and H < G. Denote by

~LIX~LY &= y_leH

~R:S~Rl & st leH

Then the followings are equivalent:
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1. g1H=gH
2. gz_lgIEH
3. Hg'=Hg,"'

Proof. (1 <= 2)g1H=gH <= [g1]~, =[], = & ~1=.
B < 2 Hg'=Hg,' = [gi'l-, =g = g'~rg' =
&' gH'eH = glgieH 0

How many left and right cosets do we have? Well...if G is finite, then there

1Gl
are i left cosets.

Remark 3.4. We denote G/ H the set of left cosets and H\G the left of right
cosets.

Proposition 3.11. There is a bijection ¢ : G/ H — H\G,¢p(gH) — Hg™!

Proof. We need to show that ¢ is well-defined i.e. suppose that g, H = g1 H,
we need to show that ¢(g1 H) = p(g:H). f g1 H=gH < g,'g1€ H <
Hgi'=Hg,' = ¢iswell-defined.

Let7: H\G — G/H, Hx— x~'H. Then (poT)(Hx) =¢p(r(Hx)) = (p(x’lH) =
Hx = ¢o1 =Idy y. Meanwhile, (r o) (xH) = 7(Hx™') = xH. So ¢ and T
are invertible and are bijections. O

Example 3.3.4. Consider the group Z under addition and the subgroup
nZ ={kn: ke Z}. nZis a subgroup of Z. The left coset are the equivalence
classes of the following relation x ~; y <= x—y € nZ = x—yisdivisible
by n.

[0], =0+ nZ
l,=1+nZ

[n-1l,=n-1+n”z

We can thus find that [Z: nZ] = n

Example 3.3.5. Compute the left cosets of H = {(), (12), (13), (23), (123), (132)}
in S4.
1S4

Solution: H =sym(1,2,3) = H < §,. Therefore, there are 77 = % =4
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left cosets of H. Let’s find those left cosets. First, we will have e H as a left
coset.
ecH =1{0,(12),(13),(23),(123), (132)}

Note: if we take any element of H to form a left coset, we'd get back H —=
eg is our representative. We'll pick an element in S4 which give

(14)H =1{(14),(124),(134),(14)(23), (1234), (1324)}
Now, let’s pick (24) as it’s not in the above coset.

(24)H =1{(24),(142),(24)(13), (234),(1423), (1342)}
Similarly, (34) does not exists in any of the above so

(34)H =1{(34),(12)(34),(143), (243),(1243),(1432)}

Notice that (142) H = (24) H and (143) H = (34) H. Notice too that for each
element from each left coset will have the same sort of mapping as its rep-
resentative e.g. (14)H has its representative mapping from 1 to 4 and all of
its element will map 1 to 4. Right coset will be the same.

3.4 Cyclic Groups

3.4.1 Subgroup generated by g€ G
Definition 3.15. Let G be a group and let g € G. Denote by
(g)=1g":nez} (3.5)
We call (g) the cyclic subgroup generated by g
Lemma3.2. (g) <G
Proof. We will show that it follows the following properties:
L eg=8" = ege(g)
2. ggh2=gMm*M2 Sincen AmpeZ = m+mneZ.
3. (gM~!'=g ! = (g) has an inverse.
Thus (g) is a subgroup of G. O

Example 3.4.1. Consider the following subgroup generated:



October 41, 2024.

Lecture 16

33 3.4. Cyclic Groups

e 2)e(Z,4),(2y=1{2k:kez}=2Z.
e (3) € (R\O, x), {(3) ={2": ne Z}.
Lemma3.3. fH<Gandge H. Then(g) < H.

Proof. Exercise. O

End of Lecture ———
Proposition 3.12. Ifg has finite order n. Then, (g) = {eg, g, &%,...,&" 1}
Proof. Let k € Z, we can write k = gn+r for some g€ Zand 0 < r < n.

Then,

gk — gqn+r — (gn)q — eggr — gr
Example 3.4.2. Suppose g has order 5, g10 = g!%g = (g5’ g =g

Definition 3.16. A group G is said to be cyclic iff there exists g € G such
that G =(g).

Example 3.4.3. (Z,+) is cyclic since Z = (1) = (—1). Similar logic, Z # (2).

¢ IsRacyclic group? No.

Is @ a cyclic group? No.

L]

(Z/nZ,+) is a cyclic group with Z/nzZ = ([1],).

U(5) = {[115, [2]5, [3]5, [4]5}. We can see that 22 = 4,2* =16 =1,2% =
3 = UB) =(2]5)

Proposition 3.13. Let G be a finite group with |G| = n. Then G is cyclic iff G
has an element of order n.

Proof. (=) Suppose G has an element g order n. Then, (g) = {eg, g, gz, ...
,g”‘l} is a subset of G with n element. (g) c G and [{g)| = n,|G| = then
G=(g.

(«<=) Left as an exercise. O

Remark 3.5. IfG is a group and G = (g), we say that g generates G and g is
the generator of G.
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Example 3.4.4. Is U(8) cyclic? U(8) = {[1]g, [3]s, [5]s, [7]g}. We can see that
for 1, it has order 2, for 3 it’s 2, for 5 it’s 2 and for 7 it’s 2. Thus, U(8) is not
cyclic since |U(8)| = 4 but has no element of order 4.

Proposition 3.14. Let G be a cyclic group, G is abelian.

Proof. Since G is cyclic, there exists g € G such that G = (g). Let x,y € G,
there exists 1y, np € Z such that x = g’ and y = g’2. Then,

xy: gnlgng — gn1+ng — gn2+n1 — gnggnl — yx
Thus G is abelian. O

Example 3.4.5. S;, n = 3isnotabelian so isnot cyclic. GL, (R) is not abelian
so is not cyclic. U(8) is abelian but not cyclic.

Proposition 3.15. Let G be a finite group with n elements and let g € G.
Then, G = (g) iff g has order n.

Proof. Let as an exercise. O

Example 3.4.6. U(5) = {1,2,3,4} with multiplication mod 5. We've seen
that 1 has order 1, 2 has order 4, 3 has order 4 and 4 has order 2. Thus
U(5) =([2]5) =([3]5) #([4]5)

Theorem 3.2. Let G be a cyclic group with n elements and let d divides n.
Then G has a unique subgroup with d elements (d € N).

Proof. Let g € G be a generator of the cyclic group G, g has order n. Then

nidn ord(g) _ n _n _ nid
g™ (7 €N) has order gcd(ord(g) ) ~ ged(md) — nid = d. So g'"'“ has order

d. Thus, (g"/?( has d elements.

Now we need to prove uniqueness. Let H be a subgroup of G with d ele-
ments and let y € H. We need to show that y € (g"/?). By Lagrange’s theo-
rem, y|H| =eg SO yd = eg. Since G is cyclic, there exists k € {0,1,...,n—1}
such that y = g¥ = eg = y% = gk%. So g*? = e hence order of g divides
kd so n| kd. Then,

qgn=kd for some geN
quk (gel\lsincedln)
Soy=gk=g"dq=(g"4)1 = ye(g"%. Hence, H< (g'%). |H|=d by

assumption and [(g"’4)| = d since g’ has order d (shown above). Then
H= <gn/d>' O
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How many generators does G have? Well...Let y € G,3k € {0,1,...,n—
1} such that y = g¥ since G = (h). y generates G < G = (g¥) — g*
has order n <— m =n <= gcd(n, k) = 1. Hence the number of
generators of a cyclic group with n elements is |U (n)| (which is the number
of integers between 0 and n — 1 that are relatively prime to n).

Definition 3.17. Let¢p:N—N,n— |U(n)|. ¢(1) =1, $(2) =1, $p(4) =2, etc.
In particular, if p is prime then ¢p(p) = p -1

Example 3.4.7. Find all the generators of Z/8Z = ([1]g). Hence the gener-
ators of Z/87 are [1]g, [3]s, [5]s, [7]s.

Example 3.4.8. Find all the subgroups of Z/12Z. First, Z/12Z is a cyclic
group with 12 elements and is generated by [1];2 i.e. Z/12Z = ([1]12). For
every divisor d € N of 12, there exists a unique subgroup with d elements
generated by [n/d];2.

3.4.2 Fermat’s and Euler’s Theorem

Theorem 3.3. (Fermat’s Little Theorem). Let a € N and p a prime number
with p not dividing a. Then a?~' =1 mod p.

Proof. If pis prime and p{ a. Then gcd(a, p) = 1. Then [al , € U(p). Hence,
ord([a ,,)||U(p)| = ord([al]p) | p—1. Hence [“]Z_l =[1], € U(p) and thus
a’~'=1 mod p O

Example 3.4.9. 3*=81=1 mod5.2°=64=1+63=1 mod?7.

Example 3.4. 10 Let p be a prime number with p =3 mod 4. Show that
the equation x? = —1 mod p has no solution.

Theorem 3.4. (Euler’s Theorem). Let n € N and a € Z such that gcd(a, n) =
1. Then, a®™ =1 mod n,$(n) = |U(n)|.

Proof. Ifgcd(a,n) = 1,then [a], € U(n), then [a]ﬁm) =[1],. Hence a®" =1
mod n where ¢(n) = |U(n)|. =

3.5 Normal Subgroups

Definition 3.18. Let G be a group and N a subgroup of G. N is said to be a
normal subgroup of Gif Vg € G,

gN=Ng (3.6)
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We denotes N is the normal subgroup of Gas NG
Example 3.5.1. Consider the following normal subgroups:

1. If Gis abelian, and H is a subgroup of G. Then, H<1G
Proof. LetgeG,gH=1{gh:heG}={hg:he H=Hg. O

2. Consider the subgroup H = {(), (12)} of S3. We can see that (13)H =
{(13),(123)} and H(13) = {(13),(132)}. Thus (13)H # H(13) = H A
S3. (is not)

3. Let H ={0),(123),(132)}. Then, (13)H = {(13),(12),(32)} and H(13) =
{(13),(23),(12)} = (13)H=H(13) = H<JSs.

4. f H<Gand [G: H =2. Then H<G.

Proof. f ge HgH=Hg=H. If g¢ H,gH # H. Since left coset
partition G and [G : H] = 2. Then, H and G\H are the left (right)
cosets of H in G. Which means gH = G\H and Hg = G\H so gH =
Hg=G\Hif g¢ H. Hence,Vge G,gH=Hg = H<G. O

Proposition 3.16. H <G iff gHg ! = H for all g € G, where gHg™! =
{ghg™':he HlandgHg ' <G.

Proposition 3.17. Let G be a group and H a subgroup of G. Then, the fol-
lowings are equivalent:

1. H<G
2. xhx 'e HforallxeG,he H.
Corollary 3.5. Let G be a group. Then, {eg} <G and GG

Proof. Let x€ G, h e {eg}. Then, xhx~! = xegx™' = xx~! = eg € {eg}, hence
{ec}<G. Letx€ G,he G = xhx e Gso G«G. O
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3.5.1 Simple and Quotient Group

Definition 3.19. A group G is said to be a simple group if it’s only normal
subgroups are {eg} and G.

Example 3.5.2. Let p be prime, Z/pZ is a simple group.

Proof. Let H be a subgroup of Z/pZ. Then, by Lagrange’s theorem, |H]|
divides p hence |H| =1 or |[H| = p = H = {[0],} or H = Z/pZ. Thus,
Z[pZ is simple. O

Theorem 3.5. Let G be a group and N <1 G. Then G/ N is a group under the
following well-defined binary operation

(aN)-(bN):=abN (3.7

Proof. We need to show thatif a,b,c,d € G: aN = cN and bN = dN; then,
(ab)N = (cd)N. i.e. (cd)Labe N. First,aN = cN = ¢ 1a = n, for some n; €
N;and bN =dN = d~'b = n, for some n, € N. Then,

(cd)Yab)=d e Hab)=d (c  a)b
=d'mb
= d_l n d ny
N——
eEN eN
Thus (cd)~!(ab) € N. O
Proposition 3.18. Let G be a group and N <1 G. Then, N is the identity of
G/N.

Proof. Let G be a group and N < G. Then, for G/N,
(81N)-N = (g1N)(egN) = (g1eG)N = g1 N

And
(@M =g'N

Thus N is the identity for G/ N. O
Proposition 3.19. Consider the following properties:
1. Let G be an abelian group and N < G. Then, G/ N is abelian.

2. Let G be a cyclic group and N < G. Then, G/ N is cyclic.
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Proof. We'll prove for 1. Let G be abelian and N < G. Then, N<1G and G/ N
is a group,

(g1N)(g2N) = (g182)N
=(g281)N
=(g2N)(g1N)

End of Lecture ——

Definition 3.20. The set G/N is called the quotient group.

3.6 Permutation and Alternating Groups

Definition 3.21. Let S;, be the symmetric on n letters. An element s € Sy, is
called a permutation.

Definition 3.22. A cycle of length «a is of the form (ay, ay, ..., a;) where the
a;’s are distinct (a k—cycle).

* A k- cycle has order k.

¢ The inverse of a k—cycle is a k—cycle.

Example 3.6.1. Consider the cycle (ajay---ay) = (a1az---ay) "' = (ax -+ axay)

Proposition 3.20. Any o can be written as a product of disjoints cycles.

1 2 3 4 5

s 2 1 5 =(13)(2)(45) = (13)(45)

Example 3.6.2. 0 =

Proposition 3.21. Disjoints cycles commute
Example 3.6.3. (13)(45) = (45)(13)

Proposition 3.22. Supposeo =010, -:-0 whereo,,...,0} are disjoint cy-
cles of length 1, ..., 1. respecively. Then, ord(c) = lem(ly,...,1l;)

Example 3.6.4. Consider (123)(45). Then, it has order lcm(3,2) = 6. Simi-
larly, for (12)(34), it has order lcm(2,2) = 2. Note that the cycle (12)(13) are
not disjoint since (12)(13) = (132) which has order 3 instead of 2.
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3.6.1 Sign of a Permutation
Definition 3.23. A transposition is a 2—cycle
Proposition 3.23. Everyo € S, can be written as a product of transposition.

Proof. We first show that an cycle can be written as a product of transpo-
sition. Let o € Sy, then o can be written as a product of disjoint cycles.
An each cycle can be written as a product of transposition, hence o can be
written as a product of transposition. O

Example 3.6.5. (123)(4567) = (13)(12)(47)(46)(45)

Definition 3.24. Let o € S,, and suppose that o can be written as a product
of k transposition(s). Then, sign of permutation o is defined as

sgn(o) = (-1)F (3.8)

If sgn(o) =1 = k is even, we then say o is even. Equivalently, if sgn(o) =
—1 = kisodd, we then say o is odd. Also, sgn() is a well-defined function.

Theorem 3.6. Leto € S, and suppose that o can be written as a product of
even number of transposition. Then, any product of transposition equalling
o must contain an even number of transposition.

Example 3.6.6. () = (12)(12) = (12)(12)(34)(34).
Proposition 3.24. Leto,7 € S,. Then,
sng(ot) = sng(o)sng(t) (3.9

Proof. Suppose o can be written as a product of k transposition and simi-
larly for 7 of I transposition. Hence, o1 can be written as a product of [ + k
transposition. Then,

sgn(o7) = (1'% = (=)' (-1)* = sng(0)sng(r)
=

Notice thatwe sgn(12) = -1, sgn(123) = (13)(12) = (-1)?=1and sgn(1234) =
(14)(13)(12) = (-=1)® = —1. Thus, we can generlize the equation 3.8 to yield

sgn(a, ---ag) = (1)1 (3.10)

Example 3.6.7. Find the sign of (123)(456)(78)(86).
Solution: sgn(123) (456) (78) (86) = 1.
e N N N~
=1 =1 =-1 =-1
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Proposition 3.25. sgn(a’l) = sgn(o)
Proof. sgn(o~'0) = sgn() = 1. Using proposition 3.24, we'd realize that

sgn(o*_la) = sng(a‘l)sng(a) =1

sgn(c ™) = =

=sgn(o) since 1 —(—1)]C

O

Definition 3.25. A, = {0 € S, : sgn(o) = 1} is called the alternating group
on n letters.

Claim: A, < Sy

Proof. sgn)=1 = (€ A,.Leto,7€ A,,sgn(o) =sgn(r) =1. Sosgn(or) =
sgn(o)sgn(t) =1 = o7 € Ay.

Let 0 € A,; then we have sgn(o‘l) =sgn(o) =1 = ole A;,. Therefore,
A, <S,. O

Claim: |A,| = ”3' for n=2.

Proof. Let 1 be an odd permutation in S;. We define f: A, — S;\A;, 0 —
70 (where o is even). We'll now show that this function is bijective.

e Injectivity: Suppose that f (o) = f(02) = 101 =102 = 0] =03.

* Surjectivity: Let @ € S;\A,, Then « is an odd permutation. THen

1

7 laisevensor '@ € A,. Then, fe'a) =1 'a) =

Hence,

|Anl = [Sp\ Anl
ISnl =1Anl +1Su\ Al = 2| Apl

1Snl _| !
> A = —=| —
[Anl == 2

Theorem 3.7. Letn=5. Then, A, is a simple group.

Proof. Book Chapter 10. O
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Example 3.6.8. A3 = {(), (123),(132)} and A4 = {0, (123), (132), (124), (142),
(134), (143), (234), (243), (12)(34), (14)(23), (13) (24)}.

Remark 3.6. A4 has no subgroup of order 6.

End of Lecture ——
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4 Group Isomorphism

4.1 Group Homomorphism

Definition 4.1. Let (G,-) and (H, o) be groups. A homomorphism ¢ : G —
H is a function that satisfies

Px-y) = p(x)od(y) 4.1)
Example 4.1.1. ¢: (R\{0}, x) — (R, +), x — In x is a homorphism since
¢(xy) =In(xy) =In(x) +In(y)
Proposition 4.1. Let¢: G — H be a group homomorphism. Then,
1. ¢(eg) = eqy
2. ¢g™H =p@h!

Proof. 1) ¢p(eg) = Pleg - ec) = Ppleg) oPpleg) = ey = Pleg)!
2) We know that g- g7 ' = e = ¢(g-g~ ') = ¢(eg). Then,

P(g-g ") =¢dleg)
d(@opg H=en
Pt op(g)op(gH=¢(g) toen
enop(g ="
Thus ¢(g™!) = p(g) L. O
Example 4.1.2. Consider more examples of homomorphism:
1. GL,(R) — R* = {R\{0}}, A — det A is a homomorphism since
det (AB) = det Adet B
2. §, — {£1},0 — sgn(o) is a homomorphism since
sgn (0T) =sgn (o)sgn (1)
3. G— H, g — ey (Trivial homomorphism)

4. Gisabelian, G — G, g— g" (for some n € N) is a homomorphism

1 This is obtained by multiply ¢(eg)! in both side since (b(eG)_1 ogleg) =ey

43
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4.2 Group Isomorphism
Definition 4.2. A homomorphism ¢ : G — H is an isomorphism if it is
bijective.
Proposition 4.2. Let¢: G — H be an isomorphism. Then,
1. Ifg € G, order(p(g) )=order(g).

2. If K is a subgroup of G with |K| = n. Then, ¢(K) is a subgroup of H
with |p(K)| = n.

3. Gisabelian < H is abelian.
4. Giscyclic < H iscyclic.
5. ¢~': H— G is an isomorphism.

Remark 4.1. When there exists an isomorphism between 2 groups, we call
these 2 groups isomorphic (with the notation =).

Example 4.2.1. Consider the followings isomorphisms:

¢ Direct Product: If (A,0) and (B, ) are groups. Then, A x B is a group
under
(a1,b1) - (az, b2) = (a1 © ap, by o by)

¢ Groups with 4 Elements: Consider 2 groups Z/2Z x Z/2Z and Z/4Z.
We see that the first group always have order of at most 2 while Z/4Z
would have order 4 = the groups are not isomorphic.

¢ Groups of Order 6: Consider 2 groups Z/6Z and S3 are not isomor-
phic since Z/6Z is abelian while S3 is not.

Theorem4.1. Let G bea cyclic group with n elements. Then, G is isomorphic
to ZI/ nZ which we denotes as

G=ZInZ (4.2)

Proof. Consider ¢ : Z/nZ — G,lal, — g% (and let G = (g)). We need to
show that ¢ is well-defined. [a], = [bl,, <= a— b is divisible by n <
a—n = nk for some k € Z. Then,

Hence, g% = g¥ = ¢(lal,) = ¢([bl,).
We now need to show that it’s injective and surjective.



October 23, 2024.

Lecture 21

45 4.2. Group Isomorphism

e Surjectivity: Let ye G. I0=2m<n—-1:y=g" = y=¢((mly).
e Injectivity: Since the 2 sets have the same number of elements n. If ¢
is surjective, it must also be injective.
Therefore, ¢ is well-defined and bijective. Lastly, We need to show that ¢ is
an isomorphism. Then,
¢(la+Dbln) =g""=g"%" = p(lalp((bl )
Thus, if ¢ is an isomorphism, G = Z/nZ. O
Theorem 4.2. Chinese Remainder Theorem. Let m,n e N. Then, Z/mnZ =
ZImZ x ZInZ iffged(m,n) =1
mn

Proof. Suppose that gcd(m, n) > 1. Then, lcm(m, n) = gedimy < M. Let
(a,b) e ZImZ x Z/nZ. Then, {Icm(m, n)}(a, b) = ([0]1,,,[0],). Thus, Z/mZ x
Z/nZ has no element of order mn = it is not cyclic = it’s not isomor-
phic. ? O

Proposition 4.3. Let G be a group and N <1 G. Then G/ N is a group. The
map Iy :G— G/N,g— gN is a group homomorphism.

Proof. TIn(g1,82) =(8182N) = (g1N)(g2N) =IIn(g1)IIN(g2). O
Example 4.2.2. N ={eg} <G = G/N ={glegl,gcGl={{gl: g€ G} =
G/{eg} = G with a homomorphism defined as G — G/{eg}, g — {g} = gleg}.

Similarly, G/G = {1} where ahomomorphismis defined as G — G/G, g —
gG=ecG=G

4.2.1 Kernel

Definition 4.3. Let ¢ : G — H be a homomorphism. A kernel of ¢ is de-

fined as
kerp={gec G:¢p(g) =epy} (4.3)

Example 4.2.3. Consider the following kernels:
1. det: GL,(R) — R* = R\{0}. Then, ker(det) = {A € GL,(R) : det A =1}
2. sgn: S, — {£1}. Then, ker(sgn) = {o € S, :sgn(o) =1} = A,.

3. lIN:G—G/N,g— gN.Thenkerlly={ge G: gN=N}=N.

21f gcd(m, n) = 1,([1],,[1],) has order mn. (HW) and hence Z/mZ x Z/nZ is cyclic thus
ZimnZ=7l/mZx7ZI/nZ.

21N1097 JO puyg
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Properties of Kernel

Proposition 4.4. Let¢: G — H be a group homomorphism. Thenker p < G.

Proof. We need to first show that ker¢ < G. e € ker ¢ by definition since
¢(eg) = ey. Let x, y e ker¢. Then, ¢p(x) = ey and ¢(y) = ey. Hence ¢p(xy) =
P(xX)Pp(y) = eyer = ey = xy € ker¢. Lastly, let x € ker¢ then, ¢p(x!) =

P =el =ey = x7! eker¢.

We now show that ker¢ <1 G. Let g € G and x € ker ¢p. We get that

P(gxg ") = p(@Pp)p(g™
=p(gendp(g™)
=p(@pgH =p(gg™) = Ppleg) = en

Hence gxg~! e ker¢. Thus, ker¢p < G. O

Proposition 4.5. If¢: G — H be a group homomorphism. Then, ¢ is injec-
tive < ker¢ ={eg}.

Proof. (=) Suppose that ¢ is injective. We show thatker¢ = {eg} = eg €
ker ¢ since ¢p(eg) = ey. If x € ker ¢, then ¢(x) = ey = ¢p(eg). Since ¢ is in-
jective, x = eg = ker¢ = {eg}.

(<) Suppose that ker¢ = {eg}. We'll show ¢ is injective. Let x,y € G be
such that:

dx) = (y)
PGP =ey
Gy ) =en

Ppxy H=ey = xy lekerep

Soxy ' =ec = x=y = ¢isinjective. O

4.2.2 Isomorphism Theorem

Theorem 4.3. First Isomorphism Theorem. Let G, H be groups and ¢ : G —
H be a group homomorphism. Then, G/ ker ¢ = ¢$(G).

Proof. Define ¢ : G/ker — ¢(G), gkerp — ¢(g). We first need to show
that it’s well-defined. Suppose g1 ker¢ = goker¢p — g lg) e kerp =
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P8 81) =en = P(g2) 7 Pp(g1) = ey = P(g1) = P(g2).
We need to show that ¢ is a homomorphism.
(g1 ker ) (g2 ker)) = p(g1 g2 ker )
=¢(g182)
= Pp(g)P(g2) = p(g1 ker P)p(ga ker )
Thus it is a homomorphism.
We now show that it’s injective.
Plgkerd) = ey = P(g) = ey
= geker¢
= gker¢p =ker¢
Hence ker ¢ = {ker ¢} = eg/ker¢p = ¢ is injective.

Now we show it to be surjective. Let y € ¢(G). Then, y = ¢(x) forsome x € G
and hence ¢(xker¢) = ¢(x) = y. Thus ¢ is surjective. O

First question: Euclidean algorithm.
Second question: Cyclic groups. Third question: Langrange’s theorem and
possible applications. And fourth question: Fermat’s and Euler’s Theorem.

Frequently asked question: If p is a prime and p = 3 (mod 4). show that

x2=-1 (mod p) has no solution.

Proof. Let p = 3 + 4k for some k € N. Suppose that x> = -1 (mod p). If
plx = x*= mod p. Then, p1x. Since p is prime, gcd(x, p) = 1. Hence,
by Fermat's little theorem, since pT_l eN

¥P"'=1 (mod p)
(x%)

(-1) 2 =1 (mod p)

Pt -
- 1

=1 (mod p) since P eN

-1
D% =1 (mod p) =12k
-1=1 (mod p)
= 2=0 modp

This is a contradiction since p = 3. (This proof can be done using Lan-
grange’s theorem: If x> = —1 (mod p), then x has order 4 in U(p)). O
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Continuing from last lecture, from the first isomorphism theorem, in
particular, if ¢ is surjective then, G/ ker¢ = H (¢(G) = H).

Theorem 4.4. Second Isomorphism Theorem. Let G be a group and N <
G,H<G. Then, HHHNNZ HN/N

Proof. ConsiderIIy:G— G/N,g— gN. O

Theorem 4.5. Third Isomorphism Theorem. Let G be a group and N < G.
IfH <G containing N. Then, H/N <G/ N and

G/N/HIN=G/H (4.4)

Proof. (Outline to proof.) Consider ¢p: G/N — G/H,gN — gH then prove
that this is well-defined bijective homomorphism. O

Theorem 4.6. Cayley’s Theorem. Let G be a group and sym(G) the of bijec-
tion from G — G. Then, G is isomorphic to a subgroup of sym(G) i.e. There’s
an injective group homomorphism G — sym(G).

Proof. Define Ag : G — G,x — gx. We've shown in assignment 3 that Ag is
bijective. Define ¢ : G — sym(G), § — Agz. We now prove that ¢ is a group
homomorphism.

This is because

Agig, = (8182)x = §1(82X)
=Ag (&%)

We now need to show ¢ is injective. Let g € ker¢ then Ag =idg = gx =
xVxe G = g =eg. ker¢p = {eg} and hence ¢ is injective. Therefore, by
the first isomorphism theorem. G/ ker¢ = ¢(G) = Gleg = dp(G) = G =
¢(G) < sym(G). O

Application 1. Assume that G is finite. Define the following homomor-
phisms:

G 9, sym(G) L {£1}
p =sgno ¢ is a homomorphism G — {+1}, p(g) = sgn(Ag).

Application 2. |G| = 2k where k is odd, then G has a subgroup with k ele-
ments.



5 Group Actions

Theorem 5.1. If[x]- isaconjugacy class of x. Then, G/C(x) — [x]~,gC(x) —
gxg ' whereC(x)={geG:gxg™ ' =x}

We've previously obtained the above theorem in the assignments. We
will now attempt to generalize this (the mapping of gC(x) — gxg~!is a
kind of action as you'd see in the definition below).

Definition 5.1. Let S be a set and G be a group. Then, an action of Gon S
is a function
*:Gx8§8—85,(g,8)—g*s (5.1)

We say that G acts on S (or S is a G—set) such that
® egxSs=8VseS
* g1*(g2+5)=(g182) *sVg1,82€ Gand s€S.
Example 5.0.1. Consider the following actions:

1. Let S be a set and consider sym(S). We can see that sym(S) acts on S
since g € sym(S),s€ S = o * s =0(s). To show that this is an action,
let s€ S. Then, Idg * s =1ds(s) = s. Let 01,02 € sym(S). Then,

og1x(02%8)=01(02 %)

=(01002)(s) =(0102) * s

2. Let G be a group and et S = G. Define an action G x G — G, (g, x) —
gxg_l. To show that this is an action, let x € G: x * eg = egxeg = X.
Let g1, 82 € G. Then,

g *(g*x) =g *(g2xg ")
=g1(gxg; g
= (glgz)x(glgz)_l =(g182) *x

Definition 5.2. Let s € S. The orbit of S is denoted as
orb(s) ={g*x,g8€ G} (5.2)

Example 5.0.2. For conjugation, orb(x) = {g* x,g € G} = {gxg ',g€ G} =
conjugacy class of x.

49
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Example 5.0.3. More example on group actions.

Let S = G, define a group action as Gx G — G, g * x = gx. This is a group ac-
tionsince eg*x = egx=xand g * (g2 *x) = g1 *(g2Xx) = g1(g2X) = (g182)x =
(8182) * x.

Definition 5.3. Let s € S. The stabilizer of S is the subset of G defined as
stab(s) ={ge G: g*s=s} (5.3)

Example 5.0.4. The stabilizer of the conjugacy class is defined as stab(x) =
{geG:gxx=x={geG:gxg ' =x}} = C(x).
Proposition 5.1. stab(x) < G

Proof. eg * s = s hence eg € stab(s). Let g1, g2 € stab(s). Then, (g182) * s =
g1#(g2%s) =g1*s=5 = g1 g € stab(s). Lastly, g1xs=s = gy *(g1xs) =
(gf1g1)s=g_1*s=eG*s=gl‘1*s = s=glxs = gl‘1 € stab(s) hence
stab(s) < G. O

5.1 The Orbit-Stabilizer Theorem

Definition 5.4. Let G be a group. Then, a conjugation of G acts on G is
given as
(g, x)—gxx=gxg (5.4)

The equivalence class that contains x € G that follows conjugation is called
conjugacy class and is given as

{gxg_1 :g€ G} (5.5)

Though not mentioned in class, there are many way to notate the conju-
gacy class of x and here are 2 of the most common: cl(x) and Cy.

Definition 5.5. Let G be a group. Then, a centralizer of x in G is defined as
Cx)={geG:gx=xg} (5.6)

We've seen this from the previous class that this is a result from taking the
stabilizer of the conjugacy class of x.

Theorem 5.2. (Orbit-Stabilizer). Let s € S, there exists a bijection defined
as:
fs: G/stab(s) — orb(s), gstab(s) — g*s (5.7)
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Proof. We first show that f; is a well-defined function. Let g;,82 € G :
gistab(s) = gostab(s) < g,'g € stab(s). Then,

= (g 'g)*s=s
= gZ*((gz_lgl)*S):gZ*S
= (8285 '§)*S= g2 %S
= g1*S=grxs = f(g1stab(s)) = fs(gostab(s))

Now, we need to show that f; is injective. Suppose that f(g;stab(s)) =
fs(gostab(s)) = g) * s = g» * s = we're just reversing the process above
= (g,'g1) *s=s = g,'g stab(s) = g;stab(s) = gostab(s).

Now we need to show that f is surjective. Let s’ € orb(s). Then, 3h € G:
s'=h*s= fy(hstab(s)).

Thus, f; is well-defined and bijective. O

Proposition 5.2. S can be partitioned into a disjoint union of orbits.

Proof. Define the following relationon S. s; ~ s <= 3g€ G: g * s = $».

Claim: ~ is an equivalence relation.
1. Reflexivity: Let s€ S. Then, eg * s =s.

2. Symmetry: Let 51,520 € S: 51 ~ 5. Hence,3ge G: gx 51 =5 = s1=

gl x5y = sp~ 1.

3. Transitivity: Let s1,52,83 € S: 8§ ~ 2,52 ~ s3. Hence, 3g,8' € G: g =
si=spand g’ *sp = s3. Then, g' x5 =53 = g *x(g*s1) =53 =
(g8 *s1=55 = s51~$3

Thus, ~ is an equivalence relation.
So, the equivalence class of s € Sunder ~is{s'€ S:s' ~s} ={geG: gx

s} = orb(s). Hence S can be partitioned into disjoint union of orbits. In
particular, 2 orbits are equal or disjoint. O

In fact, we can write proposition 5.2 as the following:

S=|_orb(s) (5.8)

Si

where s; are representatives of the distinct orbits.!

111 means disjoint union.
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Proposition 5.3. Suppose that G is finite and G acts on S. Let s € S, then
|lorb(s)| divides |G|.

Proof. |orb(s)| = |G/stab(s)| which divides |G| because |G| = [G : stab(s)]
|stab(s)]. O

5.2 Cauchy’s Theorem

Theorem 5.3. (Cauchy). Let G be a finite group and p be a prime number
dividing |G|. Then, G has an element of order p.

Proof. Leto = (123---p) and let H = (G) so |H| = p. Let S = {(x1,...,xp) €
GxGx---xG=GP: X1X2-+-Xp = eg}. Then, |S| = |G|P~. Define the follow-
ing action of Hon S: Let 7 € H and (x1,...,Xp) €S

H+xS—S, T* (X100, Xp) = (Xp(1)5 -0 Xr(p)

e.g. (123) = (x1, X2, x3) = (x2, X3, X1).

Let 7,1 € H. We need to show that (tA) * (x1,...,%p) =T * (A * (x1,..., Xp)).
Now, it’s obvious that (esp) * (X1,...,Xp) = (X1,..., Xp). Then,
T * (/’l'* (xl)---)xp)) =T* (x/‘l(l)r--wxl(p))
= Xep» .- Xanp)

= @A) * (x1,...,Xp)
We still need to show that 7 * (x1,...,xp) € Si.e. x;q) - Xr(p) = egVT € H. If
(x1,...,xp) €S. Then,G*(xl,...,xp) = (X2, X3,...,Xp, X1) € S since
X1X2°+ Xp = €g
= xgxg---x,,le_l
= XpX3-':XpX] = xl_lxl =eg

Then, inductively, Gk« (x1,...,xp) € §,Vk€{0,1,...,p—1}. Hence, * defines
a group action on S. We know that S is a disjoint union of H-orbits. Then,

n
S=||orb(sy)
i=1

where s1, $2,... s, are representatives of the distinct orbits. Then, let sy, 2, ... Sg
be representatives of singleton? orbits and si, 1, ..., s, be representatives of

2Singletons are sets with 1 element.
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non-singleton orbits. Note that (eg, ..., eg) € GP which satisfies orb(eg, ..., eg) =

{(eg,...,ec)}. Then,

S= (ﬁ orb(s,-))l_l( |i| Orb(Si))

i=1 i=k+1
= |S|=k+qgp for some g €N

= |GIP 1 =k+qp

so p | kand since k =21 = k = p. Let (x1,...,Xxp) € S: orb(xy,...,xp) =
{(x1,...,xp)} Then,

< T (X1,...,Xp) = (X1,...,Xp) VTE H, X1 -+ Xp = €G
4:»0*(xl,...,xp):(xl,...,xp)andx1~--xp:eG since H = (G)
< (X2,X3,...,Xp, X1) = (X1, X2,...,Xp) and X1 -+~ Xp = eg
= X1=Xp=x3=-=Xpand X1 X2 Xp = €G

p_ o v — L —
@xl—eg,xl—xg—xg—u-—xp
Hence singleton orbits are of the form (x, ..., x) where xP = eg. Since, k =

p,Ax # eg : xP = eg. Then, ord(x) | p is prime and x # eg so x has order
p. O

Theorem 5.4. Let G be a group and S a G—set. Then, there exists a homo-
morphism G — Sym(S)

Proof. GxS§S— S§,(g,s)— g*s.Letge Ganddefine Ag:S— S, A¢(s) = g*s.
Claim: A € Sym(s).

AgO/lg-l =Id;. Since (/1g0/1g-1)(s) =g=* (g’1 *§) = (gg’l) * § = s. Similarly,
Ag-l oAg =Id;.

Now, define p : G — Sym(S), g§ — A; where p is ahomomorphism. We need
to show that p(g182) = p(g1) o p(go) i.e. Ag 0 Adg, = Agq,. Let s€ S, then

(Agy 0 Ag,)(8) = Ag, (Ag, (5))
=g1*(g2*5)
= (gng) * 8§ = /,Lglgz (8)

hence p(g182) = Ag g, = Ag; © Ag, = p(g1) © p(g2). Thus, there’s a homomor-
phism from G to Sym(S). O
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We can check for the kernel of this homomorphism too. kerp = {ge€ G:
Ag =1ds} then,
geker < gxs=sVYseS
< gestab(s)VseS
< ge[stab(s)

seS

so kerp = [ stab(s).

seS

5.3 Coset Representations

Definition 5.6. Let G be a group and H < G of finite index n. Define G acts
onG/H={xH:x€eG}as

*:GxG/H—G/H
g*xh=gxh
Then, * is a group action.
We can evidently tell that this is a group action. Let x, g1, g2 € G. Then,
1. egxxh=egxh=xheG/H.
2. g1*(g2*xxH) =g *(g2xH) = (g182)xH = (§182) * xH.

One thing you'd realize from this action is that it induces a homomor-
phism p : G — Sym(G/H) £ S;,. So now you can ask, what is ker p? Well...we
need to find stab(s)Vse G/ H.

Claim: Let x €, then stab(xH) = xHx L.
proof. g € stab(xH). Then,

<~ gxH=xH
— xilgsz
— x'gxeH

> g€ xHx™!

Hencekerp =Nyeg xH x~L. Then, by the firstisomorphism theorem, G/ kerp =

p(G) < Sym(G/H), so |G/kerp| =|p(G)| divides n. Then,
kerp= (| xHx ' cegHe;' = H

xeG
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Thus, ker p < H. Interestingly, index of ker p is finite even if G is infinite.

Proposition 5.4. Let G be a group and H < G. Then, there exists a normal
subgroup N<1G: N < H and [G: N] | n!

Proposition 5.5. Let G be a finite group and H a subgroup of G of index p
where p is the smallest prime division of |G|. Then, H<1G

Proof. (Outline). Let N be the kernel of the coset representation of the
group action G on G/H. N < H and [G : N] divides p! = [G: N] divides
|Gl =[G : N]|N|. Hence, [G : N] divides gcd(|Gl, p!). Since p is the smallest
prime divisor of G, then gcd(|G|, p!) = p. Hence [G: N] |p = [G:N] =1
or p. f [G: N] =1, then N =G but N< H C G which is a contradiction.
Hence, [G: N] = pand N € H € G, then

IGI |Gl |H|

[G:N]l=-—=——=[G: H|[H: N]

INT  |HI|N|
This means p = p[H: N]so [H: N]=1so H=N. Now, NG and H =
N = H<G. O

5.4 P-Groups

Definition 5.7. Let G be a group and S be a G—set. We say that G acts
transitively on S (i.e. the action of G on S is transitive) if S is the only orbit.

Proposition 5.6. Let S be a finite group with n elements. Then, G acts tran-
sitivelyon S <= G has a subgroup of index n.

Definition 5.8. A subgroup of S, is said to be transitive if for all i, €
{1,...,n}, thereexistsoc € H: 0 (i) = j.

Example 5.4.1. Consider the following examples:
e H={1,(12)} is not a transitive subgroup in Ss.
* H={1,(123),(132)} is a transitive subgroup in Ss.

Definition 5.9. Let p be prime. A finite group G is said to be a p-group if
|G| = p* for some k € N®

3In certain textbooks, we they includes trivial group as p—group but here we will not do
that.
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Here are some properties that we've previously done about p—group in
homeworks 4 and 6: If G is a finite p—group, then

1. |Z(G)| = p with

n
IGI=1Z(G)|+ )_[G: C(xy)] (5.9)
i=k

where xg, ..., X, are representatives.

2. If G has order p? then it is abelian.

End of Lecture ——

Definition 5.10. (better definition). Let S be a G—set. We say that the ac-
tion of G on s is transitive if there is only 1 orbit.

Proposition 5.7. Let G bea p—group (G| = p*, ke N and p is prime). Then,
ifi€{0,1,...,k}, G has a normal subgroup of order p*.

Proof. We will prove by induction:
e k=1:|G| = p = only {eg} and G are normal subgroup of G.

* Induction: Suppose the result holds for groups of size p*~! and let G
be a group of size pk. WE know from homework 4, |Z(G)| = p* for
some «a € N, hence p| |Z(G)|. Hence, by Cauchy’s theorem, Z(G) has
an element x of order p. Let H = (x), HG (let y € (x) € Z(G) and

k
g€G,gyg ' =ygg™' = ye(x)). So, G/ His a group of size % = pk‘l.
Let 1y : G — G/ H denote the projection g — gH. By the induction

hypothesis, if .i €1{0,1,...,k— 1}, there eixsts a normal subgroup H of
G/ H ofsize p'. I} (H) is a normal subgroup of G, then

L (A = |HI|-|H| = p- p* = p**!

Hence, if i € {0, 1,..., k}, G has a normal subgroup of order pi. Hence G has
normal subgroups of size p, p?,..., p* and of size 1 which is {e}. O

Definition 5.11. Let Gbe agroup and S a G—set. Define Sg ={s€ S: g*s=
sV g € G}. We say that an element sy € Sg is a fixed point of the action G on
S.
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Example 5.4.2. Consider G acting on G by conjugation, (g,x) — g% x =
gxg™!. Then,

Go={xeG:gxx=xVgeG}
={xeG:gxg ' =xVgeG)
={xeG:gx=x8vge Gl =Z(G)
Remark 5.1. Z(G) is the center of a group.
Proposition 5.8. sy € Sg <= orb(sg) = {so}
Proof. so€Sg <= g*so=5YgeG < orb(sp) = {so}. O
Remark 5.2. Sg is the union of singleton orbits.

Theorem5.5. LetG beap—group4 and S a finite G—set. Then, |S| = |Sg| mod
p

Proof. Homework. O

Theorem 5.6. Let G be a finite group and p be prime. Suppose that G has
size p*m where k € NU {0} and gcd(m, p) = 1. Then, G has a subgroup of
order p*

Proof. We will prove by induction:
e |G|=1:Then |G| = po x 150 {eg} < G of order po.
* Induction: Suppose that G is a group size p¥m, where k € NU {0} and
gcd(m, p) = 1 and that the statement statement is true for all groups

of size < |Gl. If pt|Gl, k = 0. Then, {eg} < G of order po =1.
If p| G, then

n
IGI=1Z(@G)|+ )_[G: C(x)] (5.10)

i=a
where x,, ..., X, are representatives of non-singleton conjugacy classes
and C(x;) are its centralizer. Assume that p does not divided [G :
C(x;,)] for some ip € {a, ..., n}. Then,

|G| =[G : C(xi)]|C(x4))]
So pk||C(x,~0)| and hence |C(x;))| = pkl where gcd(p, ) = 1. So,

[G: C(x;,)] = |conjugacy class of x;,| > 1

“In this class, we consider p—group is finite.
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Hence, |C(x;,)| < |G|. Hence, by induction hypothesis, C(x;,) has a
subgroup of size p¥. So G has a subgroup of size p*. Now we need
to look atif p|[G: C(x;)]. Suppose that p|[G: C(x)],Vi{a,...,n}. So p
divides Y.7"_ [G : C(x;)]. But we know that

|Gl =[G : C(xi)11C(x5)1

Hence, |Z(G)| is divisible by p. So Z(G) has an element x of order p.
By Cauchy’s theorem, since (x) < Z(G). Then, H = (x) <G and G/H
is a group of order p*~'m < p*m. By the induction hypothesis, G/ H
has a subgroup H of order p*~!. Hence IT”~1(H) is a subgroup of
order |H||H| = p*~1p = pF.

5.5 Sylow’s Theorems

Theorem 5.7. (Sylow’s First Theorem). Let G be a finite group and p be a
primber number dividing |G|. Then, if |G| = p*m where gcd(p,m) =1 and
k € N. Then G has a subgroup of order p*

Definition 5.12. Any such subgroup that satisfies the Sylow’s first theorem,
it’s called a Sylow p—subgroup of G.

Example 5.5.1. [S3| =6 =2 x 3. Since, S3 = {(), (12),(13), (23), (123), (132)},
then, {0),(12)}, {0,(13)} and {0, (23)} are Sylow 2—subgroup of S3. Az =
{0, (123), (132)} is a Sylow 3—subgroup.

Recall: Let G be a p—group (|G| = pk,k € N) and S a finite G—set. Then,
|S| =1Sg| mod p where Sg is the set of fixed points.

Proof. We know that S is a disjoint union of orbits. Let s1,...,sx be rep-
resentatives of singleton orbits and sg.1,..., S, be representatives of non-
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singleton orbits. Then,

n

=[] orb(sy)

i=1

el g

i=k+1

i=k+1

k n
= |§| = (I_I orb(s,)l) ( L Iorb(sl')l)

=Sl + Z [G:stab(s;)]

i=k+1

Vk+1<1<n,[G:stab(s;)] divides |G| = p¥, then [G : stab(s;)] € {1, p, p>, ...,

k}. lorb(s;)| = [G : stab(s;)] > 1 = |orb(s;)| is divisible by p for all i €
{k+1,...,n}. Hence |S| = |Sg| mod p (if there’s no fixed points, the result is
clear). O

Definition 5.13. Let G be a group and H a subgroup of G. A subgroup K of
G is said to be conjugated to H if there exists g € G such that gKg~! =
Conjugacy is an equivalence relation on the set of subgroups of G.

Proposition 5.9. Let G be a group and g € G. Let pg : G — G, x — gxg!
¢g is an isomorphism from G 1o G.

Proof. Let x1,x2 € G. Then, ¢g(x1,x2) = gx1x2)g™ ! = gx187'gxg7! =
(gr1g H(gxg™H= $g(x1)g(x2). So, it's ahomomorphism. (¢pg-10¢4)(x) =
g ' (pg(x)g =g '(gxg™!)g = x. Similarly, (pgodg-1)(x) = x. Hence ¢pg-1 is
the inverse of ¢ and hence ¢y is bijective and hence an isomorphism. O

Corollary 5.1. Any conjugate subgroups of G are isomorphic. Let H and K
be conjugate subgroups. Then, for someg € G,K = gHg ' = ¢g(H), pg isan
isomorphism. So H= gHg ™' =

Theorem 5.8. (Sylow’s Second Theorem). Let G be a finite group and p
a prime dividing |G| such that |G| = pkm where k € N and gcd(p,m) = 1.
Then, IfK and P are two Sylow p—subgroup of G, then K is conjugate to P.

Proof. Define the following action of K on G/P as y*xp = kxp where y € K
and x € G. Now, |K| = p’C so K is a p—group and |G/P| = m. Let n be the
number of fixed points of this action. Then, |G/P|=n modp so n #0
mod p since gcd(p, m) = 1. Hence, n # 0 and n = 1. Hence, this action has
a fixed point. Let xpp be a fixed point, then orb(xyp) = {xop}. Hence, Vy €
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K, y*xop=Xop = yXop = Xop = xglyxop:p, soVyeK,xglyxoeP.
This also means y € xonal — K¢ xonal.
Now, |K| = pk, IxOanll =|P|= pk hence K = xonal. O

Theorem 5.9. (Sylow’s Third Theorem). Let G be a finite group |G| = p*m

wherek €N, gcd(p, m) = 1 and p is prime. Then, the n,, of Sylow p—subgroups

satisfies n, =1 mod p and ny, divides m.

Proof. Let P be aSylow p—subgroup of G and consider the set S = {xPx ™!, x €

G}. Note that by Sylow’s second theorem, S is the set of all subgroups of
size p¥. Let P act on S defined as *P x S — S,y % xPx ' — (yx)P(yx)~L. If
X = eG,xPx‘1 =P.SoPeS ifye P,yPy‘1 = P. So, P € S is a fixed point
of this action. Suppose P’ is a fixed point of this action. Then, y* P’ =
P'Vye Phence yP'y~! = P’ Yy e P, hence for any y € P, yP' = P'y. There-
fore y € Ng(P') = {g € G: gP' = P'g} (Ng(P') is the normalizer of P’ in G,
Ng(P") < Gand P’ € Ng(P') by Homework 7). O

Proof. (Continuation from previous lecture). We got that y € Ng(P') hence
P © Ng(P'). We also have that P’ € Ng(P') sinceif xe P/, xP'x" ! =P/ =
Ng(P'). P' and P are subgroups of Ng(P') then,

P'and P < Ng(P) <G

We know that |P| = |P'| = pk, |G| = pkm hence Ng(P') = pklwhere gcd(l, p) =

1. Hence, P and P’ are Sylow p—subgroup of Ng(P'). Therefore, by Sy-
low’s Second Theorem, P and P’ must be conjugate in N (P'). Hence 3z €
Ng(P"):zP'z7! =P = P'=P. Pisa p-group and S is a P—set, and the
action of P on S has only one fixed point so

|S| = number of fixed points mod p

= np=1mod p

ny | m, by proposition 5.10. (next page), n, = [G : Ng(P)]. P < Ng(P) so
[G: P]1=[G: NG(P)[NG(P): Pl = m=ny[Ng(P)] = np|m. O

NOTE: The final exam has 7 questions: 4 questions on groups and 3 ques-
tions on ring. Most questions are post-midterm materials. As the professor
emphasized: "this final is way easier than the original". Every homeworks
post-midterm are important. Remember to prove first and second Sylow’s
Theorem.
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Proposition 5.10. LetG beagroup and H a subgroup of G. LetS = {xHx !, x €
G} which is the set of conjugate of H. Then, if G is finite, |S| = [G : Ng(H)]
where Ng(H) ={ge G:gHg ' = H}.

Proof. G acts transitively on Sby Gx S —, g+ xHx ™! — gxHx'. The proof
that * defines an action on S has been done in the homework. This action

is transitive since,

orb(H) ={g* H,g € G}
= {gHg_l,ge G} =S

Thus, S is a transitive G—set. Now let’s look at the stabilizer:

stab(H) ={ge G: g* H= H}
={geG:gHg ' = H} = Ng(H)

So Ng(H) < G. If G is finite then,

[G:stab(H)] = |orb(H)]|
= [G: Ng(H)] =S|

Review of Coset Representation

Theorem 5.10. Let G be a group and H < G of index n where n e N. Then,
AN <G:N < H and G/ N is isomorphic to a subgroup of S,.
Note that N = Nyec xHx™! and [G : N] divides n.

Example 5.5.2. Let’s apply this to G = S; which has |Sy| = 24 = 23 x 3. We
first look symmetry of a square can be defined as (dihedral group K) Id =
0,7 = (1234), 7% = (13)(24), 3 = (1432) = (4321),V = (12)(34), H = (14)(23),
D; = (24) and D, = (13) i.e. K ={Id,r,r3,r3,V,H,D;,D,}. So, we can see
that K < S4 but is not normal in S4 since (12)(13)(12) = (23) € K. There
exists a normal subgroup N of S4, N € K such that G/ N is isomorphic to a
subgroup of Ss.
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6 Ring and Fields

6.1 Rings

Definition 6.1. A ring (R) is a non-empty set with two binary operations:
+:RxR—R (Addition)
x:RxR—R (Mutliplication)

Such that

1. (R,+) is an abelian group and the neutral element for + is denoted
by Or.

2. There existsan element 1lr€ R:Va€e R,ax lg=1gxa=a.
3. x isassociativei.e. Va,b,ce R,(ax b) x c=a x (b x c).

4. Closed under distributivityi.e. ax (b+c)=axb+axc

Example 6.1.1. Consider the following examples:
* (Z,+,x)isaring.

* (Q,+,x)isaring.

(R, +, x) isaring.

M, (R), which is the set of n x n matrices, is a ring.

(Z/nZ) is aring with addition and multiplication mod n.

Remark 6.1. The additive inverse of a € R is denoted by —a, specifically,
a+(—a)=0g.

Remark 6.2. x can somtimes be notated as -. In somes cases, multiplication
won't be denoted atalle.g. axb=a-b= ab.

Proposition 6.1. Let R be aring. Then,
1. OR -a= OR

2. a-0p=0pg

63
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Proof. 1)O0gr-a=(0g+0g)-a=0g-a+0g-a = 0g =0g - a. 2) will follows
the same argument. O

Proposition 6.2. LetR bearingandac R. Then, (-1p)-a=—-a

Proof. Op =0rp-a=(1r+(-1g))-a=1g-a+(-1lg)-a=a+(-1g)-a =
(—1g) - a = —a (by the uniqueness of inverses in a group). O

Proposition 6.3. Let R be a ring and suppose that 1z = Or. Then, R = {0}
(zero ring).

Proof. Letae R. Then,a=1g-a=0g-a=0g so R={0g}. O
Remark 6.3. From now on, 1g # Og unless it’s stated that they're equal.

Definition 6.2. A ring (R, +, x) os said to be commutative if x is commu-
tative such that
axb=bxa,Va,beR

Example 6.1.2. R,Z,Q,Z/nZ are commutative rings. M, (R) where n =2 is
non-commutative.

6.2 Integral Domain and Field

Definition 6.3. Let R be a commutative ring. A non-zero element a € R is
said to be a zero divisor if there exists a non-zero b€ R: ab = 0p.

Example 6.2.1. In Z/47Z, 2 is a zero divisoras2-2=0. In Z/6Z, 2,3 are zero
divisoras2-3=0.1In Z/87, 2,4 are zero divisor as 2-4 = 0.

Definition 6.4. Let R be a commutative ring, R is said to be an integral
domain if R has no zero divisors.

Example 6.2.2. R,Q,Z are integral domains.
Theorem 6.1. Z/nZ is an integral domain iff n is prime.

Proof. If n is not prime, write n = ab where 2 < a,b < n. So [al, and [b],
are non-zero in Z/nZ and [al,, - [b], = [ab), = [0], so [a],, and [b],, are zero
divisors.

Suppose that 7 is prime. Let n = p. Let a,b € Z/nZ be non-zero. Then,
a,b e U(p) hence ab € U(p) and hence ab # 0,. Hence Z/nZ is an integral
domain if n is prime. O
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65 6.3. Unitin a Ring

Remark 6.4. Let R be a commutative ring. Then the following are equiva-
lent:

1. Risan integral domain.
2. Ifa,be Randab=0g = a=0g orb=0g.

Definition 6.5. A commutative ring R is said to be a field if for all a # Og,
there exists non-zero b € R: ab = 1g. (Every non-zero element has a multi-
plicative inverse)

Example 6.2.3. R and Q are fields. Z is not a field.
Proposition 6.4. Let[F be an field. Then, [ is an integral domain.

Proof. Let a,b € F be such that ab = Of. If ab = Of, we're done. Suppose
that a # Og. There exists c € F such that ca = ac = 1f. Then,

ab =0
c(ab) = c-0fF = Of
(ca)b =0
1gb = Of
b =0
Hence, [ is an integral domain. O

Theorem 6.2. Let R be a finite integral domain. Then, R is a field.

Proof. Letae R,a#0rand f: R — R be the function x — ax. We will show
that f is injective. Suppose that x,y€ R: f(x) = f(y). Then, ax=ay =
ax—ay=0r = a(x—y)=0r = x—y=0pgsince a #Or. R is an integral
domain, hence x = y and f is injective. f: R — R is injective while R is
finite hence f is surjective therefore, 3x9p € R: f(xp) = 1g = axp = 1p.
Hence a has a multiplicative inverse in R = R is a field. O

Corollary6.1. Let p be a prime number, Z/ pZ is a field.

6.3 Unitin aRing

Definition 6.6. Let R be aring. An element a € R is said to be a unit in R if
dbe R:ab = ba = 1g. The set of units in R is denoted as R*.
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Proposition 6.5. (R, x) is a group (under multiplication).
Proof. First, let x,y € R*. Then,
XeER® = X' e R :xx' =x'x=13
yeER* = 3y'eR*:y =y'y=13
We also have
E /') = x(yy)x' = x1px’ = xx' = 1p
VXV xy) =y &0y =y1ry=y'y=1g
1r € R™ since 1 - 1g = 1. Associativity follows from properties of x. x' € R
since xx’ = x’x = 1. Thus, (R*, x) is a group. O

Corollary 6.2. Let R be a commutative ring. (R*, x) is an abelian group.

Proposition 6.6. Let R be a commutative ring. Then, any non-zero element
is either a unit or a zero divisor.

Proof. Let a€ R and a # Og. If a is not a zero-divisor, we’ll show that ais a
unit. Let f: R — R, x — ax. We'll prove that it’s bijective:

e Injectivity: If f(x) = f(y) for some x,y € R. Then, ax=ay = a(x—
¥) = 0g. Since a is not a zero divisor, x— y =0 = x=.

¢ Surjectivity: R is finite and f is injective hence f is surjective.
Since f is surjective, 3xg € R: f(xg) =1, = axp=1r = aisaunit. O

Example6.3.1. Let n = 2. Then, (Z/nZ)* = U(n) where U(n) = {[al,;gcd(a, n) =
1}.

Proof. Leta€ Z:gcd(a,n) = 1,[al, € Un). Then, Ju,ve Z: au+nv =
1 = au=1modn. So, [al,ul, =[1], so a € (ZInZ)* = U(n) <
(ZInz)*.

Suppose [al, € (Z/nZ)*. Then, 3(bl, : [abl, =[1], = Jke€Z:ab=1+
kn = ab—-kn=1. Hence, gcd(a,n) | 1 = gcd(a,n) =1. So [al, € U(n).
Hence, (Z/nz)* = U(n). O

Proposition 6.7. A unit is never a zero divisor.

Proof. Suppose a is a unit and let b be such that ab = 0g. Let u: au = 1p.
Then, uab = u0gr =0g = b=0pg. O
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6.4 Complex Numbers

Definition 6.7. Let i be such that i2 = —1. Then, a complex number is an
element of the form

x+iy where x, y € R (6.1)

Proposition 6.8.
x+i+E'+iy)=x+xN+ily+y)
(x+iy) x (X' +iy) = (xx' - yy) +i(x'y+y'%)
Example 6.4.1. (2 +3i)(7 +5i) =?

(2+30)(7+5i) =14+ 10i +21i + 15i>
=14+31i-15
=-1+31i

Definition 6.8. Define the set, C of complex numbers such that
C={x+iy:x,yeR,i’=-1} (6.2)

Proposition 6.9. C is a field

Definition 6.9. Let R and S be rings. Then, R x S is a ring with operations:

(r,s)+ (', sh=+sr1 +5"

! !/ ! !
(r,s)-(r,s)=(rxgs,r xgs)

and (0g, ORg) is the neutral element for + and (1g, 1) is the neutral element
for x.

Proposition 6.10. R x S is not an integral domain

Proof. (1g,0r) x (Og,1R) = (Og,0R). O

6.5 Ideals

Definition 6.10. Let R be a commutative ring. A non-empty subset I of R
is called an ideal if

1. (I,+) is a subgroup of (R, +).

2. reRandael — racl.
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6.5.1 Idealsof”Z
Lemma 6.1. Consider the followings:
1. nZ isanideal of Z for any n e NU{0}.
2. Ifl'isanideal of Z. Then, I = nZ for somen e NU{0}.

Proof. 1) Let n e NU{0}. Then, nZ is a subgroup of Z (n =0,nZ = {0}, n =
1 = nZ=2). Letr € Z and a € nZ, then a = nq for some g € Z and
ra=rnq=n(qr) where gr € Zso ra € nZ. Hence, nZ is an ideal of Z.

2) Let I be an ideal in Z. Then I is a subgroup of Z. Hence I = nZ for some
neNuU{0}. (See HW5 and Sessions 1). O

Note: {0} is always an ideal of R and R is always an ideal of R.

Proposition 6.11. Let R be a commutative ring. R is a field < The only
ideals of R are {Og} and R.

Proof. (=) Suppose that R is a field and let I be a non-zero ideal of R.
Then, da€ R,a#0gr:a€l. Letbe R:ab=1g (Ris afield, a # 0r). Now,
beRandael — abel — 1re€l Letre Rr=rlgel Then,
RcISR = R=1

(<) Suppose that the only ideals of R are {Og} and R. Let a€ R: a # Op.
Let I ={ar,r € R}. Then, I isan ideal of R. O € I since O =0g-a. If x,y € I,
then x = rja and y = rpa for some r;,12 € R. Then, x+y=na+mna=
a(ri+1r) = (x+yel). —xeIsince —x = (-rp)a. So (I,+) < (R, +).

€R

Now, if r € R,rx = 7r?a hence rx € I. So I is an ideal of R. I # {Og} since
acl = I=Rbyassumption. Hence, 1p € I,drp e R:rpa=1r < aryg=
1g (since R is commutative). So R is a field since every non-zero element is
invertible. O

6.5.2 Quotient Rings

Let R be a commutative ring and I be an ideal of R. Define the following
relation on R: We say x ~ y iff x — y € I, we write (x = y mod I). ~; is an
equivalence relation since, (I, +) < (R, +).

Now, the equivalence class of x € Risthe coset x+Iand x+1=y+I <
x—ye€ 1. This is denoted by R/ I, the set of left cosets of I. Additionally, R/1
is a ring under the following operations:

e (n+D+(rp+D)=((rn+r)+1
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s (M+Dx(rp+D=(rr)+1

+ on R/I is well-defined since (I, +) is a normal subgroup of (R, +).

Claim: x is well-defined

Proof. Suppose that r; = r; mod I and r» = r; mod I. We need to show
that rir, —ryrj € I'ie. rir, = r; 15 mod I. Notice that

ri=r, +kforsome ke I
ry =15+ q forsome g € I
! ! ! 1.7
= nn-nrh=0+k+q) —nn
=rry+kry+qri+kqg—riry
=rk+rq+kqgel
—~— N
el el el

Hence riro +1=r{ry+1 = x is well-defined. O

Notice that (1g + I) and (0 + I) are the neutral element under x and
+ respectively. Associativity of +, x and the distributive laws follow easily
from properties of R.

Claim: R/I is a commutative ring.
Proof. Since (r1+D)-(n+D=nrn+l=rnn+I=0+D-(rn+D. O
Example 6.5.1. R=7, = nZ fprsome neN. Then,
Z, n=0
Z/1=1 {Og} n=1
ZlnZ, n>1

Definition 6.11. The set of equivalence classes denoted by R/I (and its
properties shown above) is called the quotient ring.

Definition 6.12. Let R be aring. A subset S of R is said to be a subring of R
if

1. (R,+) is a subgroup of (R, +).

2. 1p€e S
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3. a,beS — abeSs.
N.B. Sc Risasubring < Sisaringon its own.

Example 6.5.2. Z is a subring of @, Q is a subring of R and R is a subring of
C.

6.6 Ring Homomorphisms

Definition 6.13. Let R and S be rings. A ring homomorphism is a function
¢ : R — Ssuch that:

* @(r+rr2) = @) +s@(r2)
* p(r xgr2) =@(r) xs(rz)
* p(lp) =1g
Proposition 6.12. Let ¢ be a ring homomorphism from R to S. Then,
1. ¢(0p) =0s.
2. (=1r)=—@()
Proof. Follows immediately from the definition. O

Definition 6.14. The kernel of a ring homomorphism ¢ : R — S is denoted
by ker ¢ and is defined as:

kergp ={re R:¢p(r) =0g} = ¢~ ({05} (6.3)

Proposition 6.13. ¢ : R — S is an injective ring homomorphism iffker ¢ =
{OR}.

Proof. Follows from the fact that ¢ : R — S is a group homomorphism. O

Proposition 6.14. Let R be a commutative ring and ¢ : R — S be a ring
homomorphism. Then, ker ¢ is an ideal in R.

Proof. ker < (R,+). Let r € R,x e ker¢. Then, ¢(r xg a) = @(r) xsp(a) =
@(r)xs05 =05 = raekereo. O

Definition 6.15. A ring homomorphism ¢ : R — S is said to be an isomor-
phism of rings if it is bijective. In such case, we also say R and S are isomor-
phic, notated as: R= S.
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Remark 6.5. Being isomorphic is an equivalence relation on rings. Addi-
tionally, any ideals I of a commutative ring R is the kernel of a ring homo-
morphism.

Theorem 6.3. (First Isomorphism for Ring). Let R be a commutative ring
and @ : R — S be a surjective group homomorphism. Then, R/ ker¢p = S.

S=¢R)

Proof. Let I =ker¢, define ¢ : R/I — S=@(R), r+1— ¢(r). ¢ is a well-
defined and bijective function and is a group homomorphism from R/I to
S. All we have to check are:

1. g+ D =g =1s.
2. 9+ Do+ D) =p(ry + DP(ra + 1)

Then, ¢ : R/I — S is a bijective homomorphism of rings, and thus R/I =
Rikerp=S. O

Example 6.6.1. Show that there exists no ring homomorphism from @ to
Z.

Proof. If¢p:Q — Zosaringhomomorphism. Then, ¢(2(1/2)-1) = ¢(0) = 0.
Then, p(2)p(1/2) —p(1) =0 = 2¢(1/2) —1 = 0, now ¢(1/2) € Z by defi-
nition = 2¢(1/2) # 1. Thus, there’s no ring homomorphism from Q —

Z. O
Example 6.6.2. Is there a ring homomorphism from C to R? Well...if ¢ :
C — R is a ring homomorphism. Then, ¢(-1) = -1 = (p(iz) =-1 =
@(i)p(i) = —1 however, there’s no such real number r : r> = —1. Thus,

there’s no ring homomorphism from C to R.

Theorem 6.4. Let R and S be commutative rings and ¢ : R — S a ring ho-
momorphism. Then,

1. @(R) is a subring of S.

2. IfxisaunitinR. Then, ¢(x) isaunitin§.

3. IfJ isan ideal in S. Then, ¢~'(J) is an ideal of R containingker ¢.
4. If g is surjective and I is an ideal of R. Then, (1) is an ideal of S.

5. If ¢ is an isomorphism of rings. Then,
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* Risafield < Sisa field.
* R isan integral domain < S is an integral domain.
* (R*,xg) =(S*, xg) and (R, xg) = (S, xs) as groups
Proof. Left as an exercise. O

Proposition 6.15. Let R be a ring. Then, there exists a unique ring homo-
morphism ¢ : Z — R, defined as:

Ip+---+1p ifn>0
—_——
n times
¢m)=n-lpg=4 0 ifn=0 (6.4)

—(lg+---+1p) ifn<0
—_—

—n=|n| times

Proof. The fact that ¢ is a ring homomorphism is left as an exercise. To
prove uniqueness, if ¢,y : Z — R is a ring homomorphism. Then, theyre
group homomorphism from Z to R satisfying ¢(1) = w(1) = 1g. Since Z
is cyclic and generated by 1, ¢,y : Z — R are group homomorphisms and
¢(1) =w(1) then ¢p(n) =w(n) Vne Z = ¢ =y and thus it’s unique. O

6.7 Characteristic of Ring

Definition 6.16. (Characteristic of a Ring). Let R be a ring and ¢ denote
the unique ring homomorphism from Z to R. Then, ker¢ = nZ for some
n=2orn=0.! The characteristic of R is the non-negative integer n (n # 1)
such that ker¢ = nz.?

Example 6.7.1. Consider the following examples:

1. Let R=Z and ¢ : Z — Z be the unique ring homomorphism. Then,
ker¢ = n and ¢p(n) = n = Z has characteristic 0.

2. Let R=Z7Z/7Zand ¢: Z — R. Then, 1 — [1]7, 2 — [2]7,...,7— [7]7 =
[0]7. Then, Z/77Z has characteristic 7.

3. Let R=7/47 x Z/47 then, Char(R) = 4.

Iproof: ker¢ is an ideal of Z so there exists n € NU {0} : ker¢p = nZ. 1 ¢ ker¢ since ¢p(1) =
1p #0gp = ker¢p #Z. So, n #1 = ker¢ = {0} or nZ for some n=2. g

2Though not mentioned, some texts denote the characteristic of R as Char(R). We will use
this for simplicity.
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Proposition 6.16. Let R be a ring of characteristic n = 2. Then, the additive
order of 1g in (R, +) isn.

Proof. First, note that if Char(R) = n. Then, 1g+-:-+1r = nlg, so 1 has
———

n times
finite order in (R, +). fmeN:m-1p =0gr = ¢(m) =0p = meker¢ =
nZ and hence n divides m. Hence, the order of 1 in (R, +) is n. O

Proposition 6.17. Let R be a ring where 1 has finite order n = 2. Then,
Char(R) = n.

Proof. Obvious. O

Proposition 6.18. Let p be a prime number and R a ring with p elements.
Then, R= Z/pZ (andR is a field).

Proof. Consider 1g in (R,+). |R| = p so the order of 1 in (R, +) divides
|IR| = p, but 1p # Or so 1p has order p since p is prime. Let ¢ denote
the unique ring homomorphism from Z to R. By the previous proposition
(6.17), ker ¢p = pZ. By the firstisomorphism theorem for ring, Z/ ker ¢ is iso-
morphic to a subring of R. Since |[Z/pZ|=pand |[R|=p = Z/pZ=R. O

Notation: We denote the "field with p elements" as [, i.e. you can assume
F,=2/pZ.
Remark 6.6. A subring of an integral domain is an integral domain.

Theorem 6.5. Let[F be a finite field and let ¢ : Z — F denote the unique ring
homomorphism. Then, ker ¢ = pZ for some prime number p.

Proof. ¢ :Z — [ is the unique ring homomorphism from Z to F. We know
that ker¢ = nZ for some n = 2 or n = 0. By the first isomorphism theorem
forrings, Z/nZ is isomorphic to a subring of F. Since F is a finite field hence
Z[nZ is a finite integral domain. Hence Z/nZ is a field and thus n = p for
some prime number p. O

Proposition 6.19. Let n = 2 and let R be a ring. Char(R) = n < 1p has
order n in (R,+).

(This follows from proposition 6.16 and 6.17)

Proposition 6.20. Let R be a ring with Char(R) = n =2 and let x € R. The
order of x in (R, +) divides n
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n times n times
—_— e e . 3
Proof. n-x=x+---+x=x(1g+---+1g) = x-0g = 0 (by previous proposi-
tion). O

Proposition 6.21. Let p be a prime number and R a finite ring with Char(R) =
p. Then |R| = p™ for some m € N.

Proof. By proposition 6.20, let x € R and x # Og. Then, x has order dividing
pin (R, +). Since pis prime and x # Og then x has order p in (R, +). Suppose
that g is a prime dividing |R|. Then, by Cauchy’s theorem, 3y # Or in R such
that the order of y in (R, +) is g. And since any non-zero element has order
pin (R,+) then p = g = the only prime dividing |R|is p = |R| = p"" for
some m € N where m > 0 since |R| = 2. O

6.7.1 Chinese Remainder Theorem For Rings

Theorem 6.6. (Chinese Remainder For Rings). Let m,n =2 andgcd(m, n) =
1. Then, ZImnZ =7/nZ x Z|/mZ

Proof. Let ¢p: Z — Z/nZ x Z/ mZ denote the unique ring homomorphism
from Z to Z/nZ x Z/ mZ. The order of ([11,,[1],,) in (Z/nZ x Z/mZ, +) is
lcm(m, n) = % = mn = 2. Hence ker¢p = mnZ. By the first isomor-
phism theorem for rings, Z/ker¢ = Z/mnZ is isomorphic to a subring of
ZInZxZImZ. Hence, ¢(Z) isasubringof Z/nZx Z/mZ and |¢p(Z)| = mn =
|Z/nZxZ/mZ|hence ¢ is surjectiveso Z/mnZ = Z/nZxZ/mZ asrings. O

Remark6.7. Ifgcd(m,n) #1 thenZ/nZxZ/mZ is notisomorphic toZ/ mnZ
as groups. Hence, ZImnZ = ZI/nZ x ZI mZ as rings iff gcd(m, n) = 1.

Exercises. Let R be aring. Then, Char(R) =0 <= 1y does not have a finite
orderin (R, +)

Proposition 6.22. Let R be a ring with Char(R) = n = 2. Then, Z/nZ is
isomorphic to a subring of R.

Proposition 6.23. Let R be an integral domain. Then, Char(R) = 0 or prime
number.

Proposition 6.24. Let F be a finite field. Then |F| = p™ for some prime p
and for some m e N.
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Proof. Let ¢ be the unique homomorphism from Z to F. We've seen before
that ker ¢ = pZ for some prime p. Hence, F is a finite ring with Char(F) = p
and thus |F| = p" for some m e N O

6.8 Rings of Polynomials

Definition 6.17. Let R be a commutative ring. The ring of polynomials
R[x] is defined by

Rix]={a,x"+---+ajx+ag,neNu{0}and a,,...,ap € R} (6.5)

x is called the indeterminate and ay,, ..., ag are called the coefficients.

Definition 6.18. We defined the sum of two polynomials as:

(anx™+--+a1x+ ap) + (bypx™ + -+ + by x + by)

=apx+-+ (Am+bp)x™ + -+ (a1 + b1)x + (ao + bo)
for n = m. Their multiplication as:

(@px"+---+a1x+ag) - (bypx™ +-+-+ by x+ by)

n+m

=Cn+mX +---+C1 X+

where ¢; = agb;+ a1 b;_1+---+a;by. In ¢;, some a; or b; may not be defined.
We consider these as 0.

Proposition 6.25. R[x] is a ring under the above operations.

Proof. Left as an exercise. O

6.8.1 Degree of a Polynomial

Definition 6.19. Let R be a commutative ring and f(x) € R[x]. Then, the
degree of f(x) is defined as

if f(x)=0

—0o0
max{n e NU{0}: a,, #0} otherwise 6.6)

deg f(x) :{

Proposition 6.26. IfR is an integral domain, then so is R[x]. If f(x), g(x) €
R[x] and are non-zero, then deg(f (x)g(x)) = deg f(x) + degg(x).
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Proof. Let f(x) have degree m = 0 and g(x) has degree n = 0. Let f(x) =
amx™+---+agand g(x) = b, x"+---+b, where an,, b, #0. Then, f(x)g(x) =
ambpx™*"+ some lower order/degree term. Since, R is an integral do-
main, a,, # 0 and b, # 0 so a;,b, # 0. Thus, deg(f(x)g(x)) =m+n =
deg f(x) + degg(x). Hence if f(x), g(x) are non-zero then f(x)g(x) is also
non-zero. O

Remark 6.8. If R is not an integral domain, then R[x] is not an integral
domain.

Example 6.8.1. Let R=7/4Z and 2x+1 € R[x]. Then,
2x+1DR2x+1) =4x* +4x+1=1

Then, deg f(x) f(x) = deg f(x) + deg f (x) does not hold necessarily if R is
not an integral domain.

6.9 Ideal Quotient and Principal

Definition 6.20. Let I be an ideal in R. We say that [ is a principal ideal if
JacR:1=(a)=Ra.?

Definition 6.21. Let a € R. Then, the set (a) = {ra:r € R} = Ra is called the
ideal quotient by a on the principal ideal.

Definition 6.22. Let ay,...,a;, € R. Then, the set (ay,...,a,) ={ra;+ra+
<--+Tpay:T11,...,7y € R} is an ideal, in particular, it’s called the ideal quo-
tient generated by a,, ..., a,.

Definition 6.23. An integral domain R where every ideal is principal is
called a principal ideal domain (PID).

Example 6.9.1. Z is a PID. Though, not every ring is a PID such as Z[x], I =
2,%) ={2f(x)+xg(x): f,ge€ Z}. ZIV5] ={a+bV5:a,be Z} has ideal I =
(2,1+v/5) is not principal.

Definition 6.24. Let R be a commutative ring. We say that a and b are
associated if Ju € R: a=ub and u is a unit in R.

3If an ideal is a principal ideal, we simply call it principal.
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Proposition 6.27. Being associated is an equivalence relation i.e. a ~ b if
Ju e R* : a= ub is an equivalence relation.

Proof. Left as an exercise. O

Definition 6.25. If R is a commutative ring and a = Or. We say a divides b
if b = ac for some c € R. This is denoted as a | b.

Proposition 6.28. Ifa#0gr,albanda|d = al|b+d. Similarly, ifa # Og
anda|b = a|bd VdeR.

Proof. Left as an exercise. O

Proposition 6.29. Let [ be a field, F(x] is a ring of polynomial with coeffi-
cient inF. Then, units of F[x] are the elements of F* =F \ {Og} (or F —{Of}).

Proof. Let abe aunitand a # 0 = 3IbeF: ab = 1F so a is a unit in
F < Flx].

Now, Let f(x) € F[x] where deg f(x) = 1, and suppose f(x) is a unit =
Jg(x) e Flx]: f(x)g(x) = 1. Then, g(x) #0 = deg f(x)g(x) = 0. We also
know that F is a field, thus deg f(x)g(x) = deg f(x) + degg(x) = 1. This is
a contradiction. Thus, deg f(x) = f(x) is not a unit and Of is not a unit
— the units of F[x] are the constant non-zero polynomialsi.e. F—{Of}. O

Example 6.9.2. For Z/47(x],2x+1 is a unit since (2x+1)? = 4x? +4x+1=1.
Similarly, (2x +3)? =4x? +12x+9=1.

6.10 Division Algorithm

Definition 6.26. Let [ be a field and F[x] be the ring of polynomials with
coefficients in F. Then, a non-zero polynomial f(x) € F[x] is monic if the
coefficient of its highest degree term is 1

Example 6.10.1. In F3[x], 2x% + x + 1 is not monic.

Theorem 6.7. (Division Algorithm). Let f(x),g(x) € Flx] and g(x) # 0.
Then, 3\q(x),r(x) : f(x) = q(x)g(x) + r(x) withdegr(x) < degg(x)

Theorem 6.8. (GCD of Polynomials). Let f,g € F[x]. Then, the gcd(f, g)
is the monic polynomial of largest degree that divides both f and g. Such
polynomial exists and is unique, moreover, Ju, v € F[x] : gcd(f, g) = uf+vg.

Proof. (Division Algorithm). Let f,g € F[x] and g # 0. Let S = {f(x) —
k(x)g(x) : k(x) e F[x]} = if0 € Sthen 3g(x): f(x)g(x) = r(x) =0. If
0¢ S = takes a polynomial of minimal degree r(x) € S. Then, show that
degr(x) < degg(x) and uniqueness (exercise.) O
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6.11 Irreducible Polynomials

Definition 6.27. Let[F be afield, F[x] is aring of polynomial with coefficient
in F. Let f(x) be a polynomial in F[x]. We say that a € F is a root of f(x) if
fl@=0

Proposition 6.30. Let f(x) eF[x] a isarootof f(x) <= x—a| f(x).

Proof. (=) Suppose «a is a root of f(x). Then, f(a) = 0. Write f(x) as
fx) = qg(x)(x — a) + r(x) where r(x) =0 or degr(x) < 1. So, f(x) = (x—
a)q(x)+r wherer €F. Then, f(a) =(a-a)g(a)+r = 0=0+r = r =0.
Thus, f(x) = (x—a)g(x) so x—a| f(x) € F[x].

(<=) Suppose that x—a | f(x) Then, f(x) = (x — a)q(x) for some g(x) €
Flx]. Then, f(a) = (@ —a)q(x) =0so a is aroot of f(x). O

Definition 6.28. A non-constant polynomial f(x) € F[x] is said to be irre-
ducible in F[x] if f(x) cannot be expressed as a product of 2 polynomials
g(x) and h(x) € F[x] of strictly smaller degree than f(x). i.e. if f(x) is irre-
ducible in F[x] and f(x) = g(x) h(x), then g(x) is a unit or A(x) is a unit.

Example 6.11.1. Consider the following examples:

1. Let a#0. Then, f(x) = ax + b is irreducible in F[x].

Proof. 1If f(x) = g(x)h(x) for some g(x), h(x) € F[x]. Then, degf =
degg +degh (since [ is a field). This means, 1 = degg + degh —
either degg =0 ordegh =0 — either g(x) is a unit or 4(x) is a unit.
Thus, f(x) is irreducible. O

2. Let f(x) € F[x] with deg f = 3. Then, f(x) is irreducible in F[x] <=
f(x) has no roots.

Proof. (=) Suppose that f(x) has root a. Then, f(x) is divisible by
x—a and f(x) = (@ — x)g(x) for some g(x) € F[x] and f is not irre-
ducible.

( <) Suppose that f has no roots in F and let h(x),g(x) € F[x] :
f(x) = g(x)h(x). We have degf(x) =2 — degg =degh =1 or
degg=0Andegh=2ordegg =2Adegh =0. But, ifdegg =degh =
1 = f(x) hasarootin[. So, we must have that degg =0 or degg =
2. Hence, f(x) is irreducible in F[x]. O
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Theorem 6.9. *LetF be a field and f(x) € F[x] be a non-constant polyno-
mial. Then, F[x]/(f(x)) is a field <= f(x) is irreducible in F[x].

Example 6.11.2. Let F, = Z/2Z be the field with 2 elements. Let f(x) =
x?+x+1. Then, f(1) =1and f(0) = 1. Then, deg f (x) = 2 and has no roots in
the field ;. So, f(x) is irreducible in F,[x]. Then, F»[x]/ (x%+x+1)is afield.
Write f(x) = (x>+x+1)g(x)+r(x) withdegr < 2andlet I = (x>*+x+1). Then,
f)+I=(xXP+x+1)qx)+r(x) = fX)+I=rx)+] = (KP*+x+1)g(x) €.

Folxl/ (x> +x+ 1) ={0+ 1+, x+ L x+1+ 1

eg (x+D(x+1+0D=x(x+1)+1=x*+x+1=1+1 Notice too that
Char(F,[x]/(x* + x+1)) = 2.

Example 6.11.3. Construct a field with 25 element.

To do so, we first know that 25 = 5> = deg f(x) = 2. Then, let f(x) =
x% +2 in F5[x]. We will have residue in the form of a + bx where you have
5 choices for a and b, each = 25 elements. Thus, we construct the field
Fs5[x]/(x? + 2) which has 25 elements.

Example6.11.4. Find a field with p? element where p = 3 mod 4. Well...We
know that x? + 1 will have no root in [Fp (check subsection of 4.2.2 Isomor-
phism Theorem, frequently asked question). Thus, we can construct the
field is F,/ (x* + 1) which will have p? elements.

6.11.1 Finite Fields and Polynomials Rings

Proposition 6.31. Let[F beafield and let g(x) € F[x] and suppose that deg g(x)

= 1. Then, for any h(x) € F[x], 3'r(x) € Flx] : h(x)+ I = r(x) + [ where I is the
ideal generated by g(x) inF[x], and degr(x) < degg(x) ordegr(x) =0.

Proof. Write h(x) = g(x)gq(x) + r(x) where degr(x) < degg(x), then h(x) +
I=gx)g(x)+rx)+I=r(x)+I. Supposethat r'(x) e Fx] : h(x)+I=r'(x)+1
where degr’(x) < degg(x) or degr’(x) =0. Then, r(x)+I = r'(x)+ I. Hence,
rx)—-r'x) =1 = rx)-r'(x) € (gx)) = gx) | r(x)—r'(x). Therefore,
k() : g(x) = k(x)(r(x) — 1’ (x)).

If r(x) — r'(x) # 0, then k(x) # 0, and since F is a field, deg(r — r’) = degk +
deg g butdeg(r—r') < deg g which is a contradiction. Thus, r(x) = r'(x). O

4IMPORTANT: This will be used in the final exam
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Corollary 6.3. Consider the followings:

1. IfFisafield and g(x) € F[x] withdegg(x) = n=1. Then, F[x]/(g(x)) =
{apx™ Y+ +ayx+ap+1:ay,..., a0 €F}

2. If|F| < co. Then, F[x]/(g(x)) is finite and has size |F|".

Proof. (Theorem 6.9). (=) Suppose f(x) is not irreducible. Then, 3h(x),
g(x) e Flx] : f(x) = g(x)h(x) and 1 < degg,degh < degf. Let I = (f(x)),
FR+I=gh@)+1 = 0+I=(gW)+ D)+ = gX)+1#0+1
and h(x) + I #0+ I. Then, F[x]/(f(x)) is not an integral domain and hence
not a field.

( <) Suppose f(x) is irreducible and let g(x) € F[x] : g(x) ¢ I = (f(x)).
So f(x) 1 g(x) = gcd(f,g | f(x) and since f(x) is irreducible. Then,
ged(f,g) =1 or f(x). Since f(x) { gcd(f,g) = gcd(f,g = 1. Hence,
Jux),v(x) €eFlx]: fux)+gxvx) =1 = fOux)+gxX)vx)+1=
1+1 = g(x)v(x)+1=1+1Iand thus (g(x)+ ) (v(x)+I) = 1so0 g(x)+ I has
a multiplicative inverse in F[x]/(f(x)) = F[x]/(f(x)) is a field. O

Example 6.11.5. Construct a field with 8 elements. Let [, be the field with 2
elements. Let f(x) = x>+x%+1, f(x) has norootsin F, since f(0) = 1, f(1) =
1. Since deg f(x) =3 = f(x) is irreducible in F[x] and hence F[x]/(f (x))
is a field with 23 = 8 elements.

Is F2[x]/(x3) isomorphic to Fo[x]/(x% + x*> + 1)2 Well...no since x2 is not ir-
reducible in F»[x] so F»[x]/(x%) is not a field and is thus not isomorphic to
Falx]/(x3 +x2 + 1).

Example 6.11.6. Construct a field with 25 elements. Let F5 be a field with
5 element and f(x) = x> —3 = x* + 2 € F5 which has no root. Hence, since
deg f(x) = 2, it’s irreducible in F5[x]. Then, F5[x]/ (x% +2) is a field with 25
elements.

Example 6.11.7. Let K = [F5[x]/(x2 +2) and let g(y) = y25 —y. How many
roots does g(y) havein K? K is afield and so K* = K—{0} is a group and thus
|K*| = 25— 1 = 24. By Lagrange’s theorem, if a € K*, a** = 1 and a?® = a. So
any a € K* is aroot of g(y) and g(0) = 0 hence any x € K is a root of g.
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6.12 Prime Ideals and Chinese Remainder Theo-
rem

Proposition 6.32. Let f(x) € F[x] with deg f(x) = n = 2. Then, f(x) has at
most n roots inF.

Proof. 1If f(x) has no roots then the result hold true. Suppose f(x) has a
root a € F. Then, we can write f(x) = (x— a) k(x) for some k(x) € F[x] where
degk(x) is n— 1. We can proceed by inductive on n. If § is a root of f(x)
and § # a. Then, (B—a)k(B) = 0. Since f—a # 0 and F is a field, (8) =0 so
B is a root of k. By induction, k(x) has at most n —1 distinct roots so f(x)
has at most n — 1 distinct roots O

Example 6.12.1. Z/6Z where f(x) = x? — x. It has at most 2 roots.
Proposition 6.33. Let f(x) € F[x] be irreducible. Then, if f(x) | a(x)b(x)
where a(x), b(x) € F[x]. Then, f(x)| a(x) or f(x) | b(x)

Proof. Let f(x) be irreducible and let f(x)|a(x)b(x). If f(x) | a(x), we're
done. If f(x) t a(x), then ged(f(x),a(x)) = 1. Then, Ju(x), v(x) € Flx] :
1=f@ulx)+ax)v(x) = bx) = f(x)u(x)b(x) + a(x)v(x)b(x). Noticer
that k(x) f (x) = a(x)b(x) for some k(x) € F[x]. Then, b(x) = f(x) (u(x)b(x) +
k(x)v(x)) = f(x)|b(x). O

Theorem 6.10. Let f(x) e F[x] anddeg f(x) = n=1. Then,
1. f(x) has irreducible factor.

2. There exists monic irreducible polynomials fi(x), fo(x),..., fi(x) € F[x]
and positive integer ay, az,...,a; €N and a € F* such that

f@) =af" ) f2 @ f(x) (6.7)

Moreover, if g1(x),..., 8k (x) are monic irreducible polynomials in F[x]
andb;,...,by e Nandb € F* such that f(x) = bgf1 (x)gf2 (x)-- -gllc”‘ (x).
Then, k =l and b = a and after arranging g; (x) = f;(x) and a; = b;.

Proof. Left as an exercise. O
Theorem 6.11. Let R be a commutative ring and let I be an ideal in R. Then,

1. InJisanideal of R and R/(IN]) is isomorphic to a subring of R/ I x
R/]J.
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2. I+]J={a+b:aecl,be J}isanideal of R and if I # ] = R. Then,
R/I(IN])=R/IIxR/].

Corollary 6.4. Let R = Z and gcd(m,n) = 1 where m,n € N. Let I = (m)
and J = (n),I+J =R. Then, In] = (m)n (n) = (lcm(m, n)) = (mn). Then,
ZimnZ=7ZlmZx7ZInZ.

Proof. 1.Let f:R—RI/IxRx], f(r)=(r+1I,r+]). Then, f isaring homo-
morphism since

FAR) =QAr+L1g+]))

fao+r)=+r+LuT+rY+))
=((r+D+0"+D,r+ DN+ +D)
=r+Lr+ N+ +Lr'+D=fr)+ f)

fary=@r'+Lrr'+])
=((r+D0"+D,r+ D'+ D)
=(r+Lr+ N+ L'+ = ffuh

Its kernel is given as

kerf={reR:f(r)=0+1,0+ )}
={reR:r+I=Iandr+J=]}
={reR:relandreji=In]J

2. The proof that I + J is an ideal is left as an exercise. If I + ] = R, we’ll show
that f is surjective. First,if I+ J=R,then 1€ I+ Jhence Jae I,be J:1=
a+b. Then,

fl@=@+La+])=U1-b+)=0+11+]))

Similarly, f(b) = (1+1,0+]). Letx,y e R. We'llfindr e R: f(x) = (x+1,y+)).
Letr =bx+aythen f(r)=(bx+ay+1I,bx+ay+])=(bx+1,ax+]) since
aye€Iand bx € J. Then,

f)=Wx+Lay+)=((b+D(x+1D),(a+D(y+1)
=((1+Dx+D,A+Ny+N=x+Ly+])

Thus, f is surjective and hence R/(INnJ) = R/Ix R/]. O
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6.12.1 Prime Ideal

Definition 6.29. Let R be a commutative ring. An ideal P C R is said to be
a prime ideal if the following holds: if a,b € R such thatabe P — a€ P
orbeP.

Proposition 6.34. P isa primeideal in R iff R/ P is an integral domain.

Proof. (=) Let P be a prime ideal. Let x+ By + P € R/P be such that
(x+P)(y+P)=0g+P,wellshowthat x+ P =0r+Por y+P =0g+P. Now,
(x+P)(y+P)=xy+P=0r+P — xyeP — x€ePoryeP = x+P=
Or+Pory+P=0gr+Pso R/Pisan integral domain.

(«<=) Left as a Christmas exercise. O
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