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1

Measuring sets on the Line

In this chapter we look at the question of how to assign a “length” to a subset of R.
It’s fairly clear that this is something that might be desirable to do. The motivation
comes from the desire to define the Lebesgue Integral. The Riemann integral is
defined by making a “vertical” decomposition of the space on which the function
is defined. The advantage of doing this is that the sets of the decomposition are
intervals and it is easy to decide what the length of an interval is. Lebesgue himself
mentioned the situation of someone collecting money and wanting to discover
what the day’s takings are. There are two ways of doing this. The first way, is to
keep a running total of the takings at each point in time. So, if at some point we
receive a quarter and then a dime, we first add 25 cents and then 5 cents. The
second approach is to collect all the nickels together, all the dimes together and all
the quarters together and at the end of the day find out how many of each there
are. This corresponds to a “horizontal” decomposition in defining an integral.
The horizontal method turns out to have distinct advantages over the vertical,
but there is one initial problem to be tackled. The horizontal decomposition of a
function will lead to sets of the form

{x; y1 ≤ f(x) < y2}

and we will need to decide what the length of this set is. So, we will need a theory
of length for rather general subsets of the real line.
Another major impetus for developing so called measure theory is the theory

of probability. Here we have a space Ω called the sample space. A point in Ω
typically represents a particular outcome of an experiment. Usually we are not
interested in individual outcomes, but rather in sets of outcomes that satisfy some
criterion. Such a set is called an “event”. Events are assigned a probability of
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occurring. This is like assigning a length to a subset of [0, 1]. The situation is
only slightly special in that the probability of the event of all possible outcomes
Ω is necessarily equal to unity. We then talk of random variables which are func-
tions defined on the sample space and their integrals with respect to the given
probability measure defines the expectation of the random variable.
Measure theory is necessarily a complicated subject because, in many situa-

tions, it turns out to be impossible to assign a sensible length to every subset. A
telling example is due to Banach and Tarski. It relates to paradoxical decomposi-
tions. Let a group G act on a space X . The action is paradoxical if for positive
integersm and n, there are disjoint subsets A1, A2, . . . , Am, B1, B2, . . . , Bn of X
and elements g1, . . . , gm, h1, . . . , hn of G such that

X =
m⋃

j=1

gj · Aj

X =
n⋃

k=1

hk ·Bk

The paradox is that if µ is some kind of G-invariant measure which applies to all
subsets of X , then we will be forced to have (because of the disjointness) that

µ(X) ≥
m∑

j=1

µ(Aj) +
n∑

k=1

µ(Bk)

and yet

µ(X) ≤
m∑

j=1

µ(gj · Aj) =
m∑

j=1

µ(Aj)

µ(X) ≤
n∑

k=1

µ(hk ·Bk) =
n∑

k=1

µ(Bk)

leading to 2µ(X) = µ(X) + µ(X) ≤
m∑

j=1

µ(Aj) +
n∑

k=1

µ(Bk) ≤ µ(X).

A weak form of the Banach–Tarski paradox states that the action of the rota-
tion group on the sphere in Euclidean 3-space is paradoxical. One is forced to
conclude that if one wants a viable theory, then it will only be possible to measure
nice sets. Usually, there will be nasty sets that have pathological properties.
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1.1 Fields and σ-fields

This means that we need to look at collections of subsets with certain properties.
We will meet various types of such collections in this course. The most prevalent
one will be the σ-field . Our main focus will be the real line. Before defining
σ-fields we will establish the following result which will be the starting point for
Lebesgue measure.

THEOREM 1 Let K be a countable index set. I = [a, b[ and Ik = [ak, bk[ for
k ∈ K We have

(i) If
⋃

k Ik ⊆ I and the Ik are disjoint, then
∑

k length(Ik) ≤ length(I).

(ii) If I ⊆
⋃

k Ik, then length(I) ≤
∑

k length(Ik).

(iii) If
⋃

k Ik = I and the Ik are disjoint, then
∑

k length(Ik) = length(I).

Proof.

(i) Let us assume that K is finite to start with. Then we can assume that
K = {1, 2, . . . , n}. We will proceed by induction on n. If n = 1 then
I1 ⊆ I clearly implies that a1 ≥ a and b1 ≤ b so length(I1) = b1 − a1 ≤
b− a = length(I). The induction starts.

Now let us assume that the result is true for n− 1 intervals. Let us reorder
the intervals such that ak are increasing with k. This affects neither the
hypotheses nor the conclusion. Now for 1 ≤ k < n, bk ≤ an for, if not
then an ∈ Ik since certainly ak ≤ an. Thus

n−1⋃
k=1

Ik ⊆ I ∩ ]−∞, an[= [a, an[.

Applying the induction hypothesis, this gives
∑n−1

k=1 length(Ik) ≤ an − a.
But, we also have that bn ≤ b, for if not, there is a point of In close to bn
which is not in I . So, length(In) = bn − an ≤ b − an. It follows that∑n

k=1 length(Ik) ≤ (an − a) + (b− an) = b− a, completing the induction
step.

To establish the result when K is infinite, it suffices to assume without loss
of generality that K = N and to let n tend to infinity in the finite case.
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(ii) Let us assume that K is finite to start with. Then we can assume that
K = {1, 2, . . . , n}. We will proceed by induction on n. If n = 1 then
the induction starts as before. Now let us assume that the result is true for
n− 1 intervals. Let us reorder the intervals such that ak are increasing with
k. Again, this affects neither the hypotheses nor the conclusion. First we
consider the case where a ≥ b1. Then I∩I1 = ∅ and already I ⊆

⋃n
k=2 Ik so

that by the induction hypothesis (b−a) ≤
∑n

k=2(bk−ak) ≤
∑n

k=1(bk−ak)
as required. So, we may always assume that a < b1. Now observe that

[b1, b[⊆
n⋃

k=2

Ik

since if x ∈ [b1, b[, then x ∈ [a, b[⊆
⋃n

k=1 Ik, but x /∈ I1. Therefore by the
induction hypothesis b − b1 ≤

∑n
k=2(bk − ak). But a ≥ a1 for otherwise

a /∈
⋃n

k=1 Ik. So we get

b− a = (b1 − a) + (b− b1) ≤ (b1 − a1) +
n∑

k=2

(bk − ak) =
n∑

k=1

(bk − ak)

as required.

Now for the case K infinite. We can assume that k = N. We want to
use compactness to reduce to the case of finitely many intervals. But this
won’t work directly, so we want to make the contained interval closed and
bounded and the containing intervals open. Let ε > 0. Then we have

[a, b− ε] ⊆
∞⋃

k=1

]ak − 2−kε, bk[

and by compactness, there exists an integer n such that

[a, b− ε] ⊆
n⋃

k=1

]ak − 2−kε, bk[

and

[a, b− ε[⊆
n⋃

k=1

[ak − 2−kε, bk[

Therefore, from the finite result, we have

b− a− ε ≤
n∑

k=1

(bk − ak + 2−kε) ≤ ε+
∞∑

k=1

(bk − ak)
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Since ε is an arbitrary positive number, the result follows.

(iii) Follows immediately from (i) and (ii) above.

In Theorem 1 above, we had in mind that the endpoints of the intervals should
be real numbers. We can also ask what happens if we allow either I of Ik to take
either of the forms ]−∞, b[, [a,∞[ or ]−∞,∞[.

COROLLARY 2 Let K be a countable index set. I and Ik for k ∈ K be general
intervals, closed on the left and open on the right. If

⋃
k Ik = I and the Ik are

disjoint, then
∑

k length(Ik) = length(I).

Proof. The only problem is when one or more of the intervals has infinite length.
Obviously, if one of the Ik has infinite length, so does I and

∑
k length(Ik) =

∞ = length(I). The only contentious case is when I has infinite length, but all
the Ik have finite length. In this case, let c > 0. We have by Theorem 1, (ii) that
length(I ∩ [−c, c[) ≤

∑
k∈K length(Ik). We find that length(I ∩ [−c, c[) −→ ∞

as c −→∞ and it follows that
∑

k length(Ik) = ∞ as required.

We can now make progress on general measure theory.

DEFINITION Let X be a set. Then a collection F of subsets of X is a field
(sometimes called an algebra) if and only if

(i) X ∈ F .

(ii) A ∈ F =⇒ X \ A ∈ F .

(iii) A ∈ F , B ∈ F =⇒ A ∪B ∈ F .

The immediate consequences of this definition are:

• ∅ ∈ F .

• Ak ∈ F for k ∈ K, K finite =⇒
⋃

k∈K Ak ∈ F .

• Ak ∈ F for k ∈ K, K finite =⇒
⋂

k∈K Ak ∈ F .

In the same vein we have the following definition.
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DEFINITION Let X be a set. Then a collection F of subsets of X is a σ-field
(sometimes called a σ-algebra ) if and only if

(i) X ∈ F .

(ii) A ∈ F =⇒ X \ A ∈ F .

(iii) Ak ∈ F for k ∈ K, K countable =⇒
⋃

k∈K Ak ∈ F .

The immediate consequences of this definition are:

• ∅ ∈ F .

• Ak ∈ F for k ∈ K, K countable =⇒
⋂

k∈K Ak ∈ F .

• F a σ-field =⇒ F a field.

DEFINITION We can now define the concept of a measure (sometimes called
a countably additive set function) on a field F of subsets of X as a function
µ : F −→ [0,∞] such that

(i) µ(∅) = 0.

(ii) µ
(⋃

k∈K Ak

)
=
∑

k∈K µ(Ak) whenever K is a countable index set and Ak

are pairwise disjoint subsets of X with Ak ∈ F and
⋃

k∈K Ak ∈ F .

Sometimes if F is a field rather than a σ-field , µ is called a premeasure rather
than a measure.
It’s worth observing explicitly that we are allowing measures to take the value

∞. We interpret sums of nonnegative series with possibly infinite terms in the
obvious way. So, if just one term in the series

∑
k∈K µ(Ak) is infinite, the whole

sum is infinite. If not, then the series is treated as a series of nonnegative terms
and it evaluates to a real number if the series converges and to ∞ if the series
diverges.
Now we need to look at complementation, because this will come to plague

us later. If A,B ∈ F and µ(A) = µ(B) where µ is a measure on F , then can
we deduce that µ(Ac) = µ(Bc)? We have of course µ(X) = µ(A) + µ(Ac) and
µ(X) = µ(B) + µ(Bc), so with the normal laws of arithmetic we have µ(Ac) =
µ(Bc). Indeed, if µ(X) <∞ this is clearly the case because the measures of all the
sets involved are nonnegative real numbers. But if µ(A) = µ(B) = µ(X) = ∞
then nothing whatever can be said about µ(Ac) and µ(Bc).
There is another important property of measures.
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LEMMA 3 LetF be a σ-field and suppose that µ is a measure onF . Let Fj ∈ F
be an increasing sequence of sets, then µ

(⋃
j Fj

)
= supj µ(Fj).

Proof. We define A1 = F1, Aj = Fj \Fj−1 for j = 2, 3, . . .. Then Aj are disjoint
subsets in F . Therefore

µ

(
∞⋃

j=1

Aj

)
=

∞∑
j=1

µ(Aj) = µ(F1) +
∞∑

j=2

(
µ(Fj)− µ(Fj−1)

)
= sup

j
µ(Fj).

That’s a lot of definitions, so we had better have some examples.

• Let X any set and let F be the collection of all subsets of X . That will be a
σ-field. For a measure we can simply let µ(A) be the number of elements
in A with the understanding that µ(A) = ∞ if A is infinite. It’s intuitively
clear that µ is a measure on F , but that would require some proof. This
measure is called the counting measure because it simply counts the num-
ber of elements in the set.

• Let X = N and again let F be the collection of all subsets of X . Assign a
weight wn ≥ 0 to each n ∈ N. Now define

µ(A) =
∑
n∈A

wn

with the understanding that µ(A) = ∞ if the series diverges. The terms of a
series of positive terms can be rearranged without affecting the convergence
or the value of the sum (or we can work with unconditional sums — see
the notes for MATH 255).

• Let X = N and let F be the collection of subsets of X that are either finite
or cofinite This is a field, but not a σ-field. You can assign a premeasure to
F as in the last example.

• Let X be an uncountable set and let F be the collection of subsets of X
that are either finite or cofinite This is a field, but not a σ-field. Now, let
µ(A) = 0 if A is finite and µ(A) = 1 if A is cofinite.

• Let X and F be as in the last example. Now, let µ(A) = 0 if A is finite and
µ(A) = ∞ if A is cofinite.
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• Let X = {1, 2, 3, 4, 5, 6}, F the set of all subsets of X and µ(A) = |A|/6.
Then µ(A) is the probability measure of a fair dice.

DEFINITION A probability measure is a measure with the additional property
that µ(X) = 1.

It follows easily from the definitions that if µ is a probability measure then µ
takes its values in the interval [0, 1].
It will be noted that we are quite short on interesting examples. We work to

remedy that situation. It will also be noted that we allow a measure to be defined
on a field rather than a σ-field which might seem (correctly) to be its natural base
of operations. Allowing this possibility gives us room for manœvre.

1.2 Extending the notion of length — first steps

So in this section, we will let X = R and F is the collection of all subsets of R
that are finite unions of intervals closed on the left and open on the right. There
is no restriction on the length of the intervals except perhaps that we can always
consider it to be strictly positive for otherwise the interval would be empty. Let
F ∈ F and consider C a component of F . This is a connected subset of F and
therefore also of R. So, C is an interval. Now every constituent interval of F is
contained in some component C and it follows that C is just the (finite) union
of those constituent intervals which it contains. Thus, C is closed on the left and
open on the right and it follows that distinct components are not merely disjoint,
but also cannot abut. So every set F ∈ F can be written in a unique way as

F =
n⋃

k=1

Ik

where Ik are intervals closed on the left and open on the right that are disjoint
and do not abut. It is now easy to see that the R \F is also an element of F . This
means that F is a field. Let us now define µ(F ) =

∑n
k=1 length(Ik).

THEOREM 4 The set function µ is a premeasure on F .

Proof. Let Fj ∈ F be disjoint for j ∈ N, F ∈ F and F =
⋃

j Fj . Then we have
to show that

µ(F ) =
∑

j

µ(Fj).
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We will write Fj =
⋃Kj

k=1 Ij,k and F =
⋃K

k=1 Jk where Ij,k and Jk are intervals
closed on the left and open on the right. All of these unions are of the disjoint
variety. We get

µ(F ) =
K∑

k=1

length(Jk) (1.1)

=
K∑

k=1

∞∑
j=1

Kj∑
`=1

length(Jk ∩ Ij,`) (1.2)

=
∞∑

j=1

Kj∑
`=1

K∑
k=1

length(Jk ∩ Ij,`) (1.3)

=
∞∑

j=1

Kj∑
`=1

length(Ij,`) (1.4)

=
∞∑

j=1

µ(Fj) (1.5)

Here (1.1) is the definition of µ(F ), (1.2) follows by Corollary 2 applied to Jk =⋃
j,` Jk ∩ Ij,`, (1.3) follows from changing the order of summation in a series of

positive terms, (1.4) follows since Ij,` ⊆ F and by using Corollary 2 applied to
Ij,` =

⋃K
k=1 Jk ∩ Ij,`. Finally (1.5) follows by the definition of µ(Fj).

1.3 Fields and σ-fields generated by a family of sets

Let X be a set and A a family of subsets of X . We define the field and the
σ-field generated by A by considering the collection of all fields (respectively
σ-fields ) on X which contain the given collection A and take the intersection
of the collection. Explicitly

field generated by A =
⋂

F is a field
F⊇A

F

σ-field generated by A =
⋂

F is a σ-field
F⊇A

F

9



There are two important considerations here. The first is that the power set of
X , (i.e. the collection of all subsets of X) is a field (respectively σ-field) on X .
The second is that an arbitrary intersection of fields (respectively σ-fields) is again
a field (respectively σ-field). We can legitimately say that the field (respectively
σ-field) generated byA is the smallest field (respectively σ-field) onX containing
A.
This definition from the outside is very unappealing. It’s really difficult to get a

handle on what it means. In the case of a field, it is possible to give a definition
from the inside but for the σ-field, this is unfortunately not the case. For fields we
have the following lemma.

LEMMA 5 Let X be a set and A any collection of subsets of X . Let F be the
field generated by A. Then a subset F of X lies in F if and only if the following
condition holds:

There is an integer N ≥ 1 and a chain of sets (Fn)N
n=1 defined for

n = 1, 2, . . . , N by one of the following options:

• Fn = X .

• Fn ∈ A,
• Fn = Fpn \ Fqn with 1 ≤ pn, qn < n.

• Fn = Fpn ∪ Fqn with 1 ≤ pn, qn < n.

and with F = FN .

Proof. One proves easily by induction that Fn ∈ F . In the opposite direction,
let the collection of all subsets that are defined by a chain of this type by G. Then
clearly A ⊆ G. We only need to show that G is a field. We have X ∈ G. Now let
G,H ∈ G. Then there are chains of sets (Gn)P

n=1 and (Hn)Q
n=1 with GP = G and

HQ = H. It is now evident that one may define and new chain (Fn)P+Q+1
n=1 by

• Fn = Gn if n = 1, 2, . . . , P .

• Fn = Hn−P if n = P + 1, P + 2, . . . , P +Q.

• FP+Q+1 = FP \ FP+Q(= G \ H) or FP+Q+1 = FP ∪ FP+Q(= G ∪ H)
depending on case.
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This shows that G is closed under set-theoretic difference and union and is there-
fore a field.

It is the curse of measure theory that no corresponding result is true for
σ-fields1. When discussing the σ-field generated by a family of sets we have to go
through contortions.

EXAMPLE Consider for example the following question

IfM is a σ-field of subsets ofX and S is a subset ofX , show that
the σ-field generated byM∪ {S} is

{(A ∩ S) ∪ (B ∩ Sc);A,B ∈M}.

We will prove in a moment that H = {(A ∩ S) ∪ (B ∩ Sc);A,B ∈ M} is a
σ-field on X . On the other hand, if G is a σ-field withM ⊆ G and S ∈ G, then
(A∩ S)∪ (B ∩ Sc) ∈ G whenever A,B ∈M, soH ⊆ G. It follows thatH is the
smallest σ-field containingM and S.
To establish the claim, observe that X = (X ∩ S) ∪ (X ∩ Sc) ∈ H. Further

((A ∩ S) ∪ (B ∩ Sc))c = (Ac ∪ Sc) ∩ (Bc ∪ S)

= (Ac ∩Bc) ∪ (Sc ∩Bc) ∪ (Ac ∩ S) ∪ (Sc ∩ S)

= (Sc ∩Bc) ∪ (Ac ∩ S) ∈ H

since Sc ∩ S = ∅ and

Ac ∩Bc = (Sc ∩ Ac ∩Bc) ∪ (S ∩ Ac ∩Bc) ⊆ (Sc ∩Bc) ∪ (Ac ∩ S).

On the other hand, we have

∞⋃
k=1

(
(Ak ∩ S) ∪ (Bk ∩ Sc)

)
=

((
∞⋃

k=1

Ak

)
∩ S

)
∪

((
∞⋃

k=1

Bk

)
∩ Sc

)
,

showing that H is a σ-field.
2

1This is not strictly true, but you will need to understand transfinite induction in order to state
it.
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1.4 Extending premeasures from fields to σ-fields

In this section our objective is the following result.

THEOREM 6 (CARATHÉODORY’S EXTENSION THEOREM) Let µ be a premea-
sure on a field F of subsets ofX . Let G be the σ-field generated by F . Then there
exists a measure ν on G which agrees with µ on F .

The first step in the proof of the Carathéodory Extension Theorem is the con-
struction of an outer measure . As opposed to measures, which are defined on
fields, outer measures are defined on all subsets of the ambient space X .

DEFINITION An outer measure θ on a set X is a map θ : PX −→ [0,∞] with
the following properties

(i) θ(∅) = 0.

(ii) If A ⊆ B ⊆ X , then θ(A) ≤ θ(B). We refer to this as θ being monotone .
The larger the subset, the larger the value of the set function.

(iii) θ
(⋃∞

j=1Aj

)
≤
∑∞

j=1 θ(Aj). We express this condition as θ being count-

ably subadditive .

LEMMA 7 Let µ be a premeasure on a field F of subsets ofX . Let a set function
µ? be defined on PX by

µ?(A) = inf
∞∑

j=1

µ(Aj) (1.6)

where the infimum is taken over all possible sequences of sets Aj ∈ F such that
A ⊆

⋃∞
j=1Aj . Then µ? is an outer measure on X .

Proof. First notice that in defining the infimum, we can always take A1 = X and
Aj = ∅ for j = 2, 3, . . .. Thus, there is always at least one covering over which
the infimum is taken. Conditions (i) and (ii) in the definition of outer measure

12



are trivially satisfied. We need only check the condition (iii). Towards this, let
A ⊆ X and Aj ⊆ X with A ⊆

⋃∞
j=1Aj . We must show that

µ?(A) ≤
∞∑

j=1

µ?(Aj).

If this fails to be true, then there exits ε > 0 such that
∞∑

j=1

µ?(Aj) < µ?(A)− ε

and indeed
∞∑

j=1

(µ?(Aj) + ε2−j) < µ?(A).

But µ?(Aj) is defined as an infimum, so there do exist sets Fj,k ∈ F such that
Aj ⊆

⋃∞
k=1 Fj,k and

∞∑
k=1

µ(Fj,k) < µ?(Aj) + ε2−j.

But now we have A ⊆
⋃

j,k Fj,k and the double indexed family Fj,k is still count-
ably indexed and could if necessary be written out as a sequence. We get

µ?(A) ≤
∞∑
j,k

µ(Fj,k) ≤
∞∑

j=1

∞∑
k=1

µ(Fj,k) <
∞∑

j=1

(µ?(Aj) + ε2−j) < µ?(A).

This contradiction establishes the desired result.

The next step in the saga is to define the concept of measurability with respect
to an outer measure.

DEFINITION Let θ be an outer measure on a set X . Then a subset M of X is
said to be θ-measurable if and only if for every set E of X we have

θ(E) = θ(E ∩M) + θ(E ∩M c).

We are using the notation M c = X \M as a shorthand for complementation in
X .

We can think of this in terms of the “cookie cutter” analogy. We imagine that
M is the cookie cutter and E is the cookie dough. Then the cutter breaks up the
dough into two disjoint pieces, E ∩ M and E ∩ M c. If M is a “good” cookie
cutter, the amount of dough in the two pieces will always add up to the amount
that was present originally no matter what the shape of the dough.

13



PROPOSITION 8 Let θ be an outer measure on a setX . LetM be the collection
of all subsets of X that are θ-measurable. ThenM is a σ-field and the restriction
of θ toM is a measure.

We prove Proposition 8 in several steps.

Proof thatM is a field. It is immediately obvious that X ∈ M and also that
M ∈ M implies that M c ∈ M. So it remains only to establish that (iii) of the
definition of a field holds. Towards this, it will suffice to show

A,B ∈M =⇒ A ∩B ∈M

since we already know thatM is closed under complementation. We have

θ(E) = θ(E ∩ A) + θ(E ∩ Ac).

Now apply B as a “cookie cutter” to both E ∩ A and E ∩ Ac

θ(E) = θ(E ∩ A ∩B) + θ(E ∩ A ∩Bc) + θ(E ∩ Ac ∩B) + θ(E ∩ Ac ∩Bc).

Next we use the subadditivity of θ to get

θ(E) ≥ θ(E ∩ A ∩B) + θ
(
(E ∩ A ∩Bc) ∪ (E ∩ Ac ∩B) ∪ (E ∩ Ac ∩Bc)

)
,

= θ(E ∩ A ∩B) + θ(E ∩ ((A ∩Bc) ∪ (Ac ∩B) ∪ (Ac ∩Bc))),

= θ(E ∩ A ∩B) + θ(E ∩ (A ∩B)c).

Using the subadditivity again, we get

θ(E) ≤ θ(E ∩ A ∩B) + θ(E ∩ (A ∩B)c).

Combining the two inequalities gives

θ(E) = θ(E ∩ A ∩B) + θ(E ∩ (A ∩B)c)

and this completes the proof thatM is a field.

LEMMA 9 Let Aj ∈M for j ∈ J where J is a countable index set and suppose
that the Aj are pairwise disjoint. Then for every E ⊆ X we have

θ

(
E ∩

(⋃
j∈J

Aj

))
=
∑
j∈J

θ(E ∩ Aj). (1.7)
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Proof. Let us first consider the case where J is finite. Let J have n elements.
If n = 1, then (1.7) is a tautology. If n = 2, then since A1 ∈ M and by the
disjointness of A1 and A2,

θ(E ∩ (A1 ∪ A2)) = θ(E ∩ (A1 ∪ A2) ∩ A1) + θ(E ∩ (A1 ∪ A2) ∩ Ac
1)

= θ(E ∩ A1) + θ(E ∩ A2)

For n ≥ 3 we use strong induction on n. We have

θ

(
E ∩

(
n⋃

k=1

Ak

))
= θ(E ∩ A1) + θ

(
E ∩

(
n⋃

k=2

Ak

))

= θ(E ∩ A1) +
n∑

k=2

θ(E ∩ Ak)

=
n∑

k=1

θ(E ∩ Ak)

where the induction hypothesis has been used with 2 sets in the first line and with
n− 1 sets in the second line. This completes the finite case. For the infinite case,
we have

θ

(
E ∩

(
∞⋃

k=1

Ak

))
≥ θ

(
E ∩

(
n⋃

k=1

Ak

))
=

n∑
k=1

θ(E ∩ Ak).

Letting n tend to infinity now gives

θ

(
E ∩

(
∞⋃

k=1

Ak

))
≥

∞∑
k=1

θ(E ∩ Ak).

On the other hand using the countable subadditivity of θ we have the reverse
inequality

θ

(
E ∩

(
∞⋃

k=1

Ak

))
≤

∞∑
k=1

θ(E ∩ Ak)

and combining the two inequalities completes the proof of the lemma.

Completion of the proof of Proposition 8.
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We first show thatM is a σ-field . For this it is enough to let Aj be a sequence
of disjoint subsets ofM and to show that

⋃∞
j=1Aj ∈M. Let Bn =

⋃n
j=1Aj and

B =
⋃∞

j=1Aj . Then, we have

θ(E) = θ(E ∩Bn) + θ(E ∩Bc
n) ≥

{
n∑

j=1

θ(E ∩ Aj)

}
+ θ(E ∩Bc) (1.8)

by Lemma 9 and since Bc
n ⊇ Bc. Letting n tend to infinity in (1.8) we get

θ(E) ≥

{
∞∑

j=1

θ(E ∩ Aj)

}
+ θ(E ∩Bc) = θ(E ∩B) + θ(E ∩Bc)

again by Lemma 9. On the other hand, since θ is subadditive

θ(E) ≤ θ(E ∩B) + θ(E ∩Bc),

and it follows that θ(E) = θ(E ∩ B) + θ(E ∩ Bc) for all subsets E of X and
hence that B ∈M.
Finally, setting E = X in (1.7) shows that θ is countably additive onM.

We can finally tackle our long term objective.

Proof of the Carathéodory Extension Theorem.
Starting with µ and the field F we first define an outer measure µ? on X by

(1.6). Now letM be the σ-field of sets that are measurable with respect to µ?.
We will show that F ⊆M.
Let A ∈ F and E ⊆ X . Let ε > 0. Then, from the definition of µ?(E), there

exist sets Fj ∈ F such that E ⊆
⋃∞

j=1 Fj and
∑∞

j=1 µ(Fj) < µ?(E)+ ε. Then we
have

µ?(E ∩ A) + µ?(E ∩ Ac) ≤
∞∑

j=1

µ(Fj ∩ A) +
∞∑

j=1

µ(Fj ∩ Ac)

=
∞∑

j=1

(
µ(Fj ∩ A) + µ(Fj ∩ Ac)

)

=
∞∑

j=1

µ(Fj)

< µ?(E) + ε.
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Passing to the limit as ε → 0 we get µ?(E ∩ A) + µ?(E ∩ Ac) ≤ µ?(E). By
subadditivity we get µ?(E∩A)+µ?(E∩Ac) ≥ µ?(E) and it follows thatA ∈M.
Next, we need to show that µ and µ? agree on F . Given F ∈ F , we can set

A1 = F , Aj = ∅ for j = 1, 2, . . . to get µ?(F ) ≤ µ(F ). To get the inequality in
the opposite direction, we must show that whenever Aj ∈ F and F ⊆

⋃∞
j=1Aj

we necessarily have

θ(F ) ≤
∞∑

j=1

µ(Aj). (1.9)

We do this in two steps by manipulating the Aj . Firstly we ensure that the Aj are
disjoint by replacing A1 with itself, A2 with A2 \A1, A3 with A3 \ (A1 ∪A2), etc.
This process makes the Aj smaller, so showing that (1.9) holds with the “new”
Aj implies that it holds with the “original” Aj . Secondly, we replace each Aj by
Aj ∩F . Again, since the process makes the Aj smaller, it is enough to show (1.9)
for the “new” sets. Note that both of these processes generate subsets of F . So, it
is enough to show (1.9) in case that Aj are disjoint subsets of F . But in that case
we also have F =

⋃∞
j=1Aj and µ?(F ) =

∑∞
j=1 µ(Aj) holds since µ is a measure

on F .
Now we are done because G ⊆ M and if we define ν to be the restriction of

µ? to G, then ν is clearly a measure on G.

1.5 Borel sets and Lebesgue sets

We can now apply the rather general results of the previous section to the case
of the length premeasure on the field generated by the intervals closed on the left
and open on the right. In this case, we obtain two σ-fields G andM and these
are called the Borel σ-field of R and the Lebesgue σ-field of R respectively. To
be explicit, the Borel σ-field of R is the smallest σ-field containing the intervals
closed on the left and open on the right. The Lebesgue σ-field on the other hand
is the σ-field of all sets that are measurable with respect to the “length” outer
measure.
In fact it is possible to define the Borel σ-field for any metric space X . It is

clear that every open interval in R is a countable union of intervals closed on the
left and open on the right. So every open interval is in G. On the other hand,
every interval closed on the left and open on the right is a countable intersection
of open intervals. So, in fact, the open intervals and the intervals closed on the
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left and open on the right generate the same σ-field . Also, every open subset of
R is a countable union of open intervals, so that G is also the σ-field generated by
the open sets. This prompts the following definition.

DEFINITION Let X be a metric space. Then the Borel σ-field BX of X is the
smallest σ-field containing the open subsets of X . A subset B of X is said to be a
Borel subset of X (or just a Borel set if the context is clear) if B ∈ BX .

It goes without saying that Borel sets are very difficult to understand and to
get a grip on. The only way in practice of showing that a set is Borel is to build it
explicitly out of countable unions and countable intersections starting from open
sets. In fact there is a special terminology for this. A subset of a metric space
X is said to be a Gδ if it is a countable intersection of open subsets. It is an
Fσ if it is a countable union of closed sets. It is a Gδσ if it is a countable union
of Gδ subsets and so on. The greek letters δ and σ stand for durchschnitt and
summe in this context. One might hope that after some fixed finite number of
such operations one would have captured all Borel subsets, but this unfortunately
is not the case. To show that a subset is not a Borel subset, in practice, we have to
find a σ-field containing all the open sets, but which does not contain the given
subset.
We can now state the following Corollary of the Carathéodory Extension The-

orem

COROLLARY 10 There is a measure ν defined on the Borel σ-field of R which
assigns to every interval its length.

Proof. We apply the Carathéodory Extension Theorem to the field F generated
by intervals closed on the left and open on the right. Let G be the σ-field generated
by F . Then G is just the Borel field of R and hence the length premeasure on F
extends to the σ-field of all Borel subsets of R.
At the moment, it is not clear what difference there might be between the

Borel subsets and the Lebesgue subsets of R. It is clear that every Borel subset is
Lebesgue, but could the converse also be true? Well, it turns out that this is not
the case.

PROPOSITION 11 Both the Borel σ-field and the Lebesgue σ-field are transla-
tion invariant. Also, Lebesgue measure is translation invariant.
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Proof. Since the open subsets of R are translation invariant, it follows that the
Borel σ-field of R is also translation invariant. The field F generated by intervals
closed on the left and open on the right is translation invariant and also so is
the length premeasure µ. It follows that Lebesgue outer measure is translation
invariant

µ?(E + x) = µ?(E) ∀E ⊆ R, x ∈ R,

and therefore the Lebesgue σ-field is translation invariant and also the Lebesgue
measure ν which is just the restriction of µ?.

EXAMPLE The following example is rather counterintuitive. Let us takeX = Z,
the set of all integers and let F be the collection of periodic subsets of Z. To be
explicit, a subset A of Z is periodic, if there exists an integer n ≥ 1 and a subset B
of {0, 1, 2, . . . , n−1} such that A = B+nZ. The smallest n for which this can be
done is called the period of A. Now it is clear that F is a field. If for example Aj

is a periodic subset with period nj for j = 1, 2, it is fairly straightforward to show
that Z \A1 is periodic with period n1 and that A1 ∪A2 can be represented in the
form B + nZ for B ⊆ {0, 1, 2, . . . , n− 1} where n is the LCM of n1 and n2. For

an element A of F we can define a density µ(A) by µ(A) =
|B|
n
. Intuitively, this

is the proportion of integers that are in the subset A. It is also possible to show
that µ is finitely-additive on F . This is true, because whenever one is dealing with
only finitely many sets of F , we can view everything on the period of the lowest
common multiple of the periods of the given subsets. It seems reasonable that µ
would also be a premeasure on F . However, let us consider the consequences
of this statement. Carathéodory’s Extension Theorem would then guarantee an
extension ν of µ to the σ-field G generated by F . Now clearly {0} =

⋂∞
n=1 nZ,

so {0} ∈ G. In fact, we can write Z \ {0} as a union
⋃∞

k=1Ak of disjoint periodic
sets Ak. We will have ν({0}) = 1 −

∑∞
k=1 µ(Ak). Equally well, we can realize

Z \ {n} as a union
⋃∞

k=1(n+ Ak) and then

ν({n}) = 1−
∞∑

k=1

µ(n+ Ak) = 1−
∞∑

k=1

µ(Ak) = ν({0}),

so that ν({n}) will be independent of n. Now ν({0}) > 0 is not possible
because we can find a positive integer N such that Nν({0}) > 1 and then
ν({0, 1, 2, . . . , N}) > 1 which is impossible. So it must be the case that ν({0}) =
0. But then 1 = ν(Z) = ν(

⋃
n∈Z{n}) =

∑
n∈Z ν({n}) = 0. This contradiction

shows that the original µ cannot be countably additive. In fact, one can deduce
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the existence of disjoint periodic subsets Ak with
⋃∞

k=1Ak = Z but such that∑∞
k=1 µ(Ak) < 1.
We can understand this by means of an explicit example. Let

B1 = {−1, 0, 1}+ 8Z

B2 = {−2, 2}+ 16Z

B3 = {−3, 3}+ 32Z

Bk = {−k, k}+ 2k+2Z (k ≥ 2)

Then it is clear that
⋃∞

k=1Bk = Z and
∑∞

k=1 µ(Bk) = 9/16 < 1. The Bk are not
disjoint, but they can be made so following standard procedures. 2

1.6 Uniqueness of the Extension

In the previous section we proved the existence of an extension. What about
the uniqueness? Could there be more than one possible extension. Well under
reasonable hypotheses, the answer is no. The extra condition that is needed to
make this conclusion possible is one that occurs a great deal in measure theory. It
is called σ-finiteness.

DEFINITION Let F be field or σ-field on a set X . Let µ be a measure on F .
Then µ is said to be finite if and only if µ(X) <∞.

DEFINITION Let F be field or σ-field on a set X . Let µ be a measure on F .
Then µ is said to be σ-finite if and only if there exists a sequence of subsets (Xj)
of X with Xj ∈ F , µ(Xj) <∞ for all j and X =

⋃∞
j=1Xj .

There are two approaches to the uniqueness question. We will develop them
both. The first approach is the one favoured by probabilists.

DEFINITION Let X be a set. Then a collection of subsets P of X is said to be a
π-system if

(π1) A,B ∈ P =⇒ A ∩B ∈ P .

On the other hand we also make the following definition.
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DEFINITION Let X be a set. Then a collection of subsets L of X is said to be a
λ-system if

(λ1) X ∈ L.

(λ2) A ∈ L =⇒ X \ A ∈ L.

(λ3) WheneverA1, A2, . . . are disjoint subsets ofX in L then the union
⋃∞

j=1Aj

is also in L.

In fact, if (λ1) and (λ3) are true, then (λ2) implies the condition that A,B ∈
P , A ⊇ B =⇒ A \B ∈ P . This is because (A \B)c = (X \A)∪B and (X \A)
and B are disjoint.
The following Lemma is now fairly clear

LEMMA 12 A collection of subsets F of X which is both a π-system and a
λ-system is also a σ-field .

Proof. First of all ∅ = X \ X ∈ F . Since F is closed under finite intersections
and complementation, it is clear that it is also closed under finite unions. There-
fore F is a field. But now, given a sequence A1, A2, . . . of subsets of X in F , we
can adjust them to make them disjoint, using the standard trick. We define

B1 = A1, B2 = A2 \ A1, B3 = A3 \ (A1 ∪ A2), . . .

We also have
⋃∞

j=1Aj =
⋃∞

j=1Bj ∈ F . Thus F is a σ-field as required.

The key result in this section is the following.

THEOREM 13 (DYNKIN’S π − λ THEOREM) If P is a π-system and L is a λ-
system and P ⊆ L, then σ(P) ⊆ L where σ(P) is the σ-field generated by P .

We will need the following lemma.

LEMMA 14 Let F be a λ-system onX and suppose that A ∈ F . We define FA

the system of all subsets B ofX such that A∩B ∈ F . Then FA is also a λ-system
on X .
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Proof. There are three axioms to check. Since X ∩ A = A ∈ F , X ∈ FA. If
B ∈ FA, then A ∩ B ∈ F and so A \ B = A \ (A ∩ B) ∈ F since F preserves
contained differences. But (X \ B) ∩ A = A \ B, so X \ B ∈ FA. This shows
that FA is closed under complementation. Finally, let Bj be a disjoint sequence
in FA. Then the intersections A∩Bj are also disjoint and lie in F . It follows that
A ∩

⋃∞
j=1Bj =

⋃∞
j=1(A ∩ Bj) ∈ F . So,

⋃∞
j=1Bj ∈ FA. This shows that FA is

closed under disjoint countable unions.

Proof of Dynkin’s π − λ Theorem. Let F be the λ-system generated by P . In
other words, F is the intersection of all λ-systems containing P . It is clear that
F ⊆ L. If we can show that F is also a π-system, then it will be a σ-field and the
desired conclusion will follow.
Now, let A ∈ P and B ∈ P . Then A ∩ B ∈ P ⊆ F so that B ∈ FA. By

Lemma 14, FA is a λ-system containing P . It now follows that F ⊆ FA because
F is the intersection of all λ-systems containing P . But, this means that A ∈ P
and B ∈ F implies that A ∩ B ∈ F . So, if B ∈ F then P ⊆ FB. But then,
F ⊆ FB, because again by Lemma 14 FB is a λ-system containing P and F is
the smallest such animal. So, finally we have shown that

A,B ∈ F =⇒ A ∩B ∈ F .

In other words, F is a π-system and the proof is complete.

We can now use this result to obtain information about the uniqueness of
extensions.

PROPOSITION 15 Let P be a π-system and µ1 and µ2 be finite measures on
σ(P) which agree on P and on X (i.e. µ1(X) = µ2(X)). Then µ1 and µ2 agree
on σ(P).

Proof. Let L be the collection of subsets in σ(P) on which µ1 and µ2 agree. We
will show that L is a λ-system. By hypothesis, X ∈ L. Now suppose that A ∈ L.
Then µ1(A) = µ2(A). We find that µj(X \ A) + µj(A) = µj(X) for j = 1, 2.
It follows that µ1(X \ A) = µ2(X \ A). It’s very important here that µj(X) is
finite. If both the µj(X) and the µj(A) are infinite, we cannot deduce the value of
µj(X \A). This shows that L satisfies both (λ1) and (λ2). The fact that it satisfies
(λ3) uses the fact that µj are measures. If Aj are disjoint subsets in L, then we
have

µ1

(
∞⋃

j=1

Aj

)
=

∞∑
j=1

µ1(Aj) =
∞∑

j=1

µ2(Aj) = µ2

(
∞⋃

j=1

Aj

)
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and it follows that
⋃∞

j=1Aj ∈ L. This completes the verification that L is a λ-
system. Finally, Dynkin’s π-λ Theorem shows that σ(P) ⊆ L and the proof is
complete.

The usual application is to the uniqueness of the extension in Carathéodory’s
Extension Theorem.

THEOREM 16 Let µ be a σ-finite premeasure on a field F of subsets of X . Let
G be the σ-field generated by F . Then there exists a unique measure ν on G
which agrees with µ on F .

Proof. The existence of ν is already contained in Carathéodory’s Extension The-
orem. It is the uniqueness with which we are really concerned here. So, let ν1 and
ν2 be two possible extensions. Now, since µ is σ-finite, we can find a sequence of
subsets (Xj) of X in F , such that µ(Xj) is finite and X =

⋃∞
j=1Xj . So let Fj be

the field of those sets of F that are contained insideXj . We view this as a field on
Xj . Note that this field is exactly the same as the field of traces {F ∩Xj;F ∈ F}.
Let Gj = σ(Fj). Since ν1 and ν2 agree on Fj , by Proposition 15, they also agree
on Gj . We now construct a new σ-field Hj = {H;H ⊆ X, H ∩Xj ∈ Gj} which
clearly contains F . Therefore, by definition of G we have G ⊆ Hj . So G ∈ G
implies that for each j, G ∩ Xj ∈ Gj . Now, without loss of generality, we can
arrange that the Xj are disjoint. So G =

⋃∞
j=1G ∩Xj is a disjoint union and

ν1(G) =
∞∑

j=1

ν1(G ∩Xj) =
∞∑

j=1

ν2(G ∩Xj) = ν2(G).

Thus ν1 and ν2 agree on G.

1.7 Monotone Classes*

The second approach to the uniqueness problem is the one that is usually adopted
by mathematicians (as distinct from probabilists). It uses a new construct, that of
a monotone class .

DEFINITION Let X be a set. Then a collection of subsetsM of X is said to be
a monotone class if

(i) Whenever A1, A2, . . . are increasing subsets of X in M then the union⋃∞
j=1Aj is also inM.
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(ii) Whenever A1, A2, . . . are decreasing subsets of X inM then the intersec-
tion

⋂∞
j=1Aj is also inM.

THEOREM 17 (MONOTONE CLASS THEOREM) Let F be a field. If M is a
monotone class and F ⊆M, then σ(F) ⊆M.

Proof. Let M be the smallest monotone class containing F . It will suffice to
show that σ(F) = M. Note that every σ-field is a monotone class, so we have
σ(F) ⊇M. We will show thatM is in fact a σ-field . We define

MP = {Q;P \Q ∈M, Q \ P ∈M, P ∪Q ∈M}.
It is easy to check that

• MP is a monotone class.

• P ∈MQ ⇐⇒ Q ∈MP .

Now, let P ∈ F be temporarily frozen. Then, sinceF is a field,Q ∈ F implies
that Q ∈ MP , i.e. F ⊆ MP . ThereforeM ⊆ MP , becauseM is the smallest
monotone class containing F . So, in fact, Q ∈M implies that Q ∈MP and this
in turn implies that P ∈ MQ. So, unfreezing P and freezing Q temporarily, we
have F ⊆ MQ whenever Q ∈ M. Again becauseM is the smallest monotone
class containing F this givesM ⊆ MQ for all Q ∈ M. But this just says that
M is closed under finite unions and set theoretic differences. So, in factM is a
σ-field and the reverse inclusion σ(F) ⊆M follows.

To illustrate the application of monotone classes, let us give a second proof
of Theorem 16 at least in the case where µ is a finite premeasure. The extension
to the σ-finite case follows the same ideas that are found in the first proof of
Theorem 16.
It is only the uniqueness of the extension that is at issue. So, let ν1 and ν2 be

two possible extensions to σ(F). We consider

M = {M ;M ∈ σ(F), ν1(M) = ν2(M)}.
It is easy see thatM is a monotone class. For example in case Mj ∈ M and
Mj ↑M ∈ σ(F) we have

ν1(M) = sup
j
ν1(Mj) = sup

j
ν2(Mj) = ν2(M).

For decreasing sequences of sets we use complementation together with the con-
dition µ(X) <∞.
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1.8 Completions of Measure Spaces

In this section we look at a way of extending abstract measure spaces. So, let X
be a set, G a σ-field on X and µ a measure on G. We say that a subset N of G
is a null set if µ(N) = 0. If there is a possibility of confusion between several
different measures we use the terminology µ-null. Now it seems intuitively clear
that if the measure of a subset N is zero, then the measure of any subset Z of N
should also be zero. This is very clear for instance in the case where µ is supposed
to give the “length” of a subset of R. But there is a snag. The subset Z may not
lie in G even if N ∈ G so that µ(Z) may not even be defined. For this reason, we
introduce the notion of completion of a measure space.

DEFINITION We define a family of sets G as follows. We say that H ∈ G iff
there exist G,N ∈ G and Z ⊆ N with N µ-null such that H = G4Z. Here we
have used 4 to denote symmetric difference G4Z = (G \ Z) ∪ (Z \ G). We
also define a quantity µ(H) = µ(G). Then (X, G, µ) will eventually define the
completion of (X, G, µ).

Note that symmetric differences satisfy the identity A4(A4B) = B, so we
can equally well define G by the relation H4G ⊆ N . Yet another way of describ-

ing G comes from writingH = (G \N)∪
(
(N \Z)∪ (Z \G)

)
where G \N ∈ G

and (N \ Z) ∪ (Z \ G) ⊆ N . This means that the completion G can be defined
with the union operation rather than the symmetric difference. Conceptually, this
may be a little easier. We have the following Theorem.

THEOREM 18 Let G be a σ-field on X and µ a measure on G. Then

(i) G is a σ-field .

(ii) For H ∈ G, µ(H) is well-defined.

(iii) µ is a measure on G extending µ.

Proof. We have X = X4∅ and ∅ is a null set, so X ∈ G. Now let H ∈ G.
Then H = G4Z where G,N ∈ G, N is null and Z ⊆ N . But Hc = Gc4Z and
Gc ∈ G, soHc ∈ G. Now letHj ∈ G for j ∈ N. Then we can writeHj = Gj ∪Zj

where Gj, Nj ∈ G, Nj is null and Zj ⊆ Nj . We now have

∞⋃
j=1

Hj =

(
∞⋃

j=1

Gj

)
∪

(
∞⋃

j=1

Zj

)
(1.10)
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where
⋃∞

j=1Gj ∈ G and
⋃∞

j=1 Zj ⊆
⋃∞

j=1Nj and
⋃∞

j=1Nj is a null set in G.
Hence

⋃∞
j=1Hj ∈ G. The proof of (i) is complete.

Next we show that µ is well-defined. Let H4Gj ⊆ Nj for j = 1, 2. Then
we have G14G2 = (H4G1)4(H4G2) ⊆ N1 ∪ N2. Thus µ(G14G2) = 0.
Then G1 ⊆ G2 ∪ (G14G2) and it follows that µ(G1) ≤ µ(G2) and the reverse
inequality holds by symmetry. So µ(G1) = µ(G2).
The uniqueness just proved shows that µ extends µ. Hence also µ(∅) =

µ(∅) = 0. If the Hj in (1.10) are disjoint, then so are the Gj and it follows
immediately that

µ

(
∞⋃

j=1

Hj

)
= µ

(
∞⋃

j=1

Gj

)
=

∞∑
j=1

µ(Gj) =
∞∑

j=1

µ(Hj)

Finally we have

DEFINITION A measure space (X,G, µ) is complete if it is its own completion.

and also the following proposition.

PROPOSITION 19 Let θ be an outer measure on a setX . LetM be the σ-field of
θ-measurable subsets and let µ be the restriction of θ toM. Then we know from
Proposition 8 that µ is a measure onM. We have

(i) If Z ⊆ X and θ(Z) = 0, then Z ∈M.

(ii) If A,Z ⊆ X and θ(Z) = 0, then θ(A) = θ(A ∪ Z).

(iii) If A,B ⊆ X and θ(A4B) = 0 then θ(A) = θ(B).

(iv) The measure space (X,M, µ) is complete.

Proof. For (i), we have θ(E) ≤ θ(E ∩ Z) + θ(E ∩ Zc) = θ(E ∩ Zc) ≤ θ(E).
The first inequality comes from the subadditivity of θ and the second from the
monotonicity. Hence by definition of M, Z ∈ M. For (ii) we simply have
θ(A) ≤ θ(A ∪ Z) ≤ θ(A) + θ(Z) = θ(A), where the left-hand inequality is
from the monotonicity of θ and the right-hand one is from the subadditivity. For
(iii) we simply apply (ii) twice to get θ(A) = θ(A ∪ B) = θ(B). We have used

26



the relation (A ∪ B) \ A ⊆ A4B and the monotonicity of θ, to deduce that
θ((A ∪B) \ A) = 0.
Finally, for (iv), let G ∈ M and suppose that θ(G4H) = 0. Then for any

subset E of X we have (E ∩ G)4(E ∩ H) ⊆ G4H and it follows that θ((E ∩
G)4(E ∩H)) = 0. Therefore θ(E ∩G) = θ(E ∩H) by (iii). Similarly we have
θ(E ∩ Gc) = θ(E ∩ Hc). Since θ(E) = θ(E ∩ G) + θ(E ∩ Gc), it now follows
that θ(E) = θ(E ∩H) + θ(E ∩Hc). Since E is an arbitrary subset of X we see
that H ∈M. That completes the proof of (iv).

COROLLARY 20 The Lebesgue σ-field L on R is complete.

Proposition 19 allows us to reconcile the approach that we have taken to mea-
sure theory in these notes and an approach that used to be used many years ago
but has fallen out of favour as being unnecessarily complicated. To illustrate, let
µ be a measure on a σ-field F of subsets of X and suppose that µ(X) < ∞. We
now define as before the outer measure µ?

µ?(A) = inf
∞∑

j=1

µ(Aj)

where the infimum is taken over all possible sequences of sets Aj ∈ F such that
A ⊆

⋃∞
j=1Aj . We can also define an inner measure µ? by

µ?(A) = µ(X)− µ?(X \ A).

We don’t say here precisely what an inner measure is, we leave that to your
imagination. We will denote by ν the restriction of µ? toM. We know that ν is a
measure onM.
Let A be an arbitrary subset of X . It is easy to see, from the definition of

the infimum that given ε > 0 there exists a set B ∈ M such that A ⊆ B and
ν(B) ≤ µ?(A) + ε. Here in fact the set B is just a set

⋃∞
j=1Aj taken from the

situation defining the infimum. Now taking a sequence of εk decreasing to zero,
we get A ⊆ Bk and ν(Bk) ≤ µ?(A) + εk, and taking B =

⋂∞
k=1Bk, we find

B ∈ M, A ⊆ B and µ?(A) = ν(B). In some sense, this justifies the term outer
measure, because we have found a measurable subset B of X containing A with
its measure equal to the outer measure of A.
Now repeat all this argument on X \ A. We will come up with a subset C

inM with C ⊆ A and ν(C) = µ?(A). Now if A ∈ M then we can apply the
“cookie cutter” to the whole space

µ?(A) + µ?(X \ A) = µ?(X ∩ A) + µ?(X ∩ Ac) = µ?(X) = µ(X) <∞
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and evidently µ?(A) = µ?(A). It is the converse statement in which we are
interested. If µ?(A) = µ?(A) then in fact

ν(C) = µ?(A) = µ?(A) = ν(B)

and since we are working in a finite measure space, ν(B \C) = 0. It now follows
from Proposition 19 and the completeness ofM that A \C is inM and hence A
is inM. So, the µ?-measurable sets are precisely those for which the inner and
outer measures coincide.

1.9 Approximating sets in Lebesgue measure

In this section, we come back to the specific topic of Lebesgue measure. We have a
concept of Lebesgue measurable set which is really very hard to grasp. So we need
a way of knowing that a Lebesgue measurable set is not too bad. The way that we
do this is to show that it can be approximated by nice sets. The approximation is
carried out in terms of sets of small measure. Later on in these notes, we will look
at this same topic in a more general light.

THEOREM 21 Let E ∈ L and let ε > 0.

(i) Then there exists U open in R such that U ⊇ E and ν(U \ E) < ε.

(ii) Then there exists C closed in R such that C ⊆ E and ν(E \ C) < ε.

Proof. Let us assume to start with that E is bounded. Now by definition

ν(E) = µ?(E) = inf{
∞∑

j=1

µ(Fj);E ⊆
∞⋃

j=1

Fj, Fj ∈ F}.

Now, each Fj is a finite union of intervals closed on the left and open on the right.
We might as well assume that in fact each Fj is a single such interval. So, given
ε > 0, we have such intervals Fj with

∞∑
j=1

µ(Fj) < ν(E) + ε/2
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If Fj = [aj, bj[, we define Uj =]aj − 2−j−1ε, bj[ a slightly larger open interval.
Then clearly E ⊆

⋃∞
j=1 Uj and

∑∞
j=1 µ(Uj) < ν(E) + ε. So now U =

⋃∞
j=1 Uj

is open and it is clear that ν(U) ≤
∑∞

j=1 µ(Uj) < ν(E) + ε. Finally, and this is a
key point, since E is bounded, ν(E) <∞ and we can deduce that ν(U \E) < ε.
In the case that E is unbounded, for each k ∈ N, we find an open set Vk ⊇

E ∩ [−k, k] such that ν(Vk \ (E ∩ [−k, k])) < 2−k−1ε. Let V =
⋃∞

k=1 Vk. Then
V is again an open subset of R and

ν(V \E) = ν

(⋃
k

(Vk \ E)

)
≤
∑

k

ν(Vk \E) ≤
∑

k

ν
(
Vk \ (E ∩ [−k, k])

)
< ε

Furthermore, if x ∈ E, then find k ∈ N such that |x| ≤ k, so x ∈ E ∩ [−k, k] ⊆
Vk ⊆ V . That is E ⊆ V . This completes the proof of (i).
To prove (ii) we simply apply (i) to R \ E.

As a corollary, we can establish the so called regularity of Lebesgue measure.
For reasons that may eventually become clear, we approximate from the inside
with compact subsets of R rather than closed subsets.

COROLLARY 22 Let E ∈ L.

(i) ν(E) = inf{ν(U);U open ⊇ E}.

(ii) ν(E) = sup{ν(K);K compact ⊆ E}.

Proof. (i) is an immediate consequence of Theorem 21. Also it is clear that
ν(E) = sup{ν(K);K closed ⊆ E}. So, all that really needs to be shown here
is that if C is closed, then we have ν(C) = sup{ν(K);K compact ⊆ C}. To
see this, we set Kn = C ∩ [−n, n]. Then Kn is closed (intersection of two closed
sets) and bounded and hence, by the Heine–Borel Theorem, it is compact. But
ν(C) = supn ν(Kn), since Kn are increasing and have union C.

Another corollary can now be established. The proof is an exercise.

COROLLARY 23 The completion of the Borel σ-field BR on the real line with
respect to the (restriction of) Lebesgue measure is the Lebesgue σ-field .
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1.10 A non-measurable set

Here is the simplest way of constructing a non-measurable subset of R. Consider
the cosets a+ Q of the rational numbers in R. Each such coset meets the interval
[0, 1]. This is simply because for every real number a, the interval [−a, 1 − a]
meetsQ. So, from each coset a+Q pick an element x(a) ∈ [0, 1] and let E be the
totality of all such elements. The key observation is that if q1 and q2 are distinct
rational numbers, then q1 + E and q2 + E are disjoint sets. To see why, suppose
that q1 + x(a1) = q2 + x(a2). Then Q + x(a1) = Q + x(a2) and so x(a1) and
x(a2) lie in the same coset of Q in R. But we chose just one element from each
coset, so it must be that x(a1) = x(a2) and therefore q1 = q2, contradicting the
fact that q1 6= q2. Now if ν(E) > 0 we can get a contradiction as follows. We
clearly have ⋃

q∈Q∩[0,1]

(q + E) ⊆ [0, 2]

and the sets in the union are disjoint. Each has the same measure as E because
ν is translation invariant. Since there are infinitely many points in Q ∩ [0, 1], we
have a contradiction. We are forced to conclude that ν(E) = 0. But this is no
good either, because

R =
⋃
q∈Q

(q + E) (1.11)

effectively forcing R to have zero measure. This contradiction forces us to con-
clude that E /∈ L. With a little bit more effort we can show the following.

PROPOSITION 24 Let A ⊆ R be a measurable subset of R with ν(A) > 0.
Then there exists B ⊆ A with B non-measurable.

Proof. Suppose not. We will demonstrate a contradiction. So, A is a set of
positive measure, every subset of which is measurable. Now, we have A =⋃

n∈Z([n, n+1]∩A). Choose one of the subsets [n, n+1]∩A which has positive
measure — they cannot all have zero measure. Then it will suffice to work with
[n, n + 1] ∩ A replacing A. So, after translating we can assume without loss of
generality that A ⊆ [0, 1].
Now, with E as above, letAq = A∩(q+E) for q ∈ Q a fixed rational number.

By hypothesis, Aq is measurable. We now have⋃
r∈Q∩[0,1]

(r + Aq) ⊆ [0, 2]
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and once again, the r +Aq are disjoint as r varies over Q ∩ [0, 1]. This is because
r+Aq ⊆ (r+q)+E. Since the sets r+Aq all have the same measure, we conclude
as above that ν(Aq) = 0. But now, unfreezing q ∈ Q, we have A =

⋃
q∈QAq,

by (1.11). It follows that ν(A) = 0 contradicting the fact that A has positive
measure.

COROLLARY 25 There is a subset of R which is Lebesgue measurable but not
Borel.

Proof. We will prove this using the Cantor set. We will in fact use two Cantor
sets K1 and K2. The first of these is the regular Cantor Ternary set based on
[−1, 1]. We can write

K1 = {2

3

∞∑
k=0

ωk3
−k;ωk ∈ {−1, 1}, k = 0, 1, 2, . . .}.

The second Cantor set will be constructed with a variable ratio of dissection. At
the first step, the interval [−1, 1] is split into two closed subintervals, [−1, 1−2r0]
and [2r0−1, 1]. So the right-hand interval is centred at r0 and has length 2(1−r0).
We then repeat the decomposition with a different scale based on r1. so, the
extreme right-hand interval at the second step is [r0 + (1 − r0)(2r1 − 1), 1] etc.
The points of K2 have the form

ω0r0 + ω1(1− r0)r1 + ω2(1− r0)(1− r1)r2 + · · ·

Now, after removing the first k + 1 groups of intervals, the total length of the

set remaining is 2
k∏

j=0

(
2(1− rj)

)
. If we choose for example rj = 1/2 + 2−2−j ,

then 2
∞∏

j=0

(
2(1− rj)

)
> 0. So we can arrange that K2 has positive measure. On

the other hand, K1 which is built with rj = 2/3 for all j = 0, 1, 2, . . ., has zero
measure. Nevertheless, the two sets can be put into one-to-one correspondence
using the omegas and the mappings involved are continuous in both directions.
Let us denote this correspondence α : K2 −→ K1.
If you believe all this, then we are practically done. Since K2 has positive

Lebesgue measure, it must contain a subset E which is not Lebesgue measurable.
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If E is not Lebesgue measurable, then it is certainly not Borel. But now con-
sider α(E) which is a subset of K1. Since α is continuous in both directions,
it preserves open subsets and hence also Borel subsets. Being a Borel subset is a
topological property! We conclude that α(E) is not Borel. But K1 is a closed set
of zero Lebesgue measure and therefore every subset of K1 for example α(E) is
necessarily Lebesgue measurable.
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2

Integration over Measure Spaces

2.1 Measurable functions

So, in this section we have a σ-field F of subsets of X and a measure µ on F .
The first task is to integrate nonnegative simple functions. We need the concept
of measurability .

DEFINITION

(i) Let f : X −→ Y where Y is a metric space. Then f is measurable (as a
mapping from (X,F) to (Y, dY )) iff f−1(U) ∈ F for every open subset U
of Y .

(ii) Let f : X −→ Y where (Y,G) is a measurable space (this just means that
G is a σ-field on Y ). Then f is measurable (as a mapping from (X,F) to
(Y,G)) iff f−1(G) ∈ F for every subset G ∈ G.

It is easy to prove that if f is measurable as a mapping from (X,F) to (Y, dY ),
then f is measurable as a mapping from (X,F) to (Y,BY ), where BY denotes the
Borel σ-field of Y . So, we can if we wish interpret (i) above as a special case of
(ii). Another special case of the above situation is when both X and Y are metric
spaces. Then we understand the statement that f : X −→ Y is a Borel function as
the statement that f is measurable with respect to the measurable spaces (X,BX)
and (Y,BY ).
We need some results that will allow us to build combinations of measurable

functions.
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PROPOSITION 26 Let (X,F) be a measurable space and let Y1, Y2 be separable
metric spaces. Let fj : X −→ Yj be F-measurable functions for j = 1, 2. Define
a new function f : X −→ Y1 × Y2 by

f(x) = (f1(x), f2(x)).

Then f is also F-measurable.

Proof. We take the product metric on Y1×Y2. Let U be an open subset of Y1×Y2.
Then, according to Theorem 29 in the notes for MATH 354, U can be written as
a countable union of open balls. But, in the product metric, open balls are just
products of open balls, so we may write

U =
∞⋃

j=1

(
UY1(y1,j, tj)× UY2(y2,j, tj)

)
and it follows that

f−1(U) =
∞⋃

j=1

(
f−1

1 (UY1(y1,j, tj)) ∩ f−1
2 (UY2(y2,j, tj))

)
which is clearly in F because both f1 and f2 are measurable.

COROLLARY 27 Let (X,F) be a measurable space and let Y1, Y2 be separable
metric spaces. Let fj : X −→ Yj be F-measurable functions for j = 1, 2. Let Y
be a metric space and suppose that α : Y1× Y2 −→ Y is a borel mapping. Define
a new function g : X −→ Y by

g(x) = α(f1(x), f2(x)).

Then g is also measurable. In particular, sums and products of measurable real-
valued functions are measurable.

LEMMA 28 The σ-field generated by the sets ]a,∞[ as a runs through R is the
Borel field BR of R.

34



Proof. Let C denote the σ-field generated by the sets ]a,∞[. We clearly have
]a,∞[c=] −∞, a], so for every b ∈ R we have ] −∞, b] ∈ C. Now we can also
write

]−∞, b[=
∞⋃

n=1

]−∞, b− 2−n]

so, ]−∞, b[∈ C for every b ∈ R. It now follows that every bounded open interval
]a, b[=]a,∞[∩]−∞, b[∈ C. Thus, in fact all open intervals, bounded or not are in
C and hence, all open sets. Therefore C contains all borel sets. Obviously C ⊆ BR,
so the two σ-fields are equal.

COROLLARY 29 Suppose that for each n ∈ N, fn is a measurable real-valued
mapping. Then so is f = sup∞n=1 fn.

Proof. We first observe that{
x;

(
∞

sup
n=1

fn(x)

)
> a

}
=

∞⋃
n=1

{x; fn(x) > a}.

This means that the set on the left is measurable for every a ∈ R. But, it is clear
that σ (f−1(A)) = {f−1(B);B ∈ σ(A)}. We apply this with f = sup∞n=1 fn and
A the collection of intervals of the form ]a,∞[. It tells that f−1(B) is measurable
for every Borel subset B of R.

Obviously, the same argument also works for infima. So it will also follow that
lim sup fn = infm sup∞n=m fn is a measurable function if all of the fn are. The
same result also holds for liminfs. This means in particular, that a pointwise limit
of measurable functions is measurable.

2.2 More on Measurable Functions*

We can extend this result to a more general context with the following lemma.

LEMMA 30 Let Z be a separable metric space, and U a nonempty open subset
of Z. Then there is a sequence (zk)

∞
k=1 of points of Z and δk > 0 such that

∞⋃
k=1

B(zk, δk) ⊆ U ⊆
∞⋃

k=1

U(zk, δk) (2.1)

where we have denoted B(z, δ) = {w ∈ Z; d(z, w) ≤ δ} and U(z, δ) = {w ∈
Z; d(z, w) < δ}. In fact, the inclusions in (2.1) are equalities.
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THEOREM 31 Let Z be a separable metric space and (X,M) a measurable
space. Let fn : X −→ Z beM-measurable functions and let fn −→

n→∞
f pointwise

where f : X −→ Z. Then f isM-measurable.

Proof. We claim that for every z ∈ Z and every δ > 0, there exists a setM ∈M
such that

f−1(U(z, δ)) ⊆M ⊆ f−1(B(z, δ)). (2.2)

To do this, we simply setM =
∞⋂

m=1

∞⋃
n=m

{x; d(fn(x), z) < δ}. This is the set of all

x such that d(fn(x), z) < δ holds for infinitely many n. With this formulation,
and using the pointwise convergence of fn to f we have that (2.2) holds. (We

could equally well have takenM =
∞⋃

m=1

∞⋂
n=m

{x; d(fn(x), z) < δ} which is the set

of all x such that d(fn(x), z) < δ holds for all sufficiently large n i.e. eventually).
With the claim proved, we now apply Lemma 30. For each k we can find

Mk ∈M such that

f−1(U(zk, δk)) ⊆Mk ⊆ f−1(B(zk, δk)).

and now we have for any nonempty open U in Z

f−1(U) ⊆
∞⋃

k=1

f−1(U(zk, δk)) ⊆
∞⋃

k=1

Mk ⊆
∞⋃

k=1

f−1(B(zk, δk)) ⊆ f−1(U)

so that f−1(U) =
⋃∞

k=1Mk ∈M.

2.3 The Lebesgue Integral — first steps

A measurable simple function f : X −→ [0,∞] is a function between the above
spaces which is measurable and takes only finitely many values s1, . . . , sn. We
set Aj = f−1({sj}). These are disjoint sets and their union is X . We can then
succinctly write

f =
n∑

j=1

sj11Aj
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This will be called the regimented form — the sj are all distinct, the Aj are
disjoint, measurable and nonempty and their union is the whole of X . The key
point here is that the regimented decomposition of f is uniquely determined by
f . We now define ∫

fdµ =
n∑

j=1

sjµ(Aj).

We use here standard conventions with regard to arithmetic involving ∞. Our
convention is that 0 · ∞ = ∞ · 0 = 0. So, the integral of a function that is
identically zero on a set of infinite measure is zero. The integral of ∞ times the
indicator function of a null set is also zero.
Now we need to know that the integral has the right properties.

PROPOSITION 32

(i) If f, g are nonnegative measurable simple functions and if f ≤ g pointwise,
then

∫
fdµ ≤

∫
gdµ.

(ii) If fn, f are nonnegative measurable simple functions and if fn ↑ f point-
wise, then

∫
fndµ ↑

∫
fdµ.

(iii) If f, g are nonnegative measurable simple functions and a, b ∈ [0,∞], then∫
(af + bg)dµ = a

∫
fdµ+ b

∫
gdµ

We will need the following technical lemma.

LEMMA 33 Let f =
∑m

k=1 tk11Bk
where Bk are disjoint measurable sets, then∫

fdµ =
∑m

k=1 tkµ(Bk).

Proof. Note that we have not required that the union of the Bk is X . Also some
of the Bk may be empty and the numbers tk may not be distinct. Whenever a Bk

is empty, we omit that value of k and renumber the remaining Bk. If the union
of the Bk is not X , we include a new Bm+1 = X \

⋃m
k=1Bk, set tm+1 = 0 and

replace m by m + 1. Neither of these operations affects the truth of the Lemma.
Recall that 0 · ∞ = 0, so that even if a newly created B has infinite measure, the
lemma remains unaffected.
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Thus we may assume that Bk are nonempty and disjoint for k = 1, . . . ,m
and that their union is X . On Bk, the function f takes the value tk which must
therefore be one of the sj . So, we have a map α : {1, 2, . . . ,m} −→ {1, 2, . . . , n}
such that tk = sα(k). The set where f takes the value sj is then Aj and also⋃

α(k)=j Bk, so these sets must be equal.∫
fdµ =

n∑
j=1

sjµ(Aj) =
n∑

j=1

sj

∑
α(k)=j

µ(Bk) =
n∑

j=1

∑
α(k)=j

tkµ(Bk) =
m∑

k=1

tkµ(Bk)

This completes the proof.

Proof of Proposition 32. Let us write f =
∑n

j=1 sj11Aj
, g =

∑m
k=1 tk11Bk

both in
regimented form. We can write now 11Aj

=
∑m

k=1 11Aj∩Bk
and therefore, we can

write

f =
n∑

j=1

sj11Aj
=

n∑
j=1

sj

m∑
k=1

11Aj∩Bk
=

n∑
j=1

m∑
k=1

sj11Aj∩Bk

The Aj ∩ Bk are disjoint subsets, but possibly empty. We can write in the same
way

g =
m∑

k=1

tk11Bk
=

m∑
k=1

tk

n∑
j=1

11Aj∩Bk
=

n∑
j=1

m∑
k=1

tk1Aj∩Bk

So, according to Lemma 33∫
fdµ =

n∑
j=1

m∑
k=1

sjµ(Aj ∩Bk),

∫
gdµ =

n∑
j=1

m∑
k=1

tkµ(Aj ∩Bk) (2.3)

Now, for each pair (j, k) there are two cases. Either Aj ∩ Bk = ∅ in which case
µ(Aj ∩ Bk) = 0 or, there exists x ∈ Aj ∩ Bk. In the second case sj = f(x) ≤
g(x) = tk. So, it follows from (2.3) that

∫
fdµ ≤

∫
gdµ by comparing the

expansions term by term. This completes the proof of (i).
Next we turn to (iii), which we prove in the same manner. We find

af + bg =
n∑

j=1

m∑
k=1

(asj + btk)1Aj∩Bk

so that∫
(af + bg)dµ =

n∑
j=1

m∑
k=1

(asj + btk)µ(Aj ∩Bk) = a

∫
fdµ+ b

∫
gdµ
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from (2.3) and manipulative algebra. That completes the proof of (iii).
Now (ii) is much harder and we first tackle the special case f = t11B, where

t ∈ [0,∞] and B is a measurable set. We are supposing that fn are nonnegative
measurable simple functions and that fn ↑ t11B pointwise. If t = 0, then fn ≡ 0
for all n and the result is obvious. We can assume therefore that t > 0. Now, let
0 < r < t and think of r as being close to t. Let Bn = {x; fn(x) > r}. Then
Bn increases with n because the fn are increasing. Also Bn ⊆ B for otherwise
find x ∈ Bn \ B and we have 0 = t11B(x) ≥ fn(x) > r > 0. Now for each
x ∈ B, eventually we will have fn(x) > r for otherwise supn fn(x) ≤ r < t =
supn fn(x). In other words

⋃
nBn = B, and it follows that supn µ(Bn) = µ(B).

Since fn ≤ t11B, it follows from (i) that
∫
fndµ ≤ tµ(B) and therefore that

supn

∫
fndµ ≤ tµ(B). This is the “easy” inequality. To get the “hard” one, we

observe that
∫
fndµ ≥ rµ(Bn) since f > r11Bn and on taking sups we find

supn

∫
fndµ ≥ r supµ(Bn) = rµ(B). Since r can be taken as close to t as we

like (or arbitrarily large if t = ∞), we get supn

∫
fndµ ≥ tµ(B). This settles the

special case f = t11B.
For the general case, we write f =

∑m
j=1 sj11Aj

in regimented form. Now
fn ↑ f , so it follows (for each j fixed) that fn11Aj

↑ f11Aj
= sj11Aj

. Thus, by the
special case we have that

∫
fn11Aj

dµ ↑ sjµ(Aj). Finally, by applying an induction
to extend (iii) we can deduce∫

fndµ =

∫ m∑
j=1

fn11Aj
dµ =

m∑
j=1

∫
fn11Aj

dµ ↑
m∑

j=1

sjµ(Aj) =

∫
fdµ

and the proof is complete.

We now extend the definition of the integral to nonnegative measurable func-
tions.

DEFINITION Let f : X −→ [0,∞] be measurable with respect to a σ-field F of
subsets of X . Let µ be a measure on (X,F). Then we define∫

fdµ = sup
0≤s≤f

s simple measurable

∫
sdµ

If f is itself a nonnegative measurable simple function, then it follows imme-
diately from Proposition 32 (ii) that the “old” and “new” definitions agree.
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LEMMA 34 For all n = 1, 2, . . . and x ∈ [0,∞] define

βn(x) =

{
2−nb2nxc if 0 ≤ x < n,
n if x ≥ n.

Then

• βn : [0,∞] −→ [0,∞[ is a Borel mapping.

• βn takes only finitely many values.

• βn(x) ↑ x for all x ∈ [0,∞] as n increases to∞.

Proof. The first two assertions are fairly obvious. For the third, there are two
cases. If x <∞, then eventually, x < n so that the first definition applies. In that
case, 0 ≤ x− βn(x) = 2−n(2nx− b2nxc) < 2−n. On the other hand, if x = ∞,
then βn(x) = n and we are also done!

The next step is to extend Proposition 32 to the case of nonnegative measur-
able functions.

THEOREM 35

(i) If f, g are nonnegative measurable functions and if f ≤ g pointwise, then∫
fdµ ≤

∫
gdµ.

(ii) If fn, f are nonnegative measurable functions and if fn ↑ f pointwise, then∫
fndµ ↑

∫
fdµ.

(iii) If f, g are nonnegative measurable functions and a, b ∈ [0,∞], then∫
(af + bg)dµ = a

∫
fdµ+ b

∫
gdµ

Item (ii) in Theorem 35 is called the Monotone Convergence Theorem.

Proof. (i) follows immediately from the definition and Proposition 32 (i). Now
for (ii). By (i) we have

∫
fndµ ≤

∫
fdµ so that supn

∫
fndµ ≤

∫
fdµ The danger
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is that supn

∫
fndµ <

∫
fdµ. In that case, there will exist a simple measurable

function s with 0 ≤ s ≤ f such that already

sup
n

∫
fndµ <

∫
sdµ. (2.4)

Unfortunately, s may take ∞ as a value, so we need to be quite careful. Let

sn(x) =
n− 1

n
min(s(x), n). Then sn is a bounded simple function increasing to

s and sn(x) < s(x) unless s(x) = 0. So
∫
sndµ ↑

∫
sdµ using Proposition 32 (ii).

Replacing the s in (2.4) by a suitable sn, we can assume without loss of generality
that (2.4) holds for a simple measurable function s satisfying 0 ≤ s(x) ≤ f(x)
and s(x) < f(x) whenever f(x) > 0. We define En = {x; fn(x) ≥ s(x)},
increasing measurable sets with union X . (To see that En ↑ X , observe first that
if f(x) = 0 then fn(x) = s(x) = 0 and x ∈ En for all n. On the other hand, if
f(x) > 0 then s(x) < f(x) and fn(x) ↑ f(x). We now have∫

fndµ ≥
∫

11Enfndµ ≥
∫

11Ensdµ ↑
∫
sdµ

using Proposition 32 (ii). So supn

∫
fndµ ≥

∫
sdµ. The proof of (ii) is complete.

Finally, for (iii) it will suffice to show that if f is a nonnegative measurable
function, we can find fn nonnegative measurable simple functions with fn ↑ f .
We will then be able to approximate g in the same way and we will have afn +
bgn ↑ af + bg. So, applying Proposition 32 (iii) to get∫

(afn + bgn)dµ = a

∫
fndµ+ b

∫
gndµ

and passing to the limit as n −→ ∞ we have the desired result. To prove the
claim, we take fn = βn ◦ f , where βn is defined as in Lemma 34.

The following lemma describe the Tchebychev Inequality.

LEMMA 36 Let f be a nonnegative measurable function and 0 < t < ∞ a
scalar. Then

µ
(
{x; f(x) ≥ t}

)
≤ t−1

∫
fdµ.

Also, if
∫
fdµ = 0, then f = 0 µ-a.e.
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Proof.
Let Et = {x; f(x) ≥ t}. Clearly, t11Et ≤ f . So we have

∫
t11Etdµ ≤

∫
fdµ.

Effectively that gives us µ(Et) = t−1
∫
fdµ. For the last assertion, we have for

every t > 0, that µ(Et) = 0. But {x; f(x) > 0} =
⋃∞

k=1E2−k and so {x; f(x) >
0} is a µ-null set.

2.4 The Lebesgue Integral for real and complex valued functions

So far, we have defined the Lebesgue integral of a nonnegative function. We now
look at the same issue for functions that are real-valued or complex-valued. The
key point is that we only define the integral if∫

|f |dµ <∞

where of course, since |f | is a nonnegative function, the integral
∫
|f |dµ is per-

fectly well defined. Functions that have this property are call integrable , ab-
solutely integrable , summable or absolutely summable .
Let us start with a real-valued function f . We write

f+(x) =
{
f(x) if f(x) ≥ 0,
0 otherwise.

and f−(x) =
{−f(x) if f(x) ≤ 0,

0 otherwise.

In this way, we see that f+ ≥ 0, f− ≥ 0 and f = f+ − f−. Now, it is clear that
f± ≤ |f |, so by Theorem 35, (i), we have∫

f±dµ ≤
∫
|f |dµ <∞

Therefore, the difference
∫
f+dµ −

∫
f−dµ is meaningful (it is not of the form

∞−∞) and we define
∫
fdµ to be this quantity. We need to see that this integral

behaves as it should.

THEOREM 37 Let f, g be real-valued measurable functions such that
∫
|f |dµ <

∞ and
∫
|g|dµ <∞. Let a, b ∈ R. Then we have

(i)
∫
|af + bg|dµ ≤ |a|

∫
|f |dµ+ |b|

∫
|g|dµ <∞.

(ii)
∫

(af + bg)dµ = a
∫
fdµ+ b

∫
gdµ.

(iii)
∣∣∫ fdµ∣∣ ≤ ∫ |f |dµ.
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(iv) If also f ≤ g pointwise, then
∫
fdµ ≤

∫
gdµ.

Proof. The first statement is easy because 0 ≤ |af + bg| ≤ |a||f | + |b||g|. We
simply apply part (iii) of Theorem 35. This shows that the integral on the left-hand
side of (ii) exists. For (ii), we split the statement up into two separate problems.
Let us show first that ∫

afdµ = a

∫
fdµ. (2.5)

If a = 0 this is obvious. If a = −1, then it boils down to∫
(−f)dµ =

∫
(−f)+dµ−

∫
(−f)−dµ =

∫
(f−)dµ−

∫
(f+)dµ = −

∫
fdµ

so this leaves the case a > 0. But that case is easy, for then (af)± = a(f±) and
(2.5) follows straightforwardly from Theorem 35 part (iii). This leaves us to show
that ∫

(f + g)dµ =

∫
fdµ+

∫
gdµ (2.6)

Let us denote h = f + g. Then we have h+ − h− = f+ − f− + g+ − g− and
it follows that h+ + f− + g− = h− + f+ + g+ and it follows from an extended
version of Theorem 35 part (iii) that∫

(h+)dµ+

∫
(f−)dµ+

∫
(g−)dµ =

∫
(h−)dµ+

∫
(f+)dµ+

∫
(g+)dµ (2.7)

which is, after rearranging the terms precisely (2.6). Note that all the terms in
(2.7) are finite so that there is no problem in subtracting off infinity from infinity.
Now for (iii), we see that

∣∣∫ fdµ∣∣ is one or other of the quantities ∫ f+dµ−
∫
f−dµ

or
∫
fdµ−

∫
f+dµ. But, both of these are bounded above by

∫
|f |dµ.

Now for (iv) let h = g− f ≥ 0 pointwise. So
∫
hdµ ≥ 0. Now apply (ii) with

a = −1 and b = 1 to get the desired conclusion.

We now extend the definition of the integral to complex-valued measurable
functions in the obvious way. We insist that

∫
|f |dµ <∞ and then since |<f | ≤

|f | and |=f | ≤ |f |, we have that
∫
|<f |dµ <∞ and

∫
|=f |dµ <∞ allowing us

to define ∫
fdµ =

∫
<fdµ+ i

∫
=fdµ

We then have the expected theorem.
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THEOREM 38 Let f, g be complex-valued measurable functions satisfying the
conditions

∫
|f |dµ <∞ and

∫
|g|dµ <∞. Let a, b ∈ C. Then we have

(i)
∫
|af + bg|dµ ≤ |a|

∫
|f |dµ+ |b|

∫
|g|dµ <∞.

(ii)
∫

(af + bg)dµ = a
∫
fdµ+ b

∫
gdµ.

(iii)
∣∣∫ fdµ∣∣ ≤ ∫ |f |dµ.

We leave the proof of (i) and (ii) to the reader.

Proof of (iii). If
∫
fdµ = 0, then we are done. Otherwise, we can write

∫
fdµ =

rω with r > 0 and |ω| = 1. Now we have <ωf ≤ |ωf | = |f | pointwise so that∫
<ωfdµ ≤

∫
|f |dµ.

But
∫
<ωfdµ = <

∫
ωfdµ = <ω

∫
fdµ = ωrω = r =

∣∣∫ fdµ∣∣ and the proof is
complete.

2.5 Interchanging limits and integrals

Here we discuss integrals of limits. With the Riemann Integral, there is very little
that one can say. The definition of the Lebesgue integral allows some much more
powerful theorems to be proved. Let us start by recalling Item (ii) in Theorem 35.

THEOREM 39 (MONOTONE CONVERGENCE THEOREM) If fn, f are nonnega-
tive measurable functions and if fn ↑ f pointwise, then

∫
fndµ ↑

∫
fdµ.

It should be remarked that we can relax the pointwise convergence assump-
tion in this and all other convergence theorems in the following way. A property
is said to hold almost everywhere if it holds on the set X \ N where X is the
whole ambient space and N is a null set. If there is possible confusion over the
measure µ that is being used to check the nullness of N , we will use the term
µ-almost everywhere . Actually, these are normally abbreviated to a.e. or µ-a.e..
The probabilists use a.s. meaning almost surely in the context of a probability
measure. So, the statement fn −→ f a.e. means that there exists a null set N
such that fn −→ f on X \N . We could then redefine fn and f to be zero on N
and this change would not affect the values of

∫
fndµ or

∫
fdµ. For the redefined

sequence and limit function, we do have pointwise convergence everywhere and
so the Monotone Convergence Theorem applies.
The next step is the following intermediate result.
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LEMMA 40 (FATOU’S LEMMA) Let fn be nonnegative measurable functions.
Then ∫

lim inf
n→∞

fndµ ≤ lim inf
n→∞

∫
fndµ

The lim inf on the left is taken over the sequence (fn(x)) for every x ∈ X ,
while the one on the right is just the lim inf of a sequence of real numbers.

Proof. The definition of the lim inf is lim infn→∞ fn(x) = supn infm≥n fm(x).
So, let us set gn(x) = infm≥n fm(x). Note that gn is measurable by the same meth-
ods used to show Corollary 29. Now, gn ↑ lim infn→∞ fn, so by the Monotone
Convergence Theorem we have∫

gndµ ↑
∫

lim inf
n→∞

fndµ.

But, we clearly have gn(x) ≤ fn(x) pointwise and therefore∫
lim inf
n→∞

fndµ = lim inf
n→∞

∫
gndµ ≤ lim inf

n→∞

∫
fndµ

This completes the proof.

Of course there can be strict inequality in Fatou’s Lemma. It suffices to take

fn(x) =

{
11[−1,0[(x) if n is odd,
11[0,1[(x) if n is even.

Then lim infn→∞ fn(x) = 0 for all x, but
∫
fndµ = 1 for all n.

These results apply only to nonnegative functions, so we need something that
will work for signed functions or for complex valued functions.

THEOREM 41 (DOMINATED CONVERGENCE THEOREM) Let fn be a sequence
of measurable functions and suppose that fn −→ f pointwise. Further suppose
that there is a (nonnegative) function g such that |fn| ≤ g pointwise for every
n ∈ N. If

∫
gdµ <∞, then necessarily∫

fndµ −→
n→∞

∫
fdµ. (2.8)
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Proof. Obviously |f | ≤ g, so we have |f − fn| ≤ |f |+ |fn| ≤ 2g pointwise. Let
hn = 2g − |f − fn| ≥ 0 and apply Fatou’s Lemma. This gives∫

2gdµ =

∫
lim inf
n→∞

(
2g − |f − fn|

)
dµ

≤ lim inf
n→∞

∫
2g − |f − fn|dµ

=

∫
2gdµ− lim sup

n→∞

∫
|f − fn|dµ,

the last step using part (ii) of Theorem 37. Because
∫

2gdµ <∞, we can deduce
that

∫
|f − fn|dµ −→ 0 as n −→∞. So, (2.8) also holds.

EXAMPLE We look at some examples of the Dominated Convergence Theorem
in action. We’ll assume here that we can evaluate Lebesgue integrals as Riemann
integrals. Consider

fn(x) =
(
1 +

x

n

)−n

sin
(x
n

)
on [0,∞[. The pointwise limit of fn(x) is zero, because

(
1 +

x

n

)−n

−→ e−x and

sin
(x
n

)
−→ 0. But we need to bound fn somehow to satisfy the hypotheses of

the Dominated Convergence Theorem. We use two fairly basic facts∣∣∣sin(x
n

)∣∣∣ ≤ 1

and (
1 +

x

2

)2

≤
(
1 +

x

n

)n

n ≥ 2, x ≥ 0

The second of these can be proved by observing from the Binomial Theorem that
the right-hand member is increasing with n. Together, these inequalities tell us
that |fn(x)| ≤ g(x) for n ≥ 2 where

g(x) =
(
1 +

x

2

)−2

But
∫∞

0
g(x)dx = 2 and we can apply the Dominated Convergence Theorem. The

conclusion is that ∫ ∞

0

(
1 +

x

n

)−n

sin
(x
n

)
dx −→

n→∞
0.
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Note that in this example,
∫∞

0
|f1(x)|dx = ∞. It is therefore essential to throw

away the first term of the sequence. In the Lebesgue theory,
∫∞

0
f1(x)dx is not

even defined. In the Riemann theory, it has to be treated as an indefinite integral.
2

EXAMPLE Let fn(x) =
1 + nx2

(1 + x2)n
on [0, 1]. Then it is evident that fn(x) −→

11{0}(x) as n −→ ∞. We also have 1 + nx2 ≤ (1 + x2)n so that for all n and x,
|fn(x) ≤ 1. So, the Dominated Convergence Theorem applies and∫ 1

0

1 + nx2

(1 + x2)n
dx −→

∫ 1

0

11{0}(x)dx = 0.

2

EXAMPLE Let fn(x) = n sin
(x
n

)(
x(1 + x2)

)−1

= ϕ
(x
n

)
(1 + x2)−1, on the

set [0,∞[. We have denoted ϕ(x) =
sin(x)

x
. Note that |ϕ(x)| ≤ 1 and that∫∞

0
(1 + x2)−1dx <∞. So, by the Dominated Convergence Theorem, we deduce∫ ∞

0

n sin
(x
n

) dx

x(1 + x2)
−→

∫ ∞

0

dx

1 + x2
=
π

2
.

2

EXAMPLE The final example is lim
n→∞

∫ ∞

a

n

1 + n2x2
dx for a ≥ 0. Using the

Riemann theory and a change of variables, it is easy to see that the value of the

limit is 0 if a > 0 and
π

2
if a = 0. What happens if we try to use convergence

theorems without using a change of variables? Well

fn(x) =
n

1 + n2x2
−→∞11{0}(x).

Is the convergence dominated? If x ≥ 1 then fn(x) decreases with n, so
1

1 + x2

is an upper bound in this range. If 0 ≤ x < 1, then it can be shown that

1

4x
≤ ∞

sup
n=1

fn(x) ≤ 1

2x
. (2.9)

Thus, if a > 0, the Dominated Convergence Theorem can be successfully applied
and if a = 0, then it cannot be.
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Figure 2.1: The functions fn. Note that supn fn(x) behaves like f1(x) for x ≥ 1,
but like Cx−1 for 0 < x ≤ 1.

To prove (2.9) the right-hand inequality follows from (nx− 1)2 ≥ 0. For the
left-hand inequality, we will take n = bx−1c in the sup. Then we have n ≥ 1 and
we can write x = (n+ t)−1 where 0 ≤ t < 1. It is then necessary to show that

n+ t

4
≤ n

1 + n2

(n+t)2

which boils down to 2n2 + 2nt+ t2 ≤ 4n2 + 4nt. This last inequality is satisfied
because 2n2 + t2 ≤ 2n2 + 1 ≤ 4n2 and since 2nt ≤ 4nt. 2
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2.6 Riemann and Lebesgue Integrals

In the last section we used the Riemann theory of integration to compute our
integrals. We start this section by justifying that.

THEOREM 42 Let f be Riemann Integrable on [a, b]. Then, f is Lebesgue mea-
surable on [a, b] and the Riemann and Lebesgue integrals agree.

Note that it is false in general that a Riemann integrable function is Borel.
Let K be the Cantor Ternary set in [0, 1] and let S ⊆ K be a subset that is not
Borel. Then 11S is Riemann integrable, but it is not a Borel function. We should
also observe that there is a theorem of Lebesgue which characterizes Riemann
integrable functions completely. We will not prove this theorem here.

THEOREM 43 A bounded function f on [a, b] is Riemann integrable on [a, b]
if and only if the set of points where f fails to be continuous has zero Lebesgue
measure.

Proof of Theorem 42. Without loss of generality, we can assume that a = 0 and
that b = 1. Now we apply Theorem 71 from the notes from MATH 255. This
implies that we can work with dyadic subintervals of [0, 1]. So, let us define

gn(x) = inf{f(x); k2−n ≤ x ≤ (k + 1)2−n} for k2−n ≤ x < (k + 1)2−n

and

hn(x) = sup{f(x); k2−n ≤ x ≤ (k + 1)2−n} for k2−n ≤ x < (k + 1)2−n

for each integer k with 0 ≤ k < 2n. The quantities gn(1) and hn(1) not defined
by the above equations can be defined to make gn and hn to be continuous on the
left at 1. Now, we clearly have

gn(x) ≤ f(x) ≤ hn(x)

for all x ∈ [0, 1]. Furthermore the Riemann and Lebesgue integrals of gn and hn

are easily seen to agree. The content of Theorem 71 is that∫ 1

0

gn(x)dx ↑
∫ 1

0

f(x)dx and
∫ 1

0

hn(x)dx ↓
∫ 1

0

f(x)dx
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as n −→ ∞. (The notation
∫ 1

0
f(x)dx here is for the Riemann integral.) In

fact, gn is an increasing sequence of Lebesgue measurable functions and hn is
a decreasing such sequence. Of course Riemann integrable functions have to be
bounded, so the functions gn and hn are uniformly bounded. Now, let g = sup gn

and h = inf hn, then, from the Dominated Convergence Theorem, we find that∫ 1

0
(h − g)(x)dx = 0 and h ≥ g. So g and h agree except on a null set. We also

have h ≤ f ≤ g and this is enough to show that f agrees with both g and h
except on a null set. Hence f is Lebesgue measurable because g (or h) is. Again
by Dominated Convergence, the Riemann and Lebesgue integrals coincide.
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3

Lp spaces

The Lp spaces are spaces of measurable functions on a measure space (X,M, µ).
Well, that’s not entirely correct. For instance the space L1(X,M, µ) is the space
of “functions” such that

∫
|f |dµ < ∞ and we take ‖f‖1 =

∫
|f |dµ < ∞ as the

norm. It is easy to check all the standard inequalities and equalities for ‖ · ‖1

to be a norm with one exception. If ‖f‖1 = 0, then we can only deduce that
f = 0 µ-a.e. and that’s different from f being identically zero. So we introduce an
equivalence relation. Two functions f and g are viewed as being equivalent if and
only if f = g µ-a.e. or more precisely if and only if µ({x; f(x) 6= g(x)}) = 0.
It’s easy to see that this defines an equivalence relation and the equivalence classes
are effectively functions defined up to a µ-null set. The elements of L1(X,M, µ)
are then strictly speaking equivalence classes of functions rather than functions,
and then ‖ · ‖1 actually defines a norm. If f̃ is such an equivalence class, and
f is a function in that equivalence class, f is called a version of f̃ . We define
Lp(X,M, µ) for all values of p with 1 ≤ p ≤ ∞. It consists of all equivalence
classes of functions such that the p-norm is finite, the p-norm being given by

‖f‖p =

{∫
|f |pdµ

} 1
p

. (3.1)

for 1 ≤ p <∞. We’ll define the infinity norm later. It’s obvious that (3.1) actually
defines a norm except for the subadditivity, which we’ll verify eventually.
To define the infinity norm, we need a new concept called the essential supre-

mum. We can define this by

ess sup
x∈X

f(x) = inf{M ; f(x) ≤M, µ− a.e.}.
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This notion depends of course upon the measure. If there is possible confusion,
we would use the notation µ-ess sup. The infimum defining the ess sup is actually
attained. If ess sup f = ∞, then there is nothing to show, if on the other hand, it
is finite, then there is a sequence Mk decreasing to ess sup f such that f ≤ Mk

µ-a.e. But then

{x; f(x) > ess sup f} ⊆
⋃
k

{x; f(x) ≥Mk}.

The right hand side is a countable union of µ-null sets and hence µ-null. So
actually f(x) ≤ ess sup f µ-a.e. Of course, one can also define the essential
infimum in the same way.
Now we define the infinity norm by

‖f‖∞ = ess sup
x∈X

|f(x)|.

It’s clear that functions that are equal almost everywhere have the same infinity
norm. It’s also clear that if ‖f‖∞ < ∞, then f has a version g that is actually
bounded and indeed such that sup |g(x)| = ess sup |f |. It’s easy to show that the
infinity norm is in fact a norm.
One can also define ‖f‖p if 0 < p < 1, but it’s not a norm. The would be unit

ball {f ; ‖f‖p ≤ 1} is no longer convex (except under really trivial circumstances).
In the p ≥ 1 case, there’s a very important concept called the conjugate index.

We define p′ =
p

p− 1
. We have 1′ = ∞, 2′ = 2 and∞′ = 1. As p increases, p′

decreases.

THEOREM 44 (HÖLDER’S INEQUALITY) Let 1 ≤ p ≤ ∞. Then∣∣∣∣∫ fgdµ

∣∣∣∣ ≤ ‖f‖p‖g‖p′

provided that the right hand side is finite.

Proof. If p = 1 or p = ∞, then the result is straightforward. We will assume
that 1 < p < ∞, so that also 1 < p′ < ∞. It will be enough to show that∫
|fg|dµ ≤ ‖f‖p‖g‖p′ . So, without loss of generality, f and g are nonnegative

functions and we need to show∫
fgdµ ≤

{∫
fpdµ

} 1
p
{∫

gp′dµ

} 1
p′
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We can assume that the right hand side is finite. Also, after renormalizing, we can
assume that ∫

fpdµ = 1 and
∫
gp′dµ = 1.

But now, we use the inequality xy ≤ xp

p
+
yp′

p′
for x, y ≥ 0 to obtain∫

fgdµ ≤ 1

p

∫
fpdµ+

1

p′

∫
gp′dµ =

1

p
+

1

p′
= 1

and we are done.

COROLLARY 45 (MINKOWSKI’S INEQUALITY) Let 1 ≤ p ≤ ∞. Then
‖f + g‖p ≤ ‖f‖p + ‖g‖p

Proof. Again, it’s enough to show the result for nonnegative functions. We now
proceed as follows∫

(f + g)pdµ =

∫
(f + g)(f + g)p−1dµ,

=

∫
f(f + g)p−1dµ+

∫
g(f + g)p−1dµ,

≤
{∫

fpdµ

} 1
p
{∫

(f + g)(p−1)p′dµ

} 1
p′

,

+

{∫
gpdµ

} 1
p
{∫

(f + g)(p−1)p′dµ

} 1
p′

,

by applying Hölder’s inequality to each term,

≤
(
‖f‖p + ‖g‖p

){∫
(f + g)pdµ

} 1
p′

,

since (p − 1)p′ = p. Now, if
∫

(f + g)pdµ = 0, then f and g vanish almost
everywhere and the result is easy. Otherwise

∫
(f + g)pdµ > 0 and it is legal to

divide off giving {∫
(f + g)pdµ

} 1
p

≤
(
‖f‖p + ‖g‖p

)
as required.

This Corollary fills the gaps so that we know that ‖ · ‖ is a norm.
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3.1 Completeness of the Lp spaces

Next comes the question of completeness. It is easiest to understand this first in
the context of L1. Usually in metric space theory, we use completeness to derive
the WeierstrassM -test.

PROPOSITION 46 Let V be a complete normed space and let vj be elements of
V for j ∈ N. Suppose that

∞∑
j=1

‖vj‖V <∞.

Then the sequence of partial sums (sn) given by

sn =
n∑

j=1

vj

converges to an element s ∈ V . Furthermore we have the norm estimate

‖s‖V ≤
∞∑

j=1

‖vj‖V . (3.2)

What we are going to do here is the reverse. We will use theM -test to get at
the completeness of L1.

PROPOSITION 47 Let (X,M, µ) be a measure space and let fn ∈ L1(X,M, µ)
be such that

∑∞
n=1 ‖fn‖1 <∞. Then the series

∑∞
n=1 fn converges in L1.

Proof. We have ∫ ∞∑
n=1

|fn|dµ =

∫
sup
N

N∑
n=1

|fn|dµ

= sup
N

∫ N∑
n=1

|fn|dµ

by the Monotone Convergence Theorem

= sup
N

N∑
n=1

∫
|fn|dµ

=
∞∑

n=1

∫
|fn|dµ <∞ (3.3)
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This means that N = {x;
∑∞

n=1 |fn(x)| = ∞} must be a null set. Or, we
could say that

∑∞
n=1 |fn| < ∞ almost everywhere. So, for almost all x the

series
∑∞

n=1 fn(x) converges absolutely. Let s(x) be the sum of this series on
N c and zero on N . Then s is a measurable function. We clearly have that
|s(x)| ≤

∑∞
n=1 |fn(x)| and (3.3) shows that

∫
|s|dµ < ∞. So, s is in L1. It

remains to show that s =
∑∞

n=1 fn in L1. Let ε > 0 and choose M so large that∑∞
n=M+1 ‖fn‖1 < ε. Then, we have∫ ∞∑

n=M+1

|fn|dµ =

∫
sup
N

N∑
n=M+1

|fn|dµ

= sup
N

∫ N∑
n=M+1

|fn|dµ

by the Monotone Convergence Theorem

= sup
N

N∑
n=M+1

∫
|fn|dµ

=
∞∑

n=M+1

∫
|fn|dµ < ε (3.4)

just as before, and it follows from (3.4) that∫ ∣∣∣s− m∑
n=1

fn

∣∣∣dµ =

∫ ∣∣∣ ∞∑
n=m+1

fn

∣∣∣dµ ≤ ∫ ∞∑
n=m+1

|fn|dµ ≤
∫ ∞∑

n=M+1

|fn|dµ < ε

for m ≥M . This asserts that we have convergence in L1 norm.

COROLLARY 48 Let (X,M, µ) be a measure space. Then L1(X,M, µ) is a
complete normed space.

Proof. We exploit the idea of “rapid convergence”. Let (fn) be a Cauchy sequence
in L1(X,M, µ). Then, there exists nk such that

p, q ≥ nk =⇒ ‖fp − fq‖ < 2−k (3.5)

We have (taking p = nk+1 and q = nk in (3.5)) that
∑∞

k=1 ‖fnk+1
− fnk

‖ < ∞,
so that the series

∑∞
k=1

(
fnk+1

− fnk

)
converges in L1 norm say to a function s.
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Let f = s + fn1 . Then, it is clear that fnk
−→ f as k −→ ∞. Now we go back

to the Cauchy condition to capture the convergence of the original sequence. So,
given ε > 0 we find k so large that 2−k < ε/2 and ‖f − fnk

‖ < ε/2. Then we
find taking q = nk in (3.5) that

p ≥ nk =⇒ ‖fp − fnk
‖ < ε/2 =⇒ ‖fp − f‖ < ε

thus showing convergence.

The same proofs work for Lp when 1 < p < ∞, but the proofs are not as
clean. They involve a few intermediate steps.

PROPOSITION 49 Let (X,M, µ) be a measure space, 1 ≤ p < ∞ and let
fn ∈ Lp(X,M, µ) be such that

∑∞
n=1 ‖fn‖p < ∞. Then the series

∑∞
n=1 fn

converges in Lp.

Proof. We have ∥∥∥∥∥
∞∑

n=1

|fn|

∥∥∥∥∥
p

p

≤
∫ ( ∞∑

n=1

|fn|

)p

dµ

=

∫
sup
N

(
N∑

n=1

|fn|

)p

dµ

= sup
N

∫ ( N∑
n=1

|fn|

)p

dµ

Now take pth roots to get∥∥∥∥∥
∞∑

n=1

|fn|

∥∥∥∥∥
p

= sup
N

∥∥∥∥∥
N∑

n=1

|fn|

∥∥∥∥∥
p

≤ sup
N

N∑
n=1

‖ |fn| ‖p

=
∞∑

n=1

‖ |fn| ‖p <∞
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using the extended version of Minkowski’s Inequality. We can now rewrite this as∫ ( ∞∑
n=1

|fn|

)p

dµ <∞

and it implies as before that
∑∞

n=1 |fn| < ∞ almost everywhere. So, for almost
all x the series

∑∞
n=1 fn(x) converges absolutely. Let s(x) be defined as in the

L1 case. Then s is a measurable function satisfying |s(x)| ≤
∑∞

n=1 |fn(x)|. We
see that

∫
|s|pdµ < ∞. So, s is in Lp. Let ε > 0 and choose M so large that∑∞

n=M ‖fn‖p < ε. Then, we have, essentially repeating the steps above∥∥∥∥∥
∞∑

n=M+1

|fn|

∥∥∥∥∥
p

= sup
N
‖

N∑
n=M+1

|fn| ‖p

≤ sup
N

N∑
n=M+1

‖ |fn| ‖p

=
∞∑

n=M+1

‖ |fn| ‖p < ε

and it follows that ∥∥∥∥∥s−
M∑

n=1

fn

∥∥∥∥∥
p

≤

∥∥∥∥∥
∞∑

n=M+1

|fn|

∥∥∥∥∥
p

< ε

showing that s =
∑∞

n=1 fn where convergence is taken in Lp norm.

COROLLARY 50 Let (X,M, µ) be a measure space and 1 ≤ p < ∞. Then
Lp(X,M, µ) is a complete normed space.

The proof is as for Corollary 48 above and we omit it.

PROPOSITION 51 Let (X,M, µ) be a measure space, let fn ∈ L∞(X,M, µ)
be such that

∑∞
n=1 ‖fn‖∞ <∞. Then the series

∑∞
n=1 fn converges in L∞.
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COROLLARY 52 Let (X,M, µ) be a measure space. Then L∞(X,M, µ) is a
complete normed space.

Proof of the Proposition. We simply choose gn to be a version of fn which satisfies
sup |gn| ≤ ‖fn‖∞. Then

∑∞
n=M+1 |gn| ≤

∑∞
n=M+1 ‖fn‖∞ for M ∈ Z+. We set

s(x) =
∑∞

n=1 gn(x) and the rest of the proof follows by the same methods as
found earlier in this section.

3.2 L2 as an inner product space

The space L2 holds a very special position among the Lp spaces because it can be
given the structure of an inner product space.

THEOREM 53 The form

〈f, g〉 =

∫
fgdµ

defines an inner product on L2(X,M, µ) which is compatible with the L2 norm.

The proof is completely straightforward, the key point being that the associated
norm of the inner product is just the L2 norm.

〈f, f〉 =

∫
ffdµ =

∫
|f |2dµ = ‖f‖2

2.

A complete inner product space is called a Hilbert space .

3.3 Dense subsets of Lp

PROPOSITION 54 Let 1 ≤ p <∞. Then the bounded functions carried on sets
of finite measure are dense in Lp.

Proof. There are two separate ideas here. The first is to show how to approximate
a Lp function by a bounded function. Let f ∈ Lp. Define

fn(x) =

{
f(x) if |f(x)| ≤ n,
0 if |f(x)| > n.
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Then |f − fn| ≤ |f | for all n ∈ N. In particular, the functions hn = |f −
fn|p ≤ |f |p are dominated by a single integrable function, namely |f |p. Since f
takes finite values almost everywhere, fn −→ f almost everywhere and therefore
hn −→ 0 almost everywhere. Therefore, by the Dominated Convergence Theo-
rem, we find that ‖f −fn‖p =

∫
hndµ −→ 0. This means that there is a bounded

function g as close as we like to f and we can arrange that |g| ≤ |f |.
The first idea was to truncate the function where it was large. To approximate

a function by another function which is carried on a set of finite measure we
truncate the function where it is small. Let’s start again with a function f in Lp.
Now define

fn(x) =

{
f(x) if |f(x)| > n−1,
0 if |f(x)| ≤ n−1.

Again, we can set hn = |f − fn|p ≤ |f |p and these functions are dominated by a
single integrable function. The fn are carried by a set of finite measure. This is a
consequence of the Tchebychev Inequality. Let An = {x; |f(x)| > n−1}. Then∫

1

np
11Andµ ≤

∫
|f |p11Andµ ≤

∫
|f |pdµ = ‖f‖p

p.

The left-hand inequality holds because
1

n
< |f(x)| for x ∈ An. We clearly have

µ(An) ≤ np‖f‖p
p, so An definitely has finite measure. We have that fn −→ f

pointwise. If f(x) = 0, then fn(x) = 0 for all n. On the other hand, if f(x) 6= 0
then eventually fn(x) = f(x). As before, we find that ‖f−fn‖p =

∫
hndµ −→ 0.

To complete the proof, we simply need to observe that these two ideas do not
interfere with each other. If we first truncate the function to make it bounded,
then the second truncation where the function is small does not affect the bound-
edness.

PROPOSITION 55 If 1 ≤ p < ∞, then simple functions s of the type s =∑n
k=1 ak11Ak

with ak ∈ C, Ak ∈M and µ(Ak) <∞ are dense in Lp.

Proof. Let f ∈ Lp and ε > 0. We need to find a function s of the required type
with ‖f − s‖p < ε. By Proposition 54, we can assume that f is bounded and
carried on a set of finite measure A. For n ∈ N define

βn(x+ iy) = 2−n(b2nxc+ ib2nyc), x, y real
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Then βn : C −→ C is a Borel map. Also |z−βn(z)| ≤ 2−n
√

2 and βn(0) = 0. We
find that βn ◦ f −→ f uniformly as n −→∞. Also βn ◦ f is carried by the set A
and takes only finitely many values. Hence it is a measurable step function of the
required form. The uniform convergence on the set of finite measure A implies
Lp convergence.∫

|f − βn ◦ f |pdµ =

∫
|f − βn ◦ f |p11Adµ ≤ µ(A) sup

x∈X
|f(x)− βn ◦ f(x)|p.

In the same vein we also have

PROPOSITION 56 Simple functions s of the type s =
∑n

k=1 ak11Ak
with ak ∈

C, Ak ∈M are dense in L∞.

One cannot impose that µ(Ak) is finite unless one also knows that µ(X) is
finite.
We now work specifically on Lp(R,L, ν) where L is the Lebesgue σ-field of

R and ν is Lebesgue measure. Many of the results that we prove can be extended
to other similar situations. Before we start, let’s just point out that Lp(R,L, ν) is
the same as Lp(R,BR, ν). In other words, every Lebesgue measurable function
has a Borel version. We leave this as an exercise.
We denote byCc(R), the space of continuous functions of compact support on

R. It may seem strange that we can view Cc(R) as a linear subspace of Lp(R,L, ν)
because the first space consists of functions and the second consists of equivalence
classes of functions, but there is actually no difficulty here. The obvious “inclu-
sion” mapping Cc(R) −→ Lp(R,L, ν) is easily seen to be injective. If a function
in Cc(R), maps to the zero element of Lp(R,L, ν), then it is in fact identically
zero. A continuous function that vanishes almost everywhere must vanish identi-
cally. To see this, suppose that g is continuous on R and that g(x) 6= 0. Then the
set U = {y; |g(y)| > 1

2
|g(x)|} is an open subset of R containing x. So, U contains

an interval and consequently has positive measure. But g does not vanish on U ,
so g is not almost everywhere zero.

3.4 Duality between Lp and Lp′

In this section we are going to establish a dual-type result for Lp. To establish
the full duality theory between Lp and Lp′ is beyond the scope of this course.
Nevertheless, dual-type arguments are very useful. Here is the theorem that we
would like to prove.
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THEOREM 57 Let 1 ≤ p ≤ ∞. Let (X,M, µ) be a σ-finite measure space and
f : X −→ [0,∞] be measurable function and such that∫

fgdµ ≤ ‖g‖p′

for every positive measurable function g. Then ‖f‖p ≤ 1.

Proof. The case p = 1 comes immediately from g = 11. The case p = ∞ will
be proved separately. We therefore assume that 1 < p < ∞. Let us prove the
result under the additional hypothesis that f is bounded and carried on a set of
finite measure. Then let g(x) = (f(x))p−1. Then we find that g ∈ Lp′ and
‖g‖p′ = ‖f‖p−1

p . So

‖f‖p
p =

∫
fpdµ =

∫
fgdµ ≤ ‖g‖p′ = ‖f‖p−1

p .

Since we know that ‖f‖p <∞, we deduce that ‖f‖p ≤ 1.
Next we remove the condition that f is bounded and carried on a set of finite

measure. So, for general f find a sequence fn bounded and carried on sets of
finite measure, such that fn ↑ f pointwise. For example, we can take fn(x) =
11Xn(x) min(n, f(x)) where Xn are measurable subsets increasing to X . Clearly∫

fngdµ ≤
∫
fgdµ ≤ ‖g‖p′ ,

so ‖fn‖p ≤ 1. Finally, applying the Monotone Convergence Theorem∫
|fn|pdµ ↑

∫
|f |pdµ

gives the desired conclusion.
The case p = ∞, still needs special attention. Let t > 1 and let At =

{x; f(x) ≥ t}. Let g = 11At∩Xn and obtain

tµ(At ∩Xn) ≤
∫
fgdµ ≤ ‖g‖1 = µ(At ∩Xn).

The only way out is that µ(At ∩ Xn) = 0. Letting n tend to infinity, we get
µ(At) = 0. Now take a sequence of t’s decreasing to 1 to see that {x; f(x) > 1}
is a null set. This says that ‖f‖∞ ≤ 1.

Note that Theorem 57 can be proved with the σ-finiteness assumption re-
moved and the hypotheses 1 ≤ p < ∞ and f < ∞ µ-a.e. added. However the
strong duality theorem requires σ-finiteness.
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3.5 Interplay between Measure and Topology

In this section, we look at some results that are special because they depend heav-
ily on the topology of the underlying space. The following definition is nonstan-
dard, but very useful for discussing regularity in a course at this level.

DEFINITION Let X be a metric space. The X is LCSC (locally compact and
σ-compact) if there is a chain

K1 ⊆ Ω1 ⊆ K2 ⊆ Ω2 ⊆ K3 ⊆ Ω3 ⊆ · · · ⊆ X

where

• Kn is compact for n ∈ N.

• Ωn is open for n ∈ N.

•
∞⋃

n=1

Kn = X .

Clearly R is LCSC. It suffices to take

Kn = [−2n, 2n] and Ωn =]− 2n− 1, 2n+ 1[.

Also any compact metric space is LCSC. We are also interested in Borel measures
µ on X with the property that

µ(K) <∞ for all K compact ⊆ X. (3.6)

Lebesgue measure is an example of such a Borel measure (when restricted to the
Borel subsets).

THEOREM 58 LetX be a LCSC metric space and µ a Borel measure onX with
the property (3.6). Then µ is regular in the sense that if ε > 0 and B is a Borel
subset of X with µ(B) <∞, then there exists K compact ⊆ B ⊆ U open, such
that µ(U \K) < ε.

Proof. This is not an easy proof. We work first under the additional assumption
that X is compact. A Borel subset B (now necessarily of finite measure) is said
to be approximable if for every ε > 0, there exists K compact and U open, such
that K ⊆ B ⊆ U and µ(U \K) < ε. Let A be the collection of all approximable
Borel sets. Then we aim to show two facts.
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• Every open subset is in A.

• A is a λ-system.

Since the collection of open subsets is a π-system, the result follows from Dynkin’s
π-λ Theorem.
The first assertion is a consequence of the fact that every open subset is an Fσ.

To see this, we write an arbitrary open subset U as

U =
∞⋃

k=1

{x; distUc(x) ≥ 2−k}

so that
∞

sup
k=1

µ
(
{x; distUc(x) ≥ 2−k}

)
= µ(U) <∞.

In the second assertion, it is routine to show that (λ1) and (λ2) hold. The only
tricky part is to show (λ3) that if (Aj) is a sequence of disjoint approximable sets,

then the union is also approximable. Let ε > 0. Since
∞∑

j=1

µ(Aj) ≤ µ(X) <∞,

there exists J such that
∞∑

j=J+1

µ(Aj) <
1
2
ε. We find Lj compact and Uj open such

that Lj ⊆ Aj ⊆ Uj and µ(Uj \Lj) < 2−1−jε. It now suffices to take L =
⋃J

j=1 Lj

compact and U =
⋃∞

j=1 Uj open. Clearly L ⊆
⋃∞

j=1Aj ⊆ U . Now

∞⋃
j=1

Uj \
J⋃

j=1

Lj ⊆
∞⋃

j=1

(Uj \ Lj) ∪
∞⋃

j=J+1

Aj

since

∞⋃
j=1

Uj ⊆
∞⋃

j=1

(Uj \ Lj) ∪
∞⋃

j=1

Lj ⊆
∞⋃

j=1

(Uj \ Lj) ∪
J⋃

j=1

Lj ∪
∞⋃

j=J+1

Aj.

Therefore

µ(U \ L) ≤
∞∑

j=1

µ(Uj \ Lj) +
∞∑

j=J+1

µ(Aj) <
1
2
ε+ 1

2
ε = ε.

This completes the proof in the compact case.
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Now we tackle the general case where X is LCSC. Let B be a Borel subset of
X with µ(B) <∞. Let ε > 0. Then we can find n so large that µ(B ∩Kc

n) < 1
2
ε.

Applying the result for the compact case, we can also find L compact with L ⊆
B ∩Kn ⊆ B and µ((B ∩Kn) \ L) < 1

2
ε. It follows that µ(B \ L) < ε finishing

the verification of the inner regularity.
For the outer regularity, we first observe that we can approximate Kn from

the outside by open sets. Let ε > 0 then since Kn is approximable in Kn+1 there
exists W open in Kn+1 such that µ(W \ Kn) < ε and Kn ⊆ W . From the
characterization of relatively open subsets, there exists W̃ open in X such that
W̃ ∩ Kn+1 = W . But Kn ⊆ Ωn open ⊆ Kn+1, so that W̃ ∩ Ωn is open in
X and Kn ⊆ W̃ ∩ Ωn = W ∩ Ωn ⊆ W . This completes the claim that Kn is
approximable.
So for ε > 0, we can find Vn open ⊇ Kn with µ(Vn \ Kn) < 2−1−nε. Now

apply the established regularity of B ∩Kn to find a relatively open subset Wn of
Kn such that µ(Wn\(Kn∩B)) < 2−1−nε andWn ⊇ Kn∩B. We can find an open
subset W̃n (open in X) such that W̃n ∩Kn = Wn. Then define Un = W̃n ∩ Vn.
This is open in X and

µ(Un \ (Kn ∩B)) ≤ µ(Wn \ (Kn ∩B)) + µ(Vn \Kn) < 2−nε

Finally, letting U =
⋃∞

n=1 Un gives (µ× ν)(U \B) < ε and B ⊆ U as required.

A detailled analysis of the proof shows the following corollary.

COROLLARY 59 Let X be a LCSC metric space and µ a Borel measure on X
with the property (3.6). For every ε > 0 and every Borel subset B of X , there
exists E closed ⊆ B ⊆ U open, such that µ(U \ E) < ε.

PROPOSITION 60 LetX be a LCSC metric space and µ a regular Borel measure
on X . For 1 ≤ p <∞, Cc(X) is dense in Lp(X,BX , µ).

Proof. We use Proposition 55. It’s enough to show that if A ∈ BX is of finite
measure, then 11A can be approximated in Lp norm by continuous functions of
compact support.
The first step is to see that we can assume without loss of generality that there

exists n such that A ⊆ Kn. We have µ(A ∩ Kn) ↑ µ(A) as n → ∞ since
∞⋃

n=1

A ∩Kn = A. Further, since µ(A) <∞, we can deduce that µ(A ∩Kc
n) is as
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small as we please for n large enough. Since 1 ≤ p <∞, this implies that 11A∩Kc
n

has small Lp norm. The remainder of A, namely A ∩Kn is a subset of Kn.
Now, let ε > 0. Then, using the regularity of µ, we can find a compact subset

C of X and an open subset U of X such that C ⊆ A ⊆ U and µ(U \ C) < ε.
Let V = U ∩ Ωn+1. Then V is open with compact closure and C ⊆ A ⊆ V and
µ(V \ C) < ε. Now, find a continuous function ϕ equal to 1 on C and equal to
0 on X \ V . This is a consequence of the Tietze Extension Theorem, or it can be
done by combining distance functions

ϕ(x) =
distV c(x)

distV c(x) + distC(x)
.

If it’s done this way, its easy to see that ϕ takes values in [0, 1] otherwise, this has
to be arranged. Now |11A − ϕ| ≤ 1 and 11A − ϕ is carried on the set V \ C of
measure less than ε, so we have ‖11A − ϕ‖ < ε1/p. The proof is complete. Note
that the only purpose of introducing the set V is to ensure that ϕ has compact
support.

COROLLARY 61 For 1 ≤ p <∞, translation is continuous on Lp(R,L, ν).

In fact, we define the translation operator Tt on Lp(R,L, ν) for t ∈ R. The
definition is

(Tt(f))(x) = f(x− t).

It is obvious that Tt is an isometric linear operator on Lp for 1 ≤ p ≤ ∞. What we
are asserting here is that if 1 ≤ p <∞, then for a fixed function f ∈ Lp(R,L, ν),
we have that Tt(f) −→ f in Lp norm as t −→ 0 in R.

Proof. Let ε > 0 and f ∈ Lp(R,L, ν). Find ϕ ∈ Cc(R) such that ‖f − ϕ‖p <
ε/3. Then, also ‖Tt(f) − Tt(ϕ)‖p = ‖Tt(f − ϕ)‖p = ‖f − ϕ‖p < ε/3. So, it is
enough to show that for t small, we have ‖Tt(ϕ) − ϕ‖p < ε/3. Since ϕ is both
continuous and compactly supported, it is uniformly continuous. Let the support
of ϕ be contained in [−n, n]. We define

κ =
ε

3(2n+ 2)1/p
> 0.

Now, there exists δ1 > 0 such that |t| < δ1 implies that ‖Tt(ϕ)− ϕ‖∞ < κ. This
is just the uniform continuity of ϕ. Let us set δ = min(1, δ1) > 0 and then the
support of Tt(ϕ)− ϕ is in the interval [−n− 1, n+ 1]. It follows that

‖Tt(ϕ)− ϕ‖p
p ≤ ‖Tt(ϕ)− ϕ‖p

∞(2n+ 2)
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and the desired result follows.

It is of course false that the operator Tt converges to the identity operator in
the operator norm on Lp. This would be something completely different. It is also
false that translation is continuous on L∞. To see this, let f = 11[0,∞[. Then, for
t > 0, we have

Tt(f)− f = 11[t,∞[ − 11[0,∞[ = −11[0,t[

and so ‖Tt(f)− f‖∞ = 1 for all t > 0 no matter how small.

THEOREM 62 (LUSIN’S THEOREM) Let X be a LCSC metric space and µ a
regular Borel measure onX . Let f be a Borel measurable complex-valued function
on X , zero outside a set of finite µ measure. Let ε > 0. Then there is a function
g ∈ Cc(X), such that µ({x; f(x) 6= g(x)}) < ε.

In particular, Lusin’s Theorem holds when X = R and when µ is Lebesgue
measure.

Proof. The first step is to see that we can reduce to the specific case where X
is compact. Let Y = {x;x ∈ X, f(x) 6= 0}. Then Y has finite measure, but it
may not be contained in a compact set. However µ(Y ∩Kn) ↑ µ(Y ) as n→∞.
Since µ(Y ) < ∞, we can deduce that µ(Y ∩Kc

n) < 1
3
ε for n large enough. We

leave the reader to check that the restriction of µ to Kn is still a regular Borel
measure and, since we are assuming the result in the compact case, there is a
continuous function h : Kn −→ C such that µ({x ∈ Kn; f(x) 6= h(x)}) < 1

3
ε.

Now apply the regularity of µ to Kn itself. This guarantees the existence of Ω
open with µ(Ω \ Kn) < 1

3
ε. Furthermore, we can always assume that Ω ⊆ Ωn.

Now extend h to Kn ∪ Ωc by setting h to be zero on Ωc. Then the extended h is
also continuous. We can now extend h to a continuous function g on the whole
of X by the Tietze Extension Theorem. Since Ω ⊆ Ωn ⊂ Kn+1, we see that g has
compact support. It is easy to see that f and g agree except on the union of three
sets each of measure controlled by 1

3
ε and the result follows.

So now we can assume that X is compact. Take the function f , split it into
real and imaginary parts, then nonnegative and nonpositive parts. Without loss
of generality, we can assume that f takes values in [0,∞[. But there exists n so
large that f−1([n,∞[) has small measure, so we can assume that f takes values
in [0, n[. After scaling, we can assume that f takes values in [0, 1[. Now write,
corresponding to the binary expansion of f(x),

f =
∞∑

n=1

2−n11An
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where An are Borel sets. Exercise — show that An ∈ BX using induction on n.
Now approximate each An from inside and out. Kn ⊆ An ⊆ Un, where Kn

is compact, Un is open and µ(Un \Kn) < ε2−n. Find gn continuous, equal to 1
on Kn, 0 off Un and 0 ≤ gn ≤ 1 globally. Then set

g =
∞∑

n=1

2−ngn

a continuous function, because it is a uniform limit of continuous functions (use
theM -test). Finally, f and g disagree only on

⋃∞
n=1(Un \Kn) which has measure

< ε.

LEMMA 63 Let f ∈ L1(X,F , µ) and f ≥ 0. Let ε > 0. Then there exists δ > 0
such that

∫
11Afdµ < ε whenever A ∈ F and µ(A) < δ.

Proof. Suppose not. The there exists ε > 0 such that the desired conclusion
fails for every δ > 0 and therefore for δ = 2−n. So, there is a set An ∈ F
such that

∫
11Anfdµ ≥ ε and µ(An) < 2−n. So, now set Bn =

⋃∞
m=nAm.

Then µ(Bn) < 21−n, the Bn are decreasing with n and
∫

11Bnfdµ ≥ ε since
Bn ⊇ An. But now let B =

⋂∞
n=1Bn. Then µ(B) = 0, 11Bnf ↓ 11Bf and the

function 11B1f is integrable. So, by the Dominated Convergence Theorem, we
have 0 =

∫
11Bfdµ ≥ ε a contradiction.

We can now tackle the duality situation in which we are interested. First we
need a definition.

DEFINITION Let X be a LCSC metric space and g : X −→ C be a continuous
function. Then g tends to zero at infinity if for all ε > 0 there exists a compact
subset K of X such that |g(x)| < ε for all x ∈ X \K.

With a little thought, it is easy to see thatK can always be chosen to be one of

the Kn. (First step in the proof is to write K ⊆
∞⋃

n=1

Ωn.) Another key observation

is that if g is a continuous function tending to zero at infinity, then necessarily g
is bounded. (Take ε = 1 and “collect” K. Then g is bounded on K since g is
continuous and K is compact and g is bounded by 1 off K.
The space of all continuous functions that tend to zero at infinity is denoted

C0(X). We use the uniform norm on this space. It is easy to show that a uniform
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limit of functions in C0(X) is also in C0(X). It follows that C0(X) is a complete
normed space with the uniform norm. Note that if X is in fact compact, then
the “tends to zero” condition is void and so C0(X) = C(X), the space of all
continuous functions on X .
We next consider the space of continuous linear forms on C0(X). These are

continuous linear mappings from C0(X) to the base field (field of scalars). If we
are considering real-valued functions the field of scalars will be R. In the case of
complex valued functions, it will be C. The norm of such a form u is the operator
norm, given by

‖u‖C0(X)′ = sup
g∈C0(X)
‖g‖∞≤1

|u(g)|.

Before proceeding, we mention the following theorem which is outside the
scope of this course.

THEOREM 64 Let X be a LCSC space and u a positive continuous linear form
on C0(X). Positive in this context means

g(x) ≥ 0 for all x ∈ X =⇒ u(g) ≥ 0.

Then there exists a regular Borel measure µ on X such that u(g) =

∫
g(x)dµ(x)

for all g ∈ C0(X).

We will need the following result later.

PROPOSITION 65 LetX be a LCSC space, µ a regular Borel measure onX . Let
f ∈ L1(X,BX , µ). Then we may define a continuous linear form uf on C0(X)
by

uf (g) =

∫
f(x)g(x)dµ(x) for g ∈ C0(X).

Furthermore, ‖uf‖C0(X)′ = ‖f‖1. In particular, if uf = 0, then f = 0 µ-a.e.

Proof. It is clear that uf is a continuous linear form on C0(X) and also that
‖uf‖C0(X)′ ≤ ‖f‖1. The real content of the proposition is that ‖f‖1 ≤ ‖uf‖C0(X)′ .
By Lemma 63, given ε > 0, there exists δ > 0 such that B Borel, µ(B) < δ

implies
∫

B

|f(x)|dµ(x) < ε. Now, according to Lusin’s Theorem, there exists
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g ∈ Cc(X) ⊆ C0(X) such that g(x) = sgn(f(x)) except for x ∈ B, where
B is some Borel set with µ(B) < δ. Now let

ϕ(z) =

{
z if |z| ≤ 1,
sgn(z) if |z| > 1.

Note that ϕ : C −→ C is continuous. We put h = ϕ ◦ g. Then h ∈ Cc(X) ⊆
C0(X) such that h(x) = sgn(f(x)) except for x ∈ B and |h(x)| ≤ 1 for all
x ∈ X . Therefore∣∣∣∣∫ h(x)f(x)dµ(x)

∣∣∣∣ = |uf (h)| ≤ ‖uf‖C0(X)′‖h‖∞ = ‖uf‖C0(X)′ .

On the other hand∣∣∣∣∫ |f |dµ−
∫
hfdµ

∣∣∣∣ =

∣∣∣∣∫ (|f | − hf
)
dµ

∣∣∣∣ =

∣∣∣∣∫
B

(
|f | − hf

)
dµ

∣∣∣∣
since |f | = hf off B,

≤ 2

∫
B

|f |dµ < 2ε

It follows that ∫
|f |dµ ≤ ‖uf‖C0(X)′ + 2ε

and since ε is an arbitrary positive number, the result follows.
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4

Products of Measure Spaces

In this chapter we look at products of two measure spaces. Everything that we do
here generalizes to finite products of measure spaces. First of all, we should look
at measurable spaces. If (X,S) and (Y, T ) are two measurable spaces, we say that
a measurable rectangle is a subset S×T ofX×Y where S ∈ S and T ∈ T . The
σ-field of X × Y generated by the measurable rectangles will be denoted S ⊗ T .
Many authors use the notation S × T for this, but strictly speaking this is not
correct, S × T should really denote the measurable rectangles. It is fairly clear
that the measurable rectangles form a π-system, so one can assert from Dynkin’s
π-λ Theorem that S ⊗ T is the smallest λ-system containing S × T .

EXAMPLE If X = Y = R and S = T = BR, then S ⊗ T = BR2 . To see
that BR2 ⊆ BR ⊗ BR, recall that every open subset of R2 is a countable union of
open rectangles J ×K where J,K are open intervals in R. This shows that every
open subset of R2 lies in the σ-field BR ⊗ BR. The inclusion now follows from
the definition of BR2 . The other direction is easier, but more involved. One starts
from

A,B open =⇒ A×B open =⇒ A×B ∈ BR2 .

Now let A be a fixed open set and show that

{B;B ⊆ R, A×B ∈ BR2} is a σ-field on R containing the open sets.

It follows that
A open , B borel =⇒ A×B ∈ BR2 .

Then, fix B borel and show that

{A;A ⊆ R, A×B ∈ BR2} is a σ-field on R containing the open sets.
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We may deduce that

A,B borel =⇒ A×B ∈ BR2 .

Finally, since BR2 is a σ-field , BR ⊗ BR ⊆ BR2 . 2

4.1 The product σ-field

Much of what we do in this chapter is done with slices. If E ⊆ X × Y , then
we denote Ex = {y; (x, y) ∈ E} ⊆ Y for every x ∈ X . We also denote Ey =
{x; (x, y) ∈ E} ⊆ X for every y ∈ Y .

LEMMA 66 If E ∈ S ⊗ T then Ex ∈ T for all x ∈ X and Ey ∈ S for all
y ∈ Y .

Proof. Fix x ∈ X . Now consider all subsets E of X × Y such that Ex ∈ T . Call
the collection of such subsets A. Then X × Y ∈ A and it is clear that A is closed
under complementation since (Ec)x = (Ex)

c. Also we have(
∞⋃

j=1

Ej

)
x

=
∞⋃

j=1

(Ej)x

and this shows that A is closed under countable unions. Hence A is a σ-field .
Since A clearly contains the measurable rectangles, it also must contain S ⊗ T .
This proves the first assertion. The proof of the second assertion is exactly similar.

It is also possible to slice functions. We use the corresponding notation. If f
is a mapping defined on X × Y , then fx(y) = f(x, y) = f y(x). This definition
extends the idea of slicing sets in the sense that (11A)x = 11Ax and (11A)y = 11Ay .
We can now state the analogue of Lemma 66

LEMMA 67 Let Z be a metric space and suppose that f : X × Y −→ Z is
S ⊗ T -measurable. Then for each fixed x ∈ X , fx is T measurable and for each
fixed y ∈ Y , f y is S measurable.
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Proof. The proof is pretty straightforward. Here Z can be either a metric space
or a measurable space. In the former case, we work with the Borel σ-field on Z.
Let V be a measurable set in Z, then it is easy to see that

(f−1(V ))x = f−1
x (V ).

Since f is measurable, f−1(V ) is in S ⊗ T and the slice (f−1(V ))x is in T by
Lemma 66. So, f−1

x (V ) ∈ T . This just says that fx is measurable. Similarly for
f y.

This is pretty much as far as we can get with measurable spaces. From this
point on, we assume that we have measure spaces (X,S, µ) and (Y, T , ν). In
addition, we assume that these spaces are σ-finite.

LEMMA 68 Let A ∈ S ⊗ T , then x −→ ν(Ax) is S-measurable and y −→
µ(Ay) is T -measurable (as functions taking values in [0,∞]).

Proof. We show the first assertion under the additional assumption that ν(Y ) is
finite. This assumption will be removed later. Let us defineM to be the collection
of subsets A of X × Y such that x −→ ν(Ax) is S-measurable. Obviously a
measurable rectangle is necessarily inM.
Since S ×T is a π-system, by the Dynkin π-λ Theorem it will suffice to show

thatM is a λ-system. First, X × Y ∈M is clear since already X × Y ∈ S × T .
For complementation, we have (Ac)x = (Ax)

c. It follows thatM is closed under
complementation since

ν(Ax) + ν((Ac)x) = ν(Y ).

and ν(Y ) <∞. Finally, if A =
⋃∞

j=1Aj is a disjoint union, then we have

ν(Ax) = ν

(
∞⋃

j=1

(Aj)x

)
=

∞∑
j=1

ν((Aj)x)

and a sum of a series of measurable functions is measurable. This settles the issue
for the case of finite measure spaces. In the σ-finite case, we have measurable
subsets (Yn)∞n=1 of finite measure with union Y . We can assume that this sequence
is increasing. We cut on ν on Yn, that is, we construct new measures νn(T ) =
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ν(Yn ∩ T ) on the measurable space (Y, T ). From the finite measure case using
the fact that νn is a finite measure, we find that

x 7→ ν(((X × Yn) ∩ A)x) = ν(Yn ∩ Ax) = νn(Ax)

is S-measurable. But as n increases, the quantities ν(((X × Yn) ∩ A)x) increase
to x 7→ ν(Ax).

The next step is to show that the order of processing is irrelevant. Let us define
ϕA(x) = ν(Ax) and ψA(y) = µ(Ay).

LEMMA 69 We have ∫
ϕAdµ =

∫
ψAdν. (4.1)

Proof. The proof follows the same line as above. We first assume that we are
working on finite measure spaces. We letM be the collection of subsets A of
X × Y such that (4.1) holds. It is easy to see that (69) holds for A ∈ S × T
and we will again use the Dynkin π-λ Theorem. We need to show that M is
a π-system. Again X × Y ∈ M is clear since already X × Y ∈ S × T . For
complements, we have from the proof of Lemma 68 that

ϕA + ϕAc = ν(Y )11X and ψA + ψAc = µ(X)11Y

and it follows that (4.1) implies
∫
ϕAcdµ =

∫
ψAcdν since the measure spaces

are finite. Now let Aj ∈ M be disjoint with A =
⋃∞

j=1Aj and again from the
proof of Lemma 68 we get

ϕA(x) = ν(Ax) = ν

(
∞⋃

j=1

(Aj)x

)
=

∞∑
j=1

ν((Aj)x) =
∞∑

j=1

ϕAj
(x)

and a similar statement for the ψs, whence∫
ϕAdµ =

∫ ∞∑
j=1

ϕAj
dµ =

∞∑
j=1

∫
ϕAj

dµ

=
∞∑

j=1

∫
ψAj

dν =

∫ ∞∑
j=1

ψAj
dν =

∫
ψAdν.
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This settles the finite measure case.
For the general case, we find increasing measurable subsets Xn and Yn as

before and use∫
ϕAdµ = sup

n

∫
ϕA∩(Xn×Yn)dµ = sup

n

∫
ψA∩(Xn×Yn)dν

∫
ψAdν

using two applications of the Monotone Convergence Theorem.

Now, at long last we can define for A ∈ S ⊗ T

µ× ν(A) =

∫
ϕAdµ =

∫
ψAdν.

PROPOSITION 70 Let (X,S, µ) and (Y, T , ν) be σ-finite measure spaces. Then
the set function µ× ν is a measure on (X × Y,S ⊗ T ).

Proof. It is obvious that µ × ν(∅) = 0. It remains to check the countable addi-
tivity. Let Aj ∈ S ⊗ T be disjoint sets for j = 1, 2, . . . and let A be their union.
Then the sets (Aj)x are also disjoint for each x and their union is Ax. So it follows
that

ϕA(x) = ν(Ax) = ν

(
∞⋃

j=1

(Aj)x

)
=

∞∑
j=1

ν((Aj)x) =
∞∑

j=1

ϕAj
(x).

Integrating with respect to µ and using the Monotone Convergence Theorem we
get

µ× ν(A) =

∫
ϕAdµ =

∫ { ∞∑
j=1

ϕAj

}
dµ =

∞∑
j=1

∫
ϕAj

dµ =
∞∑

j=1

µ× ν(Aj).

Thus µ× ν is a measure.

4.2 The Monotone Class Approach to Product Spaces*

Everything that we have done in the previous section has been with the Dynkin
π-λ Theorem. It seems that this is the easiest way to proceed. Most mathematical
textbooks however approach this material using monotone classes and omit to
mention the following technical lemma which is needed to make the Monotone
Class Theorem work.
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LEMMA 71 Let F be the field generated by S × T . Then everyM ∈ F can be
written as a finite disjoint union of measurable rectangles.

Proof. By Lemma 5, and bearing in mind that the whole space X × Y is itself a
measurable rectangle, there exists N ∈ N such that M = MN and the sequence
(Mn)N

n=1 is defined inductively by one of the following

• Mn = Sn × Tn with Sn ∈ S and Tn ∈ T .

• Mn = Mpn \Mqn with 1 ≤ pn, qn < n.

• Mn = Mpn ∪Mqn with 1 ≤ pn, qn < n.

Obviously, the first option is used at most N times. In the instances where the
first option is not used, define Sn = X , Tn = Y . Now consider for each subset
Z ⊆ {1, 2, 3, . . . , N}, the sets

SZ =
N⋂

n=1

Sn,ε(n), TZ =
N⋂

n=1

Tn,ε(n)

where
ε(n) =

{
1 if n ∈ Z,
0 if n /∈ Z.

and where Sn,1 = Sn, Sn,0 = X \ Sn, Tn,1 = Tn and Tn,0 = Y \ Tn. A simple
induction proof now shows that eachMn is a union of some subcollection of the
4N disjoint sets SZ × TW as Z andW run over {1, 2, 3, . . . , N}.

It follows from the Monotone Class Theorem that the smallest monotone class
containing F is S⊗T and the results in this section can be proved using this fact.
We leave the details to the reader.

4.3 Fubini’s Theorem

In this section we look at the product integral and compare it with iterated inte-
grals. Let’s start by setting up the iterated integrals. We assume throughout this
section that (X,S, µ) and (Y, T , ν) are σ-finite measure spaces.
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LEMMA 72 Let f : X × Y −→ [0,∞] be S ⊗ T measurable. Then define

ϕ(x) =

∫
f(x, y)dν(y).

Then ϕ is S measurable on X . Obviously there is an analogous statement if we
integrate first over x.

Proof. Let A ∈ S ⊗ T and f = 11A. Then the result follows from Lemma 68. It
therefore also follows for S⊗T measurable nonnegative simple functions. But we
can find a sequence of such functions (fn) increasing pointwise to f . Let ϕn(x) =∫
fn(x, y)dν(y). Then ϕn is S measurable and by the Monotone Convergence

Theorem, ϕ ↑ ϕ pointwise on X . It follows that ϕ is S measurable.

Let us define also ψ(y) =

∫
f(x, y)dµ(x). Then we have

THEOREM 73 (TONELLI’S THEOREM) Let f : X × Y −→ [0,∞] be S ⊗ T
measurable. Then∫

ϕ(x)dµ(x) =

∫
f(x, y)d(µ× ν)(x, y) =

∫
ψ(y)dν(y).

Proof. Same proof as above. If A ∈ S ⊗ T and f = 11A, then the result follows
from Lemma 69. It therefore also follows for S⊗T measurable nonnegative simple
functions. Now take a sequence of such functions (fn) increasing pointwise to f
and pass to the limit using the Monotone Convergence Theorem 5 times!

Notice that the σ-finiteness is used to define the product measure µ × ν. But
we can ask whether ∫

ϕ(x)dµ(x) =

∫
ψ(y)dν(y).

might hold in general, without the σ-finiteness assumption. The answer is that it
does not. Let X = Y = [0, 1]. Let S be the Lebesgue field of [0, 1]. Let T be the
collection of all subsets of [0, 1]. Let µ be Lebesgue measure on [0, 1] and let ν
be the counting measure. Finally, let ∆ be the diagonal set. It’s easy to prove that
∆ ∈ S ⊗ T . Now ∫ {∫

11∆(x, y)dν(y)

}
dµ(x) = 1
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because each inner integral evaluates to 1. On the other hand∫ {∫
11∆(x, y)dµ(x)

}
dν(y) = 0

because each inner integral evaluates to 0. This does not contradict Tonelli’s The-
orem because the counting measure is not σ-finite on an uncountable space such
as [0, 1].
A special case of Tonelli’s Theorem is

∞∑
j=1

∞∑
k=1

aj,k =
∞∑

k=1

∞∑
j=1

aj,k

for aj,k ≥ 0.
So much for the unsigned case. We know already from iterated infinite sums

that for signed series some additional hypotheses are going to be needed if the
order of integration will not matter. See §2.8 in the notes for MATH 255.
Let f : X × Y −→ R be S ⊗ T measurable. Then∫∫

|f(x, y)|dν(y)dµ(x) =

∫
|f |d(µ× ν) =

∫∫
|f(x, y)|dµ(x)dν(y). (4.2)

THEOREM 74 (FUBINI’S THEOREM) If any one of the three quantities in (4.2)
is finite, then∫∫

f(x, y)dν(y)dµ(x) =

∫
fd(µ× ν) =

∫∫
f(x, y)dµ(x)dν(y). (4.3)

The precise meaning of the iterated integrals will become clear in the proof.

Proof. By symmetry, it suffices to establish the left-hand equality in (4.3). We
write f = f+ − f− in the usual way and define ϕ±(x) =

∫
f±(x, y)dν(y). We

have∫
ϕ±(x)dµ(x) =

∫∫
f±(x, y)dν(y)dµ(x) ≤

∫∫
|f(x, y)|dν(y)dµ(x) <∞.

This means that for µ-almost all x, both ϕ+(x) and ϕ−(x) are finite. So, for µ-
almost all x, the integral

∫
f(x, y)dν(y) exists and equals ϕ+(x)−ϕ−(x). So, let

us define

ϕ(x) =

{∫
f(x, y)dν(y) if this integral exists

0 otherwise
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So, ϕ(x) = ϕ+(x)−ϕ−(x) for µ-almost all x and indeed |ϕ(x)| ≤ ϕ+(x)+ϕ−(x)
for all x. So

∫
|ϕ(x)|dµ(x) ≤ 2

∫∫
|f(x, y)|dν(y)dµ(x) < ∞. This means that∫

ϕ(x)dµ(x) is defined and∫
ϕ(x)dµ(x) =

∫
ϕ+(x)dµ(x)−

∫
ϕ−(x)dµ(x)

=

∫∫
f+(x, y)dν(y)dµ(x)−

∫∫
f−(x, y)dν(y)dµ(x)

=

∫
f+(x, y)d(µ× ν)(x, y)−

∫
f−(x, y)d(µ× ν)(x, y)

=

∫
f(x, y)d(µ× ν)(x, y)

as required.

4.4 Estimates on Homogenous kernels*

As a demonstration of duality at work, we will prove the following result for the
integral operator

Tf(x) =

∫ ∞

0

K(x, y)f(y)dy

where x runs over ]0,∞[. We assume that the kernel function K is nonnegative
and satisfies the homogeneity condition

K(tx, ty) = t−1K(x, y).

Wewill also need to know thatK is Lebesgue measurable on the positive quadrant
and that it is sufficiently regular for us invoke some change of variable arguments
from the Riemann Theory. We further define

Cp =

∫ ∞

0

t
− 1

p′K(t, 1)dt =

∫ ∞

0

t
− 1

p′K(1, t−1)t−1dt

=

∫ ∞

0

s
1
p′K(1, s)s−1ds

=

∫ ∞

0

s−
1
pK(1, s)ds
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and we will assume that Cp is finite.
Now comes a remarkable idea. For f and g nonnegative functions we have

using Hölder’s Inequality and Tonelli’s Theorem∫ ∞

0

∫ ∞

0

K(x, y)g(x)f(y)dxdy

=

∫ ∞

0

∫ ∞

0

(
x

y

)− 1
pp′

K(x, y)
1
pf(y)

(y
x

)− 1
pp′
K(x, y)

1
p′ g(x)dxdy

≤
{∫ ∞

0

∫ ∞

0

(
x

y

)− 1
p′

K(x, y)f(y)pdxdy
} 1

p
{∫ ∞

0

∫ ∞

0

(y
x

)− 1
p
K(x, y)g(x)p′dxdy

} 1
p′

We now have ∫ ∞

0

∫ ∞

0

(
x

y

)− 1
p′

K(x, y)f(y)pdxdy

=

∫ ∞

y=0

{∫ ∞

x=0

K

(
x

y
, 1

)(
x

y

)− 1
p′

y−1dx

}
f(y)pdy

= Cp‖f‖p
p

and similarly ∫ ∞

0

∫ ∞

0

(y
x

)− 1
p
K(x, y)g(x)p′dxdy = Cp‖g‖p′

p′

resulting in ∫ ∞

0

∫ ∞

0

K(x, y)g(x)f(y)dxdy ≤ Cp‖f‖p‖g‖p′

It follows from this by duality that ‖Tf‖p ≤ Cp‖f‖p for f nonnegative and the
same inequality for signed or complex f then follows.
Some specific cases of interest are

• Tf(x) = x−1
∫ x

0
f(y)dy, Cp =

p

p− 1
.

• Tf(x) =
∫∞

x
y−1f(y)dy, Cp = p.

• Tf(x) =
∫∞

0
(x+ y)−1f(y)dy, Cp = πcosec

(
π

p

)
.
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4.5 Uniqueness of Translation Invariant Measures

In this section, we show the uniqueness of translation invariant measures.

PROPOSITION 75 Let µ and ν be nonzero translation invariant Borel measures
onRd which assign finite values to compact sets. Then µ and ν are scalar multiples
of one another.

Proof. Let C be a Borel set with 0 < µ(C). Write Rd as a union of count-
ably many cubes Q of side one. Then choosing B = C ∩ Q for suitable Q,
we can assume that 0 < µ(B) < ∞ and ν(B) < ∞. Let g = 11B and let
t =

∫
g(−x)dν(x). Then we have for f = 11A with A Borel,

µ(B)

∫
f(x)dν(x) =

∫∫
g(y)f(u)dν(u)dµ(y)

=

∫∫
f(x+ y)g(y)dν(x)dµ(y)

by changing variables u = x+ y in the inner integral

=

∫∫
f(x+ y)g(y)dµ(y)dν(x)

by Tonelli’s Theorem

=

∫∫
f(u)g(u− x)dµ(u)dν(x)

by changing variables u = x+ y in the inner integral

=

∫∫
f(u)g(u− x)dν(x)dµ(u)

again by Tonelli’s Theorem

=

∫∫
f(u)g(−y)dν(y)dµ(u)

by changing variables y = x− u in the inner integral

= t

∫
f(u)dµ(u)

Thus µ(B)ν(A) = tµ(A). Putting A = B gives ν(B) = t, so that t < ∞. If
t = 0, then ν vanishes identically which is not allowed. Hence 0 < t < ∞ and
each measure is a positive multiple of the other.
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4.6 Infinite products of probability spaces**

Results for the product of two measure spaces generalize without problem to fi-
nite products. Infinite products of measure spaces are more problematic in gen-
eral, but are important in probability theory because they are needed to set up
sequences of independent trials. We develop the basics of this theory here. Let
(Ωk,Mk, µk) be a probability space for k ∈ N. We let Ω =

∏∞
k=1 Ωk the full

infinite cartesian product of the Ωk. An element of Ω is then a sequence (ωk)
∞
k=1

with ωk ∈ Ωk for every k. The next concept we need is that of a cylinder set at
level q which is a set C = Q ×

∏∞
k=q+1 Ωk where Q ∈ M1 ⊗M2 ⊗ · · · ⊗Mq.

The family of cylinder sets at level q is a σ-field Cq in some sense isomorphic to
M1⊗M2⊗· · ·⊗Mq (although the two gadgets live on different sets). The family
C =

⋃∞
q=1 Cq is the collection of all cylinder sets and is a field onΩ, but usually not

a σ-field. By patching the probabilities together, we can define a finitely additive
set function µ on C

µ

(
Q×

∞∏
k=q+1

Ωk

)
= µ1 × · · · × µq(Q).

First of all, we need to check that this is well-defined, i.e. we would get the same
answer if Q×

∏∞
k=q+1 Ωk were considered as a cylinder set at a level higher than

q. This works because we are dealing with probability spaces. To check the finite
additivity we need only consider finitely many cylinder sets and they can all be
defined as cylinder sets at a fixed level, say q̃. The corresponding values of µ are
effectively given by the measure µ1 × · · · × µq̃.

THEOREM 76 The finitely additive set function µ is in fact a premeasure on C
and therefore extends to a measure on the σ-field generated by C.

Sketch proof. It is not too difficult to see that given that µ is finitely additive on
C, the following condition guarantees that µ is in fact countably additive on C.
Let Ck ∈ C be decreasing and such that

⋂∞
k=1Ck = ∅, then limk→∞ µ(Ck) = 0.

Obviously, if the levels of the sets Ck are bounded, then the result is clear, so
we can assume that the levels are unbounded. Therefore, after making some
adjustments, we see that it suffices to show the following:

Let Ck ∈ Ck be decreasing for k ∈ N with
⋂∞

k=1Ck = ∅, then
limk→∞ µ(Ck) = 0.
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We prove this assertion by contradiction. So let t > 0 be such that µ(Ck) ≥ t for
all k. We look at the distributions on the first coordinate

f1,k(ω1) =

∫
11Ck

(ω1, . . . , ωk)dµ2(ω2)dµ3(ω3) · · · dµk(ωk)

We have
∫
f1,k(ω1)dµ1(ω1) = µ(Ck) ≥ t. Since the f1,k are clearly decreasing

(since the Ck are), we get by dominated convergence∫
∞
inf
k=1

f1,k(ω1)dµ1(ω1) ≥ t

It now follows that there exists ω̃1 such that inf∞k=1 f1,k(ω̃1) ≥ t. In particular,
11C1(ω̃1) = f1,1(ω̃1) ≥ t > 0 and since C1 is known to be a cylinder set at level 1,
this means that

(ω̃1, ω2, ω3, . . .) ∈ C1

whatever the values of ω2 ∈ Ω2, ω3 ∈ Ω3, . . . The next step is to slice all these sets
on ω̃1. Thus we arrive at

Ck(ω̃1) = {(ω2, ω3, . . .); (ω̃1, ω2, ω3, . . .) ∈ Ck} ⊆
∞∏

k=2

Ωk

for k = 2, 3, . . .. We proceed to compute the distributions on the second coordi-
nate

f2,k(ω2) =

∫
11Ck(ω̃1)(ω2, ω3, . . . , ωk)dµ3(ω3)dµ4(ω4) · · · dµk(ωk)

and we observe that∫
Ω2

f2,k(ω2)dµ2(ω2) =

∫
11Ck(ω̃1)(ω2, ω3, . . . , ωk)dµ2(ω2)dµ3(ω3) · · · dµk(ωk)

= f1,k(ω̃1) ≥ t

Since the f2,k are decreasing, we get again by dominated convergence that∫
∞
inf
k=2

f2,k(ω2)dµ2(ω2) ≥ t

It again follows that there exists ω̃2 such that inf∞k=2 f2,k(ω̃2) ≥ t. In particular,
11C2(ω̃1)(ω̃2) = f2,2(ω̃2) ≥ t > 0 and we see that the point ω̃2 ∈ Ω2 has the
property that

(ω̃2, ω3, ω4 . . .) ∈ C2(ω̃1), or equivalently (ω̃1, ω̃2, ω3, ω4 . . .) ∈ C2
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whatever the values of ω3 ∈ Ω3, ω4 ∈ Ω4, . . .We continue in this way ad infinitum
(using the axiom of choice to make the sequence of choices that are necessary) and
we find ultimately that

(ω̃1, ω̃2, ω̃3, ω̃4 . . .) ∈
∞⋂

k=1

Ck.

But this is a contradiction, because we are assuming that
⋂∞

k=1Ck = ∅! Thus µ
is a premeasure on C, and an application of Carathéodory’s Extension Theorem
finishes the proof.
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5

Hilbert Spaces

A Hilbert space is a complete inner product space. The key example of a Hilbert
space is L2(X,M, µ) where (X,M, µ) is a measure space. It’s worth observing
that you need a reasonable measure space for L2(X,M, µ) to be a useful concept.
If for example µ takes only the value 0 and∞, then you will have a great scarcity
of L2 functions.
Hilbert spaces are important because they have almost magical properties and

are usually very easy to handle. This was observed in particular by John von Neu-
mann who devised a scheme for developing some of the harder measure theory
theorems using them. They are also extremely important in Physics, where they
form the theoretical basis for Quantum Mechanics. John von Neumann also had
a hand in this development.

PROPOSITION 77 Let H be a Hilbert space (real or complex) and let C ⊆ H
be a closed convex subset. Let x ∈ H. Then there is a unique nearest point y of
C to x.

Proof. First of all, if x ∈ C, then we clearly have that y = x is the unique nearest
point of C to x. So, we can assume that x /∈ C. Then, since C is closed, we have
distC(x) > 0. We can find a sequence (yn) with yn ∈ C and d(yn, x) ↓ distC(x).
Let zn = yn − x. We use the parallelogram identity

‖zp − zq‖2 = 2‖zp‖2 + 2‖zq‖2 − 4‖1
2
(zp + zq)‖2. (5.1)

This identity is valid in inner product spaces, but usually not for other norms.
Now, given ε > 0 there exists N such that n ≥ N implies

‖zn‖2 = ‖yn − x‖2 ≤ (distC(yn))2 + ε.
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Also, since C is convex 1
2
(yp +yq) ∈ C and so ‖1

2
(zp +zq)‖ = ‖1

2
(yp +yq)−x‖ ≥

distC(x). Putting these facts in (5.1) we get

‖yp − yq‖2 = ‖zp − zq‖2

= 2‖zp‖2 + 2‖zq‖2 − 4‖1
2
(zp + zq)‖2,

≤ 2((distC(yn))2 + ε) + 2((distC(yn))2 + ε)− 4(distC(yn))2,

= 4ε.

for p, q ≥ N . So, (yn) is a Cauchy sequence. Since H is complete and C is
closed, the sequence must converge to some element y ∈ C. By continuity of the
distance function we get d(y, x) = distC(x). That settles the existence. Now for
the uniqueness. This is also a consequence of the parallelogram inequality. Let y1

and y2 both be nearest points of C to X . Then let zj = yj − x for j = 1, 2. Then

0 ≤ ‖z1 − z2‖2 = 2‖z1‖2 + 2‖z2‖2 − 4‖1
2
(z1 + z2)‖2 ≤ 0.

by much the same reasoning as above. It follows that y1 = y2.

In fact, this defines a mapping PC : H −→ C called the metric projection
onto C. We do not need the Lemma below, but it is an interesting fact.

LEMMA 78 Let H be a Hilbert space (real or complex) and let C ⊆ H be a
closed convex subset. Then PC satisfies ‖PC(x1)− PC(x2)‖ ≤ ‖x1 − x2‖ for all
x1, x2 ∈ H.

Proof. This result and the previous result are actually results about real Hilbert
spaces. Every complex Hilbert space is actually also a real Hilbert space. This is
achieved by

• Forgetting how to scalar multiply vectors by non-real complex numbers.

• Replacing the inner product with its real part and verifying that this is now
a “real” inner product.

Let us denote yj = PC(xj) for j = 1, 2. Now if y1 = y2 there is nothing to prove.
Otherwise, we see from the convexity of C that (1− t)y1 + ty2 ∈ C for 0 ≤ t ≤ 1.
Thus we must have since y1 is the nearest point of C to x1 that

‖x1 −
(
(1− t)y1 + ty2

)
‖2 ≥ ‖x1 − y1‖2
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for 0 ≤ t ≤ 1. Expanding the norms in terms of the inner product and consider-
ing small positive values of t gives

〈(x1 − y1), (y2 − y1)〉 ≤ 0.

This inequality expresses the fact that the angle subtended at y1 between x1 and
y2 is obtuse. Similarly we have

〈(x2 − y2), (y1 − y2)〉 ≤ 0.

Now, we get

〈(x1 − x2), (y1 − y2)〉 = 〈(x1 − y1), (y1 − y2)〉+ 〈(y1 − y2), (y1 − y2)〉

+ 〈(y2 − x2), (y1 − y2)〉

≥ 〈(y1 − y2), (y1 − y2)〉

= ‖y1 − y2‖2.

Next we apply the Cauchy-Schwarz inequality

‖y1 − y2‖2 ≤ 〈(x1 − x2), (y1 − y2)〉 ≤ ‖x1 − x2‖‖y1 − y2‖.

Finally, since ‖y1 − y2‖ > 0 we can divide out to get ‖y1 − y2‖ ≤ ‖x1 − x2‖ as
required.

5.1 Orthogonal Projections

Let H be a Hilbert space either real or complex. Let S ⊆ H. Then we define

S⊥ = {x;x ∈ H, 〈s, x〉 = 0, for all s ∈ S}.

It is clear that S⊥ is an intersection of closed linear subspaces of H and therefore
it is a closed linear subspace of H.

THEOREM 79 Let M be a closed linear subspace of H. Then we have H =
M ⊕M⊥. Furthermore. let P and Q be the linear projection operators onto M
andM⊥ associated with the direct sum. Then P and Q are norm decreasing and
in fact, more generally we have ‖x‖2 = ‖P (x)‖2 + ‖Q(x)‖2 for all x ∈ H.
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Proof. Let x ∈ H. Now, since M is a closed linear subspace, it is a fortiori a
closed convex set. Therefore, there exists a unique nearest point y ofM to x. So,
for every u ∈M and scalar t we have

‖x− (y − tu)‖2 ≥ ‖x− y‖2.

So,
<t〈x− y, u〉+ |t|2‖u‖2 ≥ 0.

Dividing by |t| and letting t tend to zero from all possible directions yields that
〈x − y, u〉 = 0. So x − y ∈ M⊥. This shows that H = M +M⊥. It remains to
show that the sum is direct. So, let x ∈ M ∩M⊥ and then ‖x‖2 = 〈x, x〉 = 0.
This shows that M ∩ M⊥ = {0H}. The sum is direct. The equality ‖x‖2 =
‖P (x)‖2 + ‖Q(x)‖2 is just Pythagoras’ Theorem.

We denote S⊥⊥ = (S⊥)⊥. This set has a neat characterization.

LEMMA 80 Let H be a Hilbert space either real or complex. Let S ⊆ H. Let
M be the closure of the linear span of S. Then S⊥⊥ = M .

Proof. We start by proving the result in case that S is already a closed linear
subspace, i.e. M = S. Then clearly we have M ⊆ M⊥⊥. To establish the
opposite inclusion, let x ∈M⊥⊥ and write x = y+ z where y ∈M and z ∈M⊥,
according to the direct sum H = M ⊕M⊥. Then

‖z‖2 = 〈z, z〉 = 〈x− y, z〉 = 〈x, z〉 − 〈y, z〉 = 0− 0 = 0

The term 〈x, z〉 vanishes since x ∈ M⊥⊥ and z ∈ M⊥ and 〈y, z〉 vanishes since
y ∈M and z ∈M⊥. Hence z = 0 and it follows that x = y ∈M .
Now for the general case we assume only that S is an arbitrary subset of H. It

is clear that S ⊆M , whence S⊥ ⊇M⊥, whence S⊥⊥ ⊆M⊥⊥ = M . We need to
establish the inclusionM ⊆ S⊥⊥. It is evident that S ⊆ S⊥⊥, and since S⊥⊥ is a
closed linear subspace of H it must contain the smallest closed linear subspace of
H containing S which is by definitionM .

5.2 Conditional Expectation Operators

As an example of orthogonal projections, we can look at conditional expectation
operators. These arise when we have two nested σ-fields on the same set. So, let
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(X,F , µ) be a measure space and suppose that G ⊆ F is also a σ-field. Then,
(X,G, µ|G) is an equally good measure space. It is easy to see that L2(X,G, µ|G)
is a closed linear subspace of L2(X,F , µ) because L2(X,G, µ|G) is complete and
whenever a complete space is embedded isometrically in a larger metric space, it
necessarily occurs as a closed subset. It should be pointed out, that trivialities
can arise even when we might not expect them. For example, let X = R2, F
the Borel σ-field of R2 and G the sets which depend only on the first coordinate.
Then unfortunately L2(X,G, µ|G) consists just of the zero vector.
The situation is very significant in probability theory, where the σ-fields F

and G encode which events are available to different “observers” or to the same
observer at different times”. For example G might encode outcomes based on the
first 2 rolls of the dice, while F might encode outcomes based on the first 4 rolls.
A useful example is the case where X = [0, 1[, F is the borel σ-field of X .

Then partition [0, 1[ into n intervals and let G be the σ-field generated by these
intervals. We take µ the linear measure on the interval. In this case EG will turn
out to be the mapping which replaces a function with its average value on each of
the given intervals.
Well, the orthogonal projection operator is denoted EG . We view it as a map

EG : L2(X,F , µ) −→ L2(X,G, µ) ⊆ L2(X,F , µ).

We usually understand EG in terms of its properties. These are

1. EG(f) ∈ L2(X,G, µ).

2.
∫

(f − EG(f))gdµ = 0 whenever g ∈ L2(X,G, µ).

The probabilists will write this last condition as E(f−EG(f))g = 0 whenever
g ∈ L2(X,G, µ), where E is the scalar-valued expectation.
To get much further we will need the additional assumption that (X,G, µ)

is σ-finite. So we are assuming the existence of an increasing sequence of sets
Gn ∈ G with X =

⋃∞
n=1Gn and µ(Gn) < ∞. As an exercise, the reader should

check that EG(11Gf) = 11GEG(f) for G ∈ G. We do this by taking the inner
product against every function in L2(X,G, µ) and using property (ii) above.
Next we claim that if f ∈ L2(X,F , µ) with |f | ≤ 1, then |EG(f)| ≤ 1. To see

this, let G ∈ G with µ(G) <∞, t > 1 and g = 11G sgn(EGf)11{|EGf |>t}. Then we
have

tµ
(
{|EGf | > t} ∩G

)
=

∫
t11{|EGf |>t}∩Gdµ
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≤
∫
|EGf |11{|EGf |>t}∩Gdµ

since t < |EGf | on the range of integration,

=

∫
(EGf) sgn(EGf)11{|EGf |>t}11Gdµ

=

∫
(EGf) gdµ

by definition of g,

=

∫
f gdµ

by definition of EGf and since g ∈ L2(X,G, µ),

≤
∫
|g|dµ = µ

(
{|EGf | > t} ∩G

)
.

But since µ
(
{|EGf | > t} ∩ G

)
is finite, and t > 1, the only way out is that

µ
(
{|EGf | > t}∩G

)
= 0. Since this is true for all t > 1 and all G ∈ G with finite

measure, it follows that |EGf | ≤ 1 µ-a.e. using the σ-finiteness of G.
This gives us a way of extending the definition of conditional expectation to

L∞ functions. We define for f ∈ L∞(X,F , µ),

EGf(x) = EG11Gnf(x) ∀x ∈ Gn

The apparent dependence of this definition on n is illusory because for x ∈ Gn

EG11Gn+1f(x) = (11Gn · EG11Gn+1f)(x) = EG11Gn11Gn+1f(x) = EG11Gnf(x)

and indeed, as an exercise, the reader can show that the definition is independent
of the choice of sequenceGn. The bottom line here is thatEG is a norm decreasing
map

EG : L∞(X,F , µ) −→ L∞(X,G, µ).

Now let 1 ≤ p < ∞ and let f ∈ V where V is the space of bounded F-
measurable simple functions carried by a subset G ∈ G with µ(G) < ∞. In this
case we will have that EGf is a bounded G measurable function still carried by
the subset G. We will estimate the Lp norm of EGf .∫

|EGf |pdµ =

∫
(EGf)gdµ
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where g = |EGf |p−1sgn(EGf),

=

∫
fgdµ

since g is G-measurable and all functions are in the appropriate L2 space,

≤ ‖f‖p‖g‖p′ ,

by Hölder’s Inequality. On the other hand (at least in case p > 1)

‖g‖p′

p′ =

∫
|EGf |

p
p−1

(p−1)dµ = ‖EGf‖p
p,

leading to ‖g‖p′ ≤ ‖EGf‖p−1
p . So, combining these inequalities yields

‖EGf‖p
p ≤ ‖f‖p · ‖EGf‖p−1

p (5.2)

We now obtain ‖EGf‖p ≤ ‖f‖p because this is obvious if ‖EGf‖p = 0 and if not,
then we can divide out in (5.2) because we know that ‖EGf‖p <∞.
The inequality ‖EGf‖1 ≤ ‖f‖1 corresponding to p = 1 also holds and is even

simpler to establish since we obtain directly∫
|EGf |dµ =

∫
fgdµ ≤ ‖f‖1‖g‖∞ = ‖f‖1.

We have obtained that EG is a linear mapping from V to Lp(X,F , µ), norm
decreasing for the Lp norm. Since V is dense in Lp(X,F , µ) and Lp(X,F , µ)
is complete, we can extend this mapping to a norm decreasing linear mapping
EG : Lp(X,F , µ) −→ Lp(X,F , µ) by uniform continuity. We naturally use
the same notation for this mapping, although strictly speaking it is a different
mapping. This gives a nice application of “abstract nonsense” ideas to a really
quite practical situation. You can check that the extended mapping satisfies the
expected conditions which are valid even in the case p = ∞ handled earlier.

• EG(f) ∈ Lp(X,G, µ) provided f ∈ Lp(X,F , µ) and indeed we have
‖EGf‖p ≤ ‖f‖p.

•
∫

(f − EG(f))gdµ = 0 whenever g ∈ Lp′(X,G, µ).

This is a typical example of the von Neumann program at work by using
Hilbert space methods as a foot in the door to get results that have no obvious
connection to Hilbert space.
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5.3 Linear Forms on Hilbert Space

THEOREM 81 Let H be a Hilbert space and let L be a continuous linear map
from H to the base field. Then there exists z ∈ H such that L(x) = 〈z, x〉.

If L ≡ 0 then we just take z = 0H . So, we can assume that ker(L) is a
closed proper linear subspace of H. Then ker(L)⊥ cannot be the zero subspace,
because together with ker(L), ker(L)⊥ must span the whole of H. So, choose
from ker(L)⊥ a unit vector u. Now let x ∈ H and consider y = L(x)u− L(u)x.
Then of course L(y) = L(x)L(u) − L(u)L(x) = 0 so that y ∈ ker(L). So, we
must have

0 = 〈u, y〉 = 〈u, L(x)u−L(u)x〉 = L(x)〈u, u〉−L(u)〈u, x〉 = L(x)−〈L(u)u, x〉.

Take z = L(u)u and we are done.

5.4 Orthonormal Sets

An orthonormal set is usually an indexed set (eα)α∈I where I is the indexing set.
The key property that it has to satisfy is

〈eα, eβ〉 =

{
1 if α = β,
0 if α 6= β.

Given a finite linearly independent set in an inner product space, one usually
constructs an orthonormal set by using the Gram–Schmidt Orthogonalization
Process.

THEOREM 82 Let (eα)α∈I be an orthonormal set. Then

(i) If (cα) ∈ `2, then the series
∑

α∈I cαeα is a norm convergent unconditional

sum and furthermore ‖
∑

α∈I cαeα‖H =
{∑

α∈I |cα|2
}1/2

.

(ii) If x ∈ H, then
∑

α∈I |〈eα, x〉|2 ≤ ‖x‖2.

(iii) IfM is the closed linear span (i.e. the closure of the linear span) of (eα)α∈I ,
then we have

P (x) =
∑
α∈I

〈eα, x〉eα

where P is orthogonal projection onM .
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Proof. We are using the notation `2 to stand for L2(I,PI , γ) where γ is the
counting measure on I . Usually, I will be countable and that would make things
a bit simpler. However, we make the effort to understand the situation in case that
I is uncountable.
We can treat

∑
α∈I |cα|2 as

∫
|cα|2dγ(α) and as the integral of a nonnega-

tive measurable function it is defined as a supremum of integrals of dominated
measurable simple functions carried on sets of finite measure. For the counting
measure, this means finite sets, so it is not difficult to see that∑

α∈I

|cα|2 = sup
F finite

F⊂I

∑
α∈F

|cα|2.

Another important point is that if
∑

α∈I |cα|2 <∞ then cα = 0 for all but count-
ably many α. To see this, we let t > 0 and invoke the Tchebychev Inequality

γ({α; |cα| > t}) ≤ t−2
∑
α∈I

|cα|2.

In particular, {α; |cα| > t} is a finite set. Now take tk ↓ 0, then

{α; |cα| > 0} =
∞⋃

k=1

{α; |cα| > tk}

a countable union of countable sets and hence countable.
The sum

∑
α∈I cαeα on the other hand is an uncountable Hilbert space val-

ued sum. It cannot be interpreted as an integral over the counting measure, be-
cause we do not have a vector-valued integration theory (outside the scope of this
course). It can be interpreted as an unconditional sum. By the statement

s =
∑
α∈I

vα

in the unconditional sense, we mean that for all ε > 0, there exists F finite with
F ⊆ I such that ∥∥∥∥∥s−∑

α∈G

vα

∥∥∥∥∥ < ε

for every finite set G with F ⊆ G ⊆ I .
The partial sum of the series

∑
α∈I cαeα corresponding to a finite subset F of

I is given by

sF =
∑
α∈F

cαeα.
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We get

‖sF‖2 = 〈sF , sF 〉 =

〈∑
β∈F

cβeβ,
∑
α∈F

cαeα

〉

=
∑
β∈F

∑
α∈F

cβcα〈eβ, eα〉

=
∑
α∈F

cαcα

=
∑
α∈F

|cα|2 (5.3)

Now, we are assuming that
∑

α∈I |cα|2 <∞, so all but countably many of the
cα are zero. Let us enumerate {α; cα 6= 0} as (αn)∞n=1. If only finitely many cα are
nonzero, then the result is straightforward. So build a sequence of partial sums
sN =

∑N
n=1 cαneαn . It is easy to see that this is a Cauchy sequence in H because

forM > N we have by (5.3) that

‖sM − sN‖2 =
M∑

n=N+1

|cαn|2

So, since H is complete, we have that sn −→ s as n −→ ∞ for some s ∈ H.
Now, let ε > 0. Choose N so large that two things happen

• ‖s− sn‖ < ε for n ≥ N .

•
∑∞

n=N+1 |cαn|2 < ε2.

Take F = {αn, n = 1, 2, . . . , N}. Then, ifG is a finite subset of I withG ⊇ F
we have

‖s− sG‖ ≤ ‖s− sF‖+ ‖sF − sG‖ < ε+ ε = 2ε

since

‖sF − sG‖2 ≤
∞∑

n=N+1

|cαn|2 < ε2

and
‖s− sF‖ = ‖s− sN‖ < ε.
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This establishes the unconditional convergence. For a discussion of unconditional
convergence, see the notes for MATH 255. Observe however that the result stated
there that an unconditionally convergent series of real numbers is necessarily ab-
solutely convergent, does not generalize to series of vectors in a complete normed
vector space.
Since the norm is continuous, we have

‖s‖2 = lim sup
n→∞

‖sn‖2 = lim sup
n→∞

n∑
j=1

|cαj
|2 =

∑
α∈I

|cα|2.

This completes the proof of (i).
Now for the second part. It is enough to show that

∑
α∈F |〈eα, x〉|2 ≤ ‖x‖2

for every finite subset F of I . LetMF be the linear span of (eα)α∈F . ThenMF is
closed. This is because the mapping (cα)α∈F 7→

∑
α∈F cαeα is an isometric linear

mapping from Cn onto MF . Since Cn is complete, so is MF and therefore MF

must be closed in H1. Then we have〈
x−

∑
α∈F

〈eα, x〉eα, eβ

〉
= 〈x, eβ〉 −

∑
α∈F

〈eα, x〉〈eα, eβ〉 = 0.

So x−
∑

α∈F 〈eα, x〉eα is inM⊥
F . So, we can write

x =

∈MF︷ ︸︸ ︷(∑
α∈F

〈eα, x〉eα

)
+

∈M⊥
F︷ ︸︸ ︷(

x−
∑
α∈F

〈eα, x〉eα

)

Since there is only one way of splitting a vector up in a direct sum decomposition,
it must be that PF (x) =

∑
α∈F 〈eα, x〉eα where PF is orthogonal projection on

MF . Since PF is norm decreasing, it follows that ‖x‖ ≥ ‖
∑

α∈F 〈eα, x〉eα‖.
Squaring this inequality and using the orthogonality once again, gives the desired
result.

‖x‖2 ≥ ‖
∑
α∈F

〈eα, x〉eα‖2 =
∑
α∈F

∑
β∈F

〈eα, x〉〈eβ, x〉〈eα, eβ〉 =
∑
α∈F

|〈eα, x〉|2.

1As an exercise, show that any finite dimensional linear subspace of a normed linear space is
necessarily closed.
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Finally, in the third part, we see that parts (i) and (ii) guarantee the conver-
gence of the series

∑
α∈I〈eα, x〉eα in H norm. It is a norm limit of finite linear

combinations of the eα, so it is inM . We will show that

x−
∑
α∈I

〈eα, x〉eα ⊥ eβ

for all β ∈ I . The relevant inner product is just〈
eβ, x−

∑
α∈I

〈eα, x〉eα

〉
= 〈eβ, x〉 −

∑
α∈I

〈eα, x〉〈eβ, eα〉 = 0.

Taking linear combinations, x −
∑

α∈I〈eα, x〉eα is orthogonal to all finite linear
combinations of the eβ. But the orthogonal subspace of a vector is closed, so it
contains the closure of the linear span of the eβ, i.e. M . We have

x =

∈M︷ ︸︸ ︷(∑
α∈I

〈eα, x〉eα

)
+

∈M⊥︷ ︸︸ ︷(
x−

∑
α∈I

〈eα, x〉eα

)

The result now follows.

5.5 Orthonormal Bases

Let H be a Hilbert space. An orthonormal basis in H is a maximal orthonormal
set. It turns out that in the finite dimensional case, orthonormal bases are sim-
ply linear bases that are also orthonormal. But, in the infinite dimensional case,
orthonormal bases are never linear bases. First we need to address the question
of existence or, more generally extension. In this setting, we’ll simply work with
unindexed sets.

LEMMA 83 Every orthonormal set is contained in some orthonormal basis.

The easy option would be to say that the proof is outside the scope of this
course. In fact, it uses Zorn’s Lemma named for Max Zorn, but in fact discovered
by Kazimierz Kuratowski.
Zorn’s lemma is equivalent to the axiom of choice, in the sense that either one

together with the standard axioms of set theory is sufficient to prove the other.

95



It occurs in the proofs of several theorems of crucial importance, for instance the
theorem that every vector space has a linear basis, the theorem that every field has
an algebraic closure and that every ring has a maximal ideal. Some high-powered
theorems in topology and functional analysis also use Zorn’s Lemma. It is stated
as follows.

LEMMA 84 (ZORN’S LEMMA) Every non-empty partially ordered set in which
every chain which is bounded above contains a maximal element.

The terms are defined as follows. Suppose (X,≤) is a partially ordered set.
Explicitly this means that ≤ is a relation on X satisfying the following axioms

• x ≤ x for all x ∈ X .

• x, y ∈ X , x ≤ y, y ≤ x =⇒ x = y.

• x, y, z ∈ X , x ≤ y, y ≤ z =⇒ x ≤ z.

A subset C of X is chain if for any x, y ∈ X we have either x ≤ y or y ≤ x.
A subset Y of X is bounded above if there exists u ∈ X such that y ≤ u for
all y ∈ Y . Note that u is an element of X and need not be an element of Y . A
maximal element of X is an elementm ∈ X such that x ∈ X andm ≤ x implies
x = m.

Proof of Lemma 83. The proof uses the axiom of choice in the form of Zorn’s
Lemma. Let E be the given orthonormal set and consider E the partially ordered
set of all orthonormal subsets of H which contain E and ordered by inclusion.
We need to know that E has a maximal element. It suffices to show then by Zorn’s
Lemma, that every chain C in E possesses an upper bound in E . So, let C be such
a chain and define F =

⋃
C∈C C. We claim that F ∈ E and it is evident that

C ⊆ F for all C ∈ C.
It suffices to check the claim. Obviously F ⊇ E, so it remains only to show

that F is an orthonormal set. Let f ∈ F , then f ∈ C for some C ∈ C. So f
must be a unit vector. Next choose two distinct vectors f1 and f2 in F . Then
f1 ∈ C1 and f2 ∈ C2 for some C1, C2 ∈ C. But C is a chain, so either C1 ⊆ C2

or C2 ⊆ C1. We suppose without loss of generality that the former holds. Then
f2 ∈ C2 and f1 ∈ C1 ⊆ C2. So, using the fact that C2 is orthonormal and that
f1 6= f2 we have f1 ⊥ f2. We have just shown that F is orthonormal.
We conclude that E possesses a maximal element B. We clain that B is a

maximal orthonormal set. Indeed if there were a larger one, then it would also
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contain E since already E ⊆ B and hence would be in E . But B is maximal in E .

We need a theorem that characterizes orthonormal bases.

THEOREM 85 Let (eα)α∈I be an orthonormal set in a Hilbert space H. Then
the following are equivalent.

(i) (eα)α∈I is an orthonormal basis.

(ii) The closed linear spanM of (eα)α∈I is the whole of H.

(iii) The identity ∑
α∈I

|〈eα, x〉|2 = ‖x‖2

holds for all x ∈ H.

(iv) The identity ∑
α∈I

〈y, eα〉〈eα, x〉 = 〈y, x〉

holds for all x, y ∈ H.

Proof.
(i) =⇒ (ii). If not, then M⊥ 6= {0H}. So, there is a unit vector e ∈ M⊥. So,
〈e, e〉 = 1, 〈e, eα〉 = 0 for all α ∈ I and 〈eα, e〉 = 0 for all α ∈ I . Given
that (eα)α∈I is an orthonormal set, these are the conditions needed to ensure that
{e} ∪ {eα; α ∈ I} is also an orthonormal set. So the maximality of (eα)α∈I is
contradicted.

(ii) =⇒ (i). We are assuming thatM = H and that e is a vector which together
with (eα)α∈I still gives an orthonormal set. Then 〈e, eα〉 = 0. Therefore 〈e, v〉 = 0
where v is in the linear span of (eα)α∈I . Now, taking limits along a sequence of
such v we have 〈e, x〉 = 0 for all x ∈ M . So, in particular, this holds for x = e
and we obtain 1 = 〈e, e〉 = 0. This contradiction establishes the claim.

(ii) =⇒ (iii). By Theorem 82 item (iii), we have from the fact that orthogonal
projection onM is the identity mapping

x =
∑
α∈I

〈eα, x〉eα
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and indeed, this is a norm convergent sum. Let sF be a partial sum of this series
corresponding to a finite subset F of I , then we have sF −→ x in the sense of
unconditional convergence and a calculation gives

‖sF‖2 = 〈sF , sF 〉 =
∑
α∈I

∑
β∈I

〈eα, x〉〈eβ, x〉〈eα, eβ〉 =
∑
α∈F

|〈eα, x〉|2

since 〈eα, eβ〉 = 1 if α = β and 0 otherwise. Since ‖sF‖ −→ ‖x‖, we have the
desired equality.

(ii) =⇒ (iv) follows by essentially the same argument.

(iv) =⇒ (iii) follows by setting y = x.

(iii) =⇒ (i). Let e be a vector which together with (eα)α∈I still gives an ortho-
normal set. Then we have

1 = ‖e‖2 =
∑
α∈F

|〈eα, e〉|2 = 0.

This contradiction completes the proof.

There are some important consequences of this result and the existence of
orthonormal bases.

COROLLARY 86

(i) If H is a finite dimensional Hilbert space, then it is linearly isometric to d
dimensional Euclidean space Rd or Cd, depending on the field of scalars
and where d = dim(H).

(ii) If H is infinite dimensional, but separable Hilbert space, then it is linearly
isometric to `2 over the appropriate field of scalars.

Proof. Statement (i) follows directly from Theorem 85. Statement (ii) follows the
same route, but we need to be sure that there is a denumerable orthonormal basis.
So, let (eα)α∈I be an orthonormal basis and let (xj)

∞
j=1 be a sequence dense inH.

Now we find for α 6= β, ‖eα − eβ‖2 = ‖eα‖2 + ‖eβ‖2 = 2. For each α ∈ I ,
choose a value j = J(α), such that ‖eα − xJ(α)‖ < 1/2. Then, obviously J is
one-to-one as a mapping J : I −→ N. This is because J(α) = J(β) will imply

√
2 = ‖eα − eβ‖ ≤ ‖eα − xJ(α)‖+ ‖eβ − xJ(β)‖ < 1

So, I must be countable. It cannot be finite, so it is denumerable.
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6

Convergence of Functions

In this very brief chapter, we look at the different ways that functions can con-
verge. Let (fn)∞n=1 be a sequence of measurable functions defined µ-almost every-
where on a measure space (X,F , µ). Let f be a potential limit function also
defined µ-almost everywhere. Then we can consider fn −→ f in a number of
different senses.

• Convergence in p-mean: ‖fn − f‖p −→ 0 as n −→ ∞. It is understood
that 1 ≤ p <∞.

• Convergence µ-almost everywhere: fn(x) −→ f(x) on the set X \ N
where N ∈ F and µ(N) = 0. It is understood that N contains the sets
where fn and f are not defined. This kind of convergence is called almost
sure convergence or convergence with probability one in the probabilis-
tic setting.

• Convergence in measure: µ({x; |f(x)−fn(x)| ≥ t}) −→ 0 and n −→∞
for each t > 0 fixed. In the probabilistic setting, this is called convergence
in probability. This is a rather weak type of convergence, but very heavily
used.

One further type of convergence is also of importance in probability theory.
This is convergence in distribution. It is equivalent to the pointwise convergence
of the distribution functions of the random variables concerned. This is a different
setting, because the fn and f can be defined on different probability spaces.

LEMMA 87 Convergence in mean implies convergence in measure.
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Proof. This is a consequence of Tchebychev’s inequality.

µ({x; |f(x)− fn(x)| ≥ t}) ≤
‖fn − f‖p

p

tp
−→ 0

as n −→∞ with t > 0 fixed.

THEOREM 88 (EGOROV’S THEOREM) Let (X,F , µ) be a finite measure space
i.e. µ(X) < ∞. Let fn −→ f µ-almost everywhere. Let δ > 0. Then there is a
set N with µ(N) < δ and such that fn −→ f uniformly on X \N . In particular,
on a finite measure space, convergence almost everywhere implies convergence in
measure.

Proof. Let F be the set on which convergence fails. Let ε > 0, and define
Sm(ε) = {x; |fn(x) − f(x)| < ε for all n ≥ m}. Clearly Sm(ε) increases with
m and

X \ F ⊆
∞⋃

m=1

Sm(ε).

Therefore, µ(X) = µ(X \ F ) = sup∞m=1 µ(Sm(ε)) and, since we are in a finite
measure space, inf∞m=1 µ(X \ Sm(ε)) = 0. Now, let δk = 2−kδ and εk ↓ 0.

Working with k = 1, we can find m1 such that

µ(X \ Sm1(ε1)) < δ1

For k = 2, we can find m2 > m1 such that

µ(X \ Sm2(ε2)) < δ2

For k = 3, we can find m3 > m2 such that

µ(X \ Sm3(ε3)) < δ3

· · · · · · · · ·

Let now S =
⋂∞

k=1 Smk
(εk)), then µ(X \ S) <

∑∞
k=1 δk = δ. We claim that

convergence is uniform on S. Indeed, let ε > 0. We find k such that εk < ε.
Then n ≥ mk implies that |f(x) − fn(x)| < ε for n ≥ mk and x ∈ S. We take
N = X \ S.

Egorov’s Theorem fails even in the σ-finite case. Let f ≡ 0 and fn = 11[n,∞[

with µ Lebesgue measure on the line. Convergence holds everywhere, but for
each n we have |f − fn| = 1 on a set of infinite measure.
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Finally, we remark that there are no obvious implications between convergence
in mean and almost everywhere convergence. Either can hold without the other.
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7

Fourier Series

Fourier came upon Fourier series in his search for a solution to the heat equation.
The idea actually generalizes in a variety of ways and is central to a lot of advanced
analysis. The simplest way of coming to grips with the subject is via orthonormal
series.
The space on which the action takes place is the circle T which we can realize

in several ways. One is as R/2πZ which is the quotient group of the real line
by the subgroup {2πn;n ∈ Z}. In this model, functions on T are thought of as
functions on R which are 2π-periodic, i.e.

f(x+ 2nπ) = f(x), ∀n ∈ Z.

Another model of T is the interval [0, 2π] with the endpoints identified and yet
another is as the interval [−π, π] with the endpoints identified. We work with the
Lebesgue σ-field L on T and the normalized linear measure η. The normaliza-
tion gives the circle T a measure of 1. So, we have say dη(t) =

1

2π
dt on [0, 2π].

Everything hinges on the function en(t) = eint for n ∈ Z.

LEMMA 89 We have
∫
endη =

{
1 if n = 0,
0 if n 6= 0.

Proof. The case n = 0 follows from e0 = 11. For the case n 6= 0, we use∫
endη =

1

2π

∫ 2π

0

(
cos(nt) + i sin(nt)

)
dt

=
1

2π

[
sin(nt)

n
− i

cos(nt)

n

]2π

0

= 0.
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We now have

LEMMA 90 The set of functions (en)n∈Z is an orthonormal set in L2(T,L, η).

Proof. We have 〈em, en〉 =

∫
emendη =

∫
en−mdη =

{
1 if m = n,
0 if m 6= n.

THEOREM 91 In fact, (en)n∈Z is an orthonormal basis in L2(T,L, η).

Proof. We consider the set of functions

A = {
n∑

k=0

ak cos(kt) +
n∑

k=1

bk sin(kt);n ∈ N, ak, bk ∈ R}

It is fairly straightforward to verify that A is closed under pointwise linear combi-
nations and pointwise products. To see this for the products, we need identities
like

cos(kt) cos(`t) =
1

2

(
cos((k − `)t) + cos((k + `)t)

)
.

We leave the full justification to the reader. It is also clear that the functions of
A separate the points of T. So, by the Stone–Weierstrass Theorem, A is dense in
the real-valued C(T) for the uniform norm. But C(T) is dense in the real-valued
L2(T,L, η). So, A is dense in the real-valued L2(T,L, η). Finally, it follows
that the linear span of (en)n∈Z is dense in the complex-valued L2(T,L, η). Since
we already know that (en)n∈Z is an orthonormal set in L2(T,L, η), we have the
desired conclusion.

We define

f̂(n) = 〈en, f〉 =

∫
enfdη

the nth Fourier coefficient of f . It is actually well-defined if f ∈ L1(T,L, η).
Usually with Fourier series we work with symmetric partial sums SNf defined by

SNf(t) =
N∑

n=−N

f̂(n)en(t).
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COROLLARY 92 (PLANCHEREL’S THEOREM) Let f ∈ L2(T,L, η). Then we
have

• f =
∑
n∈Z

〈en, f〉en. as an unconditional sum in L2(T,L, η).

• SNf −→ f in L2 norm as N −→∞.

• ‖f‖2
2 =

∑
n∈Z

|〈en, f〉en|2 =
∑
n∈Z

∣∣∣f̂(n)
∣∣∣2.

7.1 Dirichlet and Féjer Kernels

We define

DN(t) =
N∑

n=−N

en(t) =
sin(N + 1

2
)t

sin 1
2
t

obtained from summing a geometric series. This is the Dirichlet kernel. For the
Féjer kernel, we have

KN(t) =
N∑

n=−N

(
1− |n|

N

)
en(t) =

sin2(Nt
2

)

N sin2 t
2

.

Note that the terms n = ±N are not needed in the sum. The key to establishing
this awkward summation is

N−1∑
n=0

en(t) = ei
(N−1)t

2
sin(Nt

2
)

sin t
2

obtained again by summing a geometric series. Taking the absolute value squared
gives the desired result. One needs to verify that

N−1∑
p=0

N−1∑
q=0

ep(t)eq(t) =
N−1∑
p=0

N−1∑
q=0

eq−p(t) =
N∑

n=−N

(N − |n|) en(t)

which is proved by counting terms.
The Dirichlet kernel is badly behaved and so, correspondingly are the partial

sums of Fourier series. The Féjer kernel, on the other hand is an example of what
we call a summability kernel and it has nice properties. These are
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• KN(t) ≥ 0.

• ‖KN‖1 = 1.

• For δ > 0 fixed, we have
∫
|t|≥δ

KN(t)dη(t) −→ 0 as N −→∞.

The first of these conditions is obvious. For the second we have

‖KN‖1 =

∫
KN(t)dη(t)

=

∫ N∑
n=−N

(
1− |n|

N

)
en(t)dη(t)

=
N∑

n=−N

(
1− |n|

N

)∫
en(t)dη(t) = 1,

because only the term n = 0 in the last line survives. For the final condition, we
need to get our hands dirty. We work on [−π, π]. We have

KN(t) =
sin2(Nt

2
)

N sin2 t
2

≤ 1

N sin2 t
2

≤ π2

Nt2

using the inequality sin(u) ≥ 2

π
u for 0 < u ≤ π/2. Thus,∫

|t|≥δ

KN(t)dη(t) =
1

2π

∫
|t|≥δ

KN(t)dt

=
1

π

∫ π

δ

KN(t)dt

≤ 1

π

∫ ∞

δ

π2

Nt2
dt

= πN−1δ−1 −→ 0 as n −→∞.

Next, we’ll introduce the convolution product . Eventually, this will be defined
for f, g ∈ L1(T,L, η). We set

f ? g(t) =

∫
f(t− s)g(s)dη(s).
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The difference t− s is taken modulo 2π. The key fact about convolutions that we
need at the moment is

en ? f = f̂(n)en

and this is straightforward to verify.

en ? f(t) =

∫
en(t− s)f(s)dη(s) =

∫
en(t)en(s)f(s)dη(s)

=

∫
en(s)f(s)dη(s)en(t) = f̂(n)en(t).

We’ll start by showing the following theorem.

THEOREM 93 Let f ∈ C(T). Then KN ? f −→ f in C(T) as N −→∞.

Proof. The proof of this result should be compared with the proof of the Bern-
stein Approximation Theorem. The idea that is used is exactly the same. The first
step is to capture the cancellation. We have

(f−Kn?f)(t) = f(t)−
∫
Kn(t−s)f(s)dη(s) =

∫
Kn(t−s)

(
f(t)−f(s)

)
dη(s)

because
∫
Kn(t− s)dη(s) = 1. Next, we put in the absolute values.

|f −Kn ? f |(t)

≤
∫
Kn(t− s)

∣∣∣f(t)− f(s)
∣∣∣dη(s)

=

∫
|t−s|<δ

Kn(t− s)
∣∣∣f(t)− f(s)

∣∣∣dη(s) +

∫
|t−s|≥δ

Kn(t− s)
∣∣∣f(t)− f(s)

∣∣∣dη(s)
≤ ωf (δ)

∫
|t−s|<δ

Kn(t− s)dη(s) + 2‖f‖∞
∫
|t−s|≥δ

Kn(t− s)dη(s)

using |f(t)− f(s)| ≤ ωf (δ) for |t− s| < δ and |f(t)− f(s)| ≤ 2‖f‖∞ always.

≤ ωf (δ) + 2π‖f‖∞n−1δ−1

Let ε > 0. Then first choose δ > 0 so small that ωf (δ) < ε/2 and then, choose N
so large that 2π‖f‖∞N−1δ−1 < ε/2. We find that

|f −Kn ? f |(t) < ε

for all n ≥ N . Note that N does not depend on t so that convergence is uniform.
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7.2 The Uniform Boundedness Principle

In this section we will develop the uniform boundedness principle which is an ab-
stract principle which applies to Banach spaces (complete normed vector spaces).
We will then see how that principal can be applied to show that there exist func-
tions f ∈ C(T) such that Snf fails to converge to f even in the pointwise sense.
We will need some general ideas from Banach space theory. First of all, recall

that if u is a continuous linear form on a Banach space B, (i.e. a continuous linear
mapping from B to the base field, R or C) then there is a constant C such that
|u(x)| ≤ C‖x‖B. The smallest constant C that works is taken to be the norm of
u. Precisely

‖u‖B′ = sup
x∈B

‖x‖B≤1

|u(x)|

It can actually be shown that the linear space of all bounded linear forms u on
B can be made into a Banach space with this norm, but we do not need this fact
here.

THEOREM 94 (UNIFORM BOUNDEDNESS PRINCIPLE) Suppose that (un)∞n=1 is
a sequence of linear forms on B such that for every fixed x ∈ B, the sequence
(un(x))∞n=1 is a bounded sequence of scalars. Then there is a constant C such that
‖un‖B′ ≤ C for all n ∈ N.

Proof. The proof is non obvious and depends on the Baire Category Theorem. It
should be compared with the Open Mapping Theorem. For k ∈ N we define

Ak = {x;x ∈ B, |un(x)| ≤ k ∀n ∈ N}.

Then Ak is a closed subset of the complete normed space B for every k ∈ N
because each un is continuous and an arbitrary intersection of closed sets is closed.
By hypothesis we have

B =
∞⋃

k=1

Ak.

So, according to the Baire Category Theorem, there exists k ∈ N such that Ak has
nonempty interior. From now on in this proof, we denote by k that specific k.
So, there exists x ∈ B and t > 0 such that UB(x, t) ⊆ Ak. But Ak is a symmetric
(i.e. x ∈ Ak =⇒ −x ∈ Ak) convex set. So, using first the symmetry, we have
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UB(−x, t) ⊆ Ak. Now we use the convexity. Let y ∈ UB(0B, t). Then we can
write

y =
1

2

(
(x+ y) + (−x+ y)

)
and ±x+ y ∈ UB(±x, t) ⊆ Ak. So, by convexity of Ak, y ∈ Ak. So, certainly, for
all n ∈ N

‖y‖ ≤ t

2
=⇒ |un(y)| ≤ k

and indeed, by scaling

‖y‖ ≤ 1 =⇒ |un(y)| ≤ 2k

t
.

So, the conclusion holds with C =
2k

t
.

The next step in this saga is to compute a lower bound for the L1 norm of the
Dirichlet kernel.

LEMMA 95 We have the lower bound

‖DN‖1 ≥
4

π2

N−1∑
k=1

1

k + 1

for theL1 norm of the Dirichlet kernel. In particular, these norms are not bounded
in N .

Proof. Note that the zeros of the Dirichlet kernel DN(t) occur at t =
2kπ

2N + 1
as

k runs from 1 to 2N . The first N of these zeros are in the interval [0, π] where the
denominator in the Dirichlet kernel is nonnegative. We can therefore write

‖DN‖1 =

∫
|DN(t)|dη(t) =

1

π

∫ π

0

| sin(N + 1
2
)t|

sin 1
2
t

dt

≥ 1

π

N−1∑
k=1

∫ 2(k+1)π
2N+1

2kπ
2N+1

| sin(N + 1
2
)t|

sin 1
2
t

dt

We change variable using (N + 1
2
)t = kπ + s, which now gives

=
1

π
· 2

2N + 1

N−1∑
k=1

∫ π

0

sin s

sin
(

kπ+s
2N+1

)ds
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and indeed, sin

(
kπ + s

2N + 1

)
≤ (k + 1)π

2N + 1
for 0 ≤ s ≤ π

≥ 1

π
· 2

2N + 1

N−1∑
k=1

2N + 1

(k + 1)π

∫ π

0

sin s ds

=
4

π2

N−1∑
k=1

1

k + 1
.

PROPOSITION 96 There exists a function f ∈ C(T) such that SNf(0) is un-
bounded in N . In particular, the Fourier series of f does not converge pointwise.

Proof. The idea of the proof is to apply the Uniform Boundedness Principle to
B = C(T). We define continuous linear forms un on B by

un(f) = Snf(0) =

∫
Dnfdη.

If we can show that the norms of the un are unbounded, then it will follow that
there exists at least one element f ∈ B = C(T) such that un(f) is an unbounded
sequence of scalars. In particular then un(f) = Snf(0) cannot converge as n −→
∞. But, by proposition 65, ‖Dn‖L1 = ‖un‖B′ and the proof is complete.

7.3 More about Convolution

If f, g ∈ L1(T,L, η), then we have∫
|f | ? |g|dη =

∫ ∫
|f(t− s)||g(s)|dη(s)dη(t)

=

∫ ∫
|f(t− s)||g(s)|dη(t)dη(s)

by applying Tonelli’s Theorem

=

∫
|g(s)|

∫
|f(t− s)|dη(t)dη(s)

=

∫
|g(s)|

∫
|f(t)|dη(t)dη(s)

because η is translation invariant on T

= ‖f‖1‖g‖1.
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It follows that for almost all t, the integral
∫
|f(t− s)||g(s)|dη(s) is finite. Hence,

f ? g(t) is well-defined for almost all t and indeed, ‖f ? g‖1 ≤ ‖f‖1‖g‖1.
To understand what the convolution actually is, we should verify the following

identity. Let now h ∈ L∞(T,L, η). Then∫
(f ? g)(t)h(t)dη(t) =

∫
f(t)g(s)h(t+ s)d(η ⊗ η)(t, s). (7.1)

This is a consequence of Fubini’s Theorem∫
(f ? g)(u)h(u)dη(u) =

∫ ∫
f(u− s)g(s)dη(s)h(u)dη(u)

=

∫ ∫
f(u− s)g(s)h(u)dη(u)dη(s)

=

∫ ∫
f(t)g(s)h(t+ s)dη(t)dη(s)

after substituting u = t+ s in the inner integral and using the translation invariance of η

=

∫
f(t)g(s)h(t+ s)d(η ⊗ η)(t, s).

This can even be expressed in the form∫
(f ? g)(t)h(t)dη(t) =

∫
h(t+ s)d(f · η ⊗ g · η)(t, s).

where we have used the notation f · η for the measure f · η(A) =
∫

11Afdη for
A ∈ L. We leave it as an exercise for the reader to show that f · η actually is a
measure.
This last formula suggests what we should now check, namely that f ? g =

g ? f . This uses both the translation invariance and the reflection invariance of η.
We have

(f ? g)(t) =

∫
f(t− s)g(s)dη(s)

=

∫
f(−v)g(t+ v)dη(v)

by using v = s− t and translating the measure η by t

=

∫
f(u)g(t− u)dη(u)
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by using u = −v and reflecting the measure η

= g ? f(t).

What is the connection between convolution and the Fourier coefficients. We
put h(t) = en(t) in (7.1).

(̂f ? g)(n) =

∫
(f ? g)(t)en(t)dη(t)

=

∫
f(t)g(s)en(t+ s)d(η ⊗ η)(t, s)

=

∫
f(t)g(s)en(t)en(s)d(η ⊗ η)(t, s)

=

∫
f(t)en(t)dη(t) ·

∫
g(s)en(s)dη(s)

= f̂(n) · ĝ(n).

So, the Fourier coefficients of the convolution product are just the pointwise prod-
ucts of the Fourier coefficients.
Finally, in this section we will prove the uniqueness theorem.

THEOREM 97 Let f ∈ L1(T,L, η) and suppose that f̂(n) = 0 for all n ∈ Z.
Then f = 0 in L1, (i.e. f(t) = 0 for almost all t).

Proof. Let p(t) =
∑N

n=−N pnen(t) be a trigonometric polynomial. Then, we
have ∫

f(t)p(t)dη(t) =
N∑

n=−N

pn

∫
f(t)en(t) =

N∑
n=−N

pnf̂(−n) = 0.

Now, let g ∈ C(T) and consider gn = Kn ? g. Now it is easy to see

• gn is a trigonometric polynomial.

• gn −→ g in the uniform norm by Theorem 93.

It follows that
∫
f(t)g(t)dη(t) = 0 for all g ∈ C(T). Hence f is the zero element

of L1 by Proposition 65, completing the proof.

111



COROLLARY 98 If f ∈ L1(T,L, η) and
∑
n∈Z

∣∣∣f̂(n)
∣∣∣2<∞, then f ∈ L2(T,L, η).

Proof. Let g =
∑

n∈Z f̂(n)en as an unconditional sum. Then g ∈ L2 ⊂ L1. Also
f̂(n) = ĝ(n) for all n ∈ Z. We now apply the Uniqueness Theorem to f − g and
deduce that f = g ∈ L2.

COROLLARY 99 (RIEMANN–LEBESGUE LEMMA) If f ∈ L1(T,L, η), then

lim
|n|→∞

f̂(n) = 0.

Proof. We clearly have ‖f̂‖∞ ≤ ‖f‖1. This tells only that f̂ is bounded. How-
ever, L2(T,L, η) is dense in L1(T,L, η) and we have f̂ ∈ C0(Z) for f ∈ L2. For
general f ∈ L1, find fn ∈ L2 with fn −→

n→∞
f in L1 norm. Then f̂n −→

n→∞
f̂ in the

uniform norm. But since f̂n ∈ C0(Z) and C0(Z) is closed for the uniform norm
(in all bounded functions on Z), we see that f̂ ∈ C0(Z) as required.
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8

Differentiation

We start with the remarkable Vitali Covering Lemma. The action takes place on
R, but equally well there are corresponding statement in Rd. We denote by µ the
Lebesgue measure.

LEMMA 100 (VITALI COVERING LEMMA) Let S be a family of bounded open
intervals in R and let S be a Lebesgue subset of R with µ(S) <∞ and such that

S ⊆
⋃
I∈S

I.

Then, there exists N ∈ N and pairwise disjoint intervals I1, I2, . . . IN of S such
that

µ(S) ≤ 4
N∑

n=1

µ(In). (8.1)

Proof. Since µ(S) < ∞, there exists K compact, K ⊆ S and µ(K) > 3
4
µ(S).

Now, since
K ⊆

⋃
I∈S

I

there are just finitely many intervals J1, J2, . . . , JM with K ⊆
⋃M

m=1 Jm. Let
these intervals be arranged in order of decreasing length. Thus 1 ≤ m1 < m2 ≤
M implies that µ(Jm1) ≥ µ(Jm2). We will call this the J list. We proceed
algorithmically. If the J list is empty, then N = 0 and we stop. Otherwise, let I1
be the first element of the J list (in this case J1). Now, remove from the J list,
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all intervals that meet I1 (including I1 itself). If the J list is empty, then N = 1
and we stop. Otherwise, let I2 be the first remaining element of the J list. Now,
remove from the J list, all intervals that meet I2 (including I2 itself). If the J list is
empty, then N = 2 and we stop. Otherwise, let I3 be the first remaining element
of the J list. Now, remove from the J list, all intervals that meet I3. . .
Eventually, the process must stop, because there are only finitely many ele-

ments in the J list to start with. Clearly, the In are pairwise disjoint, because if
In1 meets In2 and 1 ≤ n1 < n2 ≤ N , then, immediately after In1 was chosen, all
those intervals of the J list which meet In1 were removed. Since In2 was even-
tually chosen from this list, it must be that In1 ∩ In2 = ∅. Now, we claim that
for every Jm is contained in an interval I?

n which is our notation for the interval
with the same centre as In but three times the length. To see this, suppose that
Jm was removed from the J list immediately after the choice of In. Then Jm

was in the J list immediately prior to the choice of In and we must have that
length(Jm) ≤ length(In) for otherwise Jm would be strictly longer than In and
In would not have been chosen as a longest interval at that stage. Also Jm must
meet In because it was removed immediately after the choice of In. It therefore
follows that Jm ⊆ I?

n.
So, K ⊆

⋃M
m=1 Jm ⊆

⋃N
n=1 I

?
n and µ(K) ≤

∑N
n=1 µ(I?

n) = 3
∑N

n=1 µ(In). It
follows that (8.1) holds.

8.1 The hardy–Littlewood Maximal Function

We now get an estimate for the Hardy-Littlewood maximal function. Let us define
for f ∈ L1(R,L, µ)

Mf(x) = sup
h>0

1

2h

∣∣∣∣∫ x+h

x−h

f(t)dt

∣∣∣∣ .
It is not completely obvious that Mf is measurable, so let us address that

issue. We will show that for each fixed x, the map h 7→ 1

2h

∫ x+h

x−h

f(t)dt is con-

tinuous on h > 0. A consequence is that it suffices to take the supremum over the
set of all positive rational h and the supremum of a countable family of measurable
functions is measurable. It will be enough to consider x = 0.

LEMMA 101 Let f ∈ L1(R,L, µ). Then h 7→ 1

2h

∫ h

−h

f(t)dt is continuous on

h > 0.
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Proof. Let kh = 1
2h

11]−h,h[. Let h > 0 be fixed and let (hj) be a sequence with
1
2
h < hj < 2h and hj → h as j →∞. Then, it is easy to check that

• khj
(t) −→ kh(t) except possibly if t = ±h and in particular, almost every-

where. It then follows that khj
(t)f(t) −→ kh(t)f(t) for almost all t.

• supj |khj
−kh| ≤ h−1 pointwise. It follows that supj |khj

−kh||f | ≤ h−1|f |
pointwise and we observe that h−1|f | is integrable.

Thus, by applying the Dominated Convergence Theorem, we find that

1

2hj

∫ hj

−hj

f(t)dt −→ 1

2h

∫ h

−h

f(t)dt

as required.

THEOREM 102 We have µ({x; |Mf(x)| > s}) ≤ 4s−1‖f‖1.

The result says that Mf satisfies a Tchebychev type inequality for L1. It is
easy to see that we do not necessarily haveMf ∈ L1. For example, if f = 11[−1,1],
then we have

Mf(x) =


1 if |x| < 1,

1

|x|+ 1
if |x| ≥ 1.

andMf is not integrable even though f is.

Proof. First of all, there is no loss of generality in assuming that f ≥ 0. Let a ∈ N
and let S = [−a, a]∩{x; |Mf(x)| > s}. Let S be the set of intervals ]x−h, x+h[
such that

1

2h

∫ x+h

x−h

f(t)dt > s. (8.2)

Then if x ∈ S there is some h > 0 such that (8.2) holds and so ]x−h, x+h[ is in
S. Hence the hypotheses of the Vitali Covering Lemma are satisfied. We can then
find N disjoint intervals In =]xn − hn, xn + hn[ such that µ(S) ≤ 8

∑N
n=1 hn.

But

2s
N∑

n=1

hn ≤
N∑

n=1

∫ xn+hn

xn−hn

f(t)dt =

∫ ( N∑
n=1

11]xn−hn,xn+hn[

)
fdµ ≤ ‖f‖1
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Note that the disjointness of the intervals is key here. It is used to show that∑N
n=1 11]xn−hn,xn+hn[ ≤ 11. It follows that µ(S) ≤ 4s−1‖f‖1. Now it suffices to let

a −→∞ to obtain the desired conclusion.

8.2 The Martingale Maximal Function on R*

This section develops a similar theorem with a different and instructive proof.
We work on [0, 1[ with the Lebesgue field, we’ll call it F and linear measure
µ. A dyadic interval of length 2−n is an interval [(k − 1)2−n, k2−n[ for k =
1, 2, . . . , 2n and n = 0, 1, 2, . . . The maximal function we deal with here for f ∈
L1([0, 1[,F , µ) is

Mf(x) = sup
1

µ(I)

∫
11Ifdµ

where the sup is taken over all dyadic intervals that contain x. There is a more
succinct way of writing this maximal function

Mf(x) =
∞

sup
n=0

|EFnf |

where Fn is the σ-field (it’s actually a field) generated by the dyadic intervals of
length 2−n. Note that for given x ∈ [0, 1[ and n ∈ Z+ there is a unique dyadic
interval of length 2−n to which x belongs.
To get further, we need to develop the probabilistic setting. A sequence of

σ-fields F0 ⊆ F1 ⊆ F2 ⊆ · · · is called a stochastic base . The σ-field Fn

contains those events that can be formulated at time n. The σ-field F is the
σ-field generated by the union of all the Fn, and contains all possible events. In
our case, times n are nonnegative integers and we can imagine tossing a fair coin.
So, at time 1, we toss the coin and if it ends up heads, we are in [1

2
, 1[ and if it

comes up tails, we are in [0, 1
2
[. At time 2, we toss again and we place in the upper

half of the interval if we have a head and the lower half if we have a tail. The
tossing is repeated indefinitely. Thus, if the result of the first 5 tosses is HTTHT,
we are in the interval [1

2
+ 1

16
, 1

2
+ 1

16
+ 1

32
[.

Probabilists need to consider random times. In our case, these are mappings
from the sample space [0, 1[ to the time space Z+∪{∞} which are F measurable.
However, there is a very special class of random times called stopping times. We
can think of a gambler who is following a fixed strategy. The quintessence of being
a good gambler is knowing when to quit. But if the gambler is to quit at time n,
then his decision has to be based on the information that is available to him at
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time n. If he were able to base his decision of whether to quit or not at time n
on the information available at time n + 1, then he would be clairvoyant. So,
a stopping time is a random time τ : [0, 1[−→ Z+ ∪ {∞} with the additional
property

{x; τ(x) = n} ∈ Fn, n = 0, 1, 2, . . .

This also implies
{x; τ(x) = ∞} ∈ F∞ = F ,

and in fact, you can make this part of the definition if you wish.
Let τ be a stopping time. We ask, what information is available at time τ .

Well, an event A ∈ F can be formulated at time τ if and only if

A ∩ {x; τ(x) = n} ∈ Fn, n = 0, 1, 2, . . .

The collection of all such events A defines a σ-field Fτ (prove this). This idea
does not make a whole lot of sense for random times (the whole space need not
be in Fτ ), but it does make sense for stopping times. Now, since Fτ is a σ-field ,
it has an associated conditional expectation operator EFτ . The next thing to show
is that

EFτf =

(
∞∑

n=0

11{x;τ(x)=n}EFnf

)
+ 11{x;τ(x)=∞}f

We now have enough information to start to tackle the maximal function. Let
f ∈ L1([0, 1[,F , µ) and f ≥ 0. Fix s > 0. We define τ(x) to be the first time n
that EFnf(x) > s. If it happens that EFnf(x) ≤ s for all n = 0, 1, 2, . . . then we
have τ(x) = ∞. This is a stopping time because τ(x) = n if and only if

EFk
f(x) ≤ s, for k = 0, 1, . . . , n− 1

and
EFnf(x) > s

These conditions define an event in Fn.
The key observation is that EFτf(x) > s on the set {x; τ(x) < ∞} =

{x;Mf(x) > s}. So,

µ({x;Mf(x) > s}) = µ({x;EFτf(x) > s}) ≤ s−1‖EFτf‖1 ≤ s−1‖f‖1.

This is the analogue of Theorem 102. There are interesting parallels between, for
example the use of longest intervals in the Vitali Covering lemma and the stopping
time being the first time that EFnf(x) > s. One final caveat. This argument does
not show that Mf ∈ L1 (a false statement in general) because the stopping time
τ depends on s.
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8.3 Fundamental Theorem of Calculus

THEOREM 103 Let f ∈ L1(R) and define F (x) =
∫ x

0
f(t)dt. Then F ′(x)

exists and equals f(x) for almost all x ∈ R.

Proof. Let ε > 0 and write f = g + h where g ∈ Cc(R) and h ∈ L1 with
‖h‖1 < ε. Let us also define G(x) =

∫ x

0
g(t)dt and H(x) =

∫ x

0
h(t)dt. Then

F (x) = G(x) +H(x). Now consider

lim sup
t→0

∣∣∣∣F (x+ t)− F (x)

t
− f(x)

∣∣∣∣
≤ lim sup

t→0

∣∣∣∣G(x+ t)−G(x)

t
− g(x)

∣∣∣∣+ lim sup
t→0

∣∣∣∣H(x+ t)−H(x)

t
− h(x)

∣∣∣∣
Now, the first lim sup on the right is zero, by the Fundamental Theorem of Cal-
culus, because g is continuous. So,

lim sup
t→0

∣∣∣∣F (x+ t)− F (x)

t
− f(x)

∣∣∣∣ ≤ lim sup
t→0

∣∣∣∣H(x+ t)−H(x)

t
− h(x)

∣∣∣∣
≤ |h(x)|+ sup

t6=0

∣∣∣∣H(x+ t)−H(x)

t

∣∣∣∣
≤ |h(x)|+ sup

t6=0
t−1

∫ x+t

x

|h(s)|ds

≤ |h(x)|+ sup
t>0

t−1

∫ x+t

x−t

|h(s)|ds

= |h(x)|+ 2M |h|(x)

Let δ > 0 and consider the set

Aδ = {x; lim sup
t→0+

∣∣∣∣F (x+ t)− F (x)

t
− f(x)

∣∣∣∣ > δ}.

Now, if x ∈ Aδ, then either |h(x)| > 1
3
δ or M |h|(x) > 1

3
δ. The first possibility

occurs on a set of measure at most 3εδ−1 (by the Tchebychev Inequality) and the
second on a set of measure at most 12εδ−1 by Theorem 102. So, the measure of
Aδ is bounded by 15εδ−1. But Aδ does not depend on ε, so letting ε −→ 0+, we
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find that Aδ is a null set. Finally, taking a sequence of positive δs converging to

zero, we find that {x; lim sup
t→0+

∣∣∣∣F (x+ t)− F (x)

t
− f(x)

∣∣∣∣ > 0} is also a null set.

The result follows.

8.4 Jacobian Determinants and Change of Variables*

We start with the following simple Lemma.

LEMMA 104 Let P be a parallelepiped contained in a ball of radius R in Rd.
Let Pr = P + B(0, r), that is the set of points that lie within distance r of P .
Then, for Lebesgue measure µ,

µ(Pr) ≤ µ(P ) + Cdr(R + r)d−1,

where Cd is a constant that depends only on the ambient dimension d.

Proof. We’ll give the proof in the case d = 2 and the reader will find that it
generalizes easily to higher dimensions. Let x ∈ Pr \ cl(P ). Then the distance
from x to cl(P ) is strictly positive and there is a nearest point y of cl(P ) to x.
Clearly, points on the line segment from x to y with the exception of y itself are
not in cl(P ), So y is a boundary point of cl(P ) and hence also a boundary point
of P . Thus, x lies within distance r of ∂P . Now, δP has 4 faces (2d faces in d
dimensions). Each face is contained in an interval of length at most 2R (in general,
a ball of radius R, cut by a hyperplane). So, the set of points within distance r of
∂P has measure bounded by 16Rr + 4πr2 (in general, Cdr(R + r)d−1 for some
suitable Cd).

Another interesting lemma is the following.

LEMMA 105 Let U be an open subset of Rd−1 and f : U −→ Rd be a Lipschitz
mapping. Then f(U) is a Lebesgue null set.

Proof. We write U as a countable union of (d − 1)-dimensional cubes in Rd−1.
Fix one of these (d − 1)-dimensional cubes Q of side s. It is enough to show
that f(Q) is Lebesgue null. Now, let N ∈ N and split up this cube into Nd−1

equal (d − 1)-dimensional cubes of side sN−1. Since f is a Lipschitz mapping,
each of the smaller cubes maps into a d-dimensional ball of diameter MsN−1

whereM is the Lipschitz constant of f . So, f(Q) is contained in a set of measure
CdN

d−1(MsN−1)d. Now let N −→∞.
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COROLLARY 106 It is impossible to find a Lipschitz mapping f : [0, 1] −→
[0, 1]× [0, 1] which is onto.

PROPOSITION 107 Let U be a bounded open subset of Rd. Let f : U −→ Rd

be a C1 injection with the property that dfx is nonsingular for every x ∈ U . Let
K be a compact subset of U (typically a large chunk of U ). Let ε > 0. Then there
exists δ > 0 such that

µ(f(Q)) ≤ (| det(dfξ)|+ ε)µ(Q) (8.3)

for any cube Q ⊆ K, centred at ξ of side less than δ.

Proof. First we assume without loss of generality that ε ≤ 1. Next we use the
compactness of K and the continuity of x 7→ dfx to establish the boundedness
and uniform continuity of df .

• There exists a constantM such that ‖dfx‖op ≤M for all x ∈ K.

• For every ε > 0 there is a constant δ > 0 such that ‖dfx − dfξ‖op < ε

whenever x, ξ ∈ K and ‖x− ξ‖ ≤ d
1
2 δ.

Now let Q be a cube contained in K, let ξ be the centre of Q and x ∈ Q.
Then

‖f(x)− f(ξ)‖ ≤M‖x− ξ‖

since the line segment joining x and ξ lies in Q and hence in K. This uses a
standard estimate, see the MATH 354 notes for example.
We use the symbol Cd to denote a constant depending only on the ambient

dimension d, but the constant may change with different occurrences of the sym-
bol. With this convention, we can write that f(Q) is contained in a ball of radius
CdMside(Q).
The second statement above is used to obtain a uniform differentiability con-

dition. Let x(t) = (1− t)ξ+ tx and ϕ(t) = f(x(t)). Then, ϕ′(t) = dfx(t)(x− ξ),
and it follows that ‖ϕ′(t)− dfξ(x− ξ)‖ ≤ ε‖x− ξ‖ for ‖x− ξ‖ ≤ d

1
2 δ. We now

have

f(x)− f(ξ) = ϕ(1)− ϕ(0)
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=

∫ 1

0

ϕ′(t)dt

=

∫ 1

0

dfx(t)(x− ξ)dt

so that

‖f(x)− f(ξ)− dfξ(x− ξ)‖ ≤ ε‖x− ξ‖

for ‖x − ξ‖ ≤ d
1
2 δ. Now, let g(x) = f(ξ) + dfξ(x − ξ) an affine (constant plus

linear) mapping. Then for x in the cube Q with centre ξ and side ≤ δ we have

f(Q) ⊆ g(Q) +B(0, d
1
2 ε side(Q)).

But g(Q) is a parallelepiped and it follows from Lemma 104 that

µ(f(Q)) ≤ µ(g(Q)) + Cd(CdMside(Q) + d
1
2 ε side(Q))d−1d

1
2 ε side(Q)

≤ µ(g(Q)) + Cd,Mε side(Q)d =
(
| det(dfξ)|+ Cd,Mε

)
µ(Q)

So, after rescaling ε, the result is proved.

PROPOSITION 108 Let U be a bounded open subset of Rd. Let f : U −→ Rd

be a C1 injection with the property that dfx is nonsingular for every x ∈ U . Let g
be a nonnegative continuous function on f(U). Then∫

f(U)

g(x)dµ(x) ≤
∫

U

g ◦ f(x)| det(dfx)|dµ(x)

Proof. LetW be an open subset of U with cl(W ) ⊆ U . Then, it will be enough
to show that ∫

f(W )

g(x)dµ(x) ≤
∫

W

g ◦ f(x)| det(dfx)|dµ(x).

Then, taking a sequence of suitable W increasing to U the desired result will
follow from the Monotone Convergence Theorem. (There’s an exercise here. If
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U is a bounded open subset of Rd, show that there exist a sequence (Wk)
∞
k=1 of

open subsets of Rd such that cl(Wk) ⊆ U and
⋃∞

k=1Wk = U .)
So, let theK of the previous proposition be cl(W ). Given ε > 0, choose δ > 0

such that (8.3) holds and the oscillation of both g ◦ f and x 7→ g(f(x))| det(dfx)|
over a cube Q of side ≤ δ is < ε. We split up W into countably many disjoint
cubes Qj with side less than δ1. The boundaries of these cubes are irrelevant, (i.e.
µ(f(∂Qj)) = 0), this is a consequence of the fact that f is a Lipschitz mapping
and Lemma 105. Now we can approximate each of the integrals with sums as
follows.∣∣∣∣∣
∫

W

g ◦ f(x)| det(dfx)|dµ(x)−
∞∑

j=1

g ◦ f(ξj)| det(dfξj
)|µ(Qj)

∣∣∣∣∣ ≤ εµ(W )

and ∣∣∣∣∣
∫

f(W )

g(x)dµ(x)−
∞∑

j=1

g(f(ξj))µ(f(Qj))

∣∣∣∣∣ ≤ εµ(f(W ))

Together with the estimate from (8.3), we get∫
f(W )

g(x)dµ(x) ≤
∫

W

g ◦ f(x)| det(dfx)|dµ(x) + E

where the error term E satisfies

E ≤ 2εµ(W ) + εµ(f(W ))

Letting ε −→ 0, we have the desired result because both W and f(W ) are
bounded sets and have finite measure.

THEOREM 109 Let U be a bounded open subset of Rd. Let f : U −→ Rd be a
bounded C1 injection with the property that dfx is nonsingular for every x ∈ U .
Let g be a continuous function on f(U). Then∫

f(U)

g(x)dµ(x) =

∫
U

g ◦ f(x)| det(dfx)|dµ(x)

1This is another exercise. Show that every bounded open subset of Euclidean space is a union
of closed dyadic cubes with pairwise disjoint interiors. There’s a canonical way of doing this — no
cube is included if its dyadic double (i.e. the unique dyadic cube with twice the side containing
the given cube) is contained in the given open set. For the purposes of this result, the larger dyadic
cubes (i.e. those with side > δ need to be further subdivided, but this is easy.!
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Proof. We start by making the additional assumption that g is nonnegative. We
remark that f(U) is a bounded open set and that f−1 : f(U) −→ U satisfies
the same conditions as f . Therefore, applying Proposition 108, to f−1 and x 7→
g(f(x))| det(dfx)|, we get∫

U

g ◦ f(x)| det(dfx)|dµ(x) ≤
∫

f(U)

g(x)| det(dff−1(x)|| det(df−1
x )|dµ(x)

=

∫
f(U)

g(x)dµ(x).

Because dff−1(x) ◦ df−1
x is the identity mapping by the Chain Rule. Combining

this with Proposition 108, we have the desired result in case g nonnegative. To
get the general result, we write g = g+ − g− where g± = max(0,±g), apply the
preceding result to g± and use the linearity of the integral.
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9

Fourier Transforms*

In this chapter, we develop just the basics of Fourier transforms on the line, some-
times called Fourier integrals.

DEFINITION For a function f ∈ L1(R) we define the Fourier transform f̂ to
be the function on another copy of the line which will be referred to as R̂ given
by

f̂(u) =

∫
R
f(x)e−iuxdx for u ∈ R̂.

The integral is well defined since it converges absolutely.

Here we have denoted dx the Lebesgue measure on the line and the L1 space
is taken with respect to the Lebesgue or the Borel σ-field. Similarly we have Lp

spaces defined on R̂, but for these spaces we take the measure 1
2π
du. This is the

dual measure. The definition presented here is just one of several possible nor-
malizations — the one favoured by the French and the Russians. The Americans
define the Fourier transform according to a different normalization.
Everything we do in this chapter depends upon some standard integrals typi-

cally

1√
2π

∫
e−

1
2

x2

e−iuxdx = e−
1
2

u2

(9.1)

which can be established by means of contour integration in complex function
theory. If you know how to do this, then all well and good. If not, you will have
to take it on trust. More generally, we define for t > 0

γt(x) =
1

t
√

2π
e−

1
2

t−2x2

,
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in fact γt is the Gauss kernel . Two further identities are obtained from (9.1) by
change of variables, namely

γ̂t(u) =
1

t
√

2π

∫
e−

1
2

t−2x2

e−iuxdx = e−
1
2

t2u2

and ∫
bR
γ̂t(u)e

iux 1

2π
du =

∫
bR
e−

1
2

t2u2

eiux 1

2π
du =

1

t
√

2π
e−

1
2

t−2x2

= γt(x).

These formulæ represent the Fourier transform and the inverse Fourier transform
for the Gauss kernel.

LEMMA 110 The Gauss kernel γt is a summability kernel on R as t→ 0+.

DEFINITION For f and g suitable measurable functions on R, then the convo-
lution product f ? g is defined by

f ? g(x) =

∫
R
f(x− y)g(y)dy.

PROPOSITION 111 The following scenarios are the most common.

(i) f, g ∈ L1(R). Then f ? g ∈ L1(R) and ‖f ? g‖1 ≤ ‖f‖1‖g‖1.

(ii) f ∈ Lp(R), g ∈ L1(R) with 1 ≤ p < ∞. Then f ? g ∈ Lp(R) and
‖f ? g‖p ≤ ‖f‖p‖g‖1.

(iii) f ∈ Lp(R), g ∈ Lp′(R) with 1 ≤ p ≤ ∞. Then f ? g ∈ L∞(R) and
‖f ? g‖∞ ≤ ‖f‖p‖g‖p′ .

Sketch Proof.
In (i) we verify that

∫∫
|f(x − y)||g(y)|dydx < ∞, which shows that the

integral defining f ? g(x) is absolutely convergent for almost all x and that the
resulting function is in L1. This is exactly as in the Fourier series section.
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For (ii) we let X be a measurable set of finite measure in R, then∫
X

{∫
|f(x− y)||g(y)|dy

}
dx =

∫ {∫
X

|f(x− y)|dx
}
|g(y)|dy

≤ meas(X)
1
p′ ‖f‖p‖g‖1 <∞

and again we see that the integral converges absolutely for almost all x. Now let
h be a nonnegative function in Lp′ , then again by Tonelli’s Theorem∫∫

h(x)|f(x− y)||g(y)|dydx ≤ ‖h‖p′‖f‖p‖g‖1

and Theorem 57 now gives that x 7→
∫∫
|f(x−y)||g(y)|dy is an Lp function with

norm bounded by ‖f‖p‖g‖1. The same is therefore also true of f ? g.
There is another completely different approach to (ii). Let us consider the map

F : R −→ Lp(R) defined by (F (y))(x) = f(x− y), i.e. F (y) = Ty(f), then by
Corollary 61, F is continuous. If g is a continuous function of compact support,
then we can consider the Riemann integral∫

F (y)g(y)dy

the integrand being a continuous function on R taking values in the complete
space Lp(R) and vanishing outside a compact set. This leads to∥∥∥∥∫ F (y)g(y)dy

∥∥∥∥
p

≤ sup
y
‖F (y)‖p‖g‖1 = ‖f‖p‖g‖1.

Extending this function to g ∈ L1(R) using uniform continuity and the density of
Cc(R) in L1(R) we get a new definition of f ? g satisfying the desired inequality.
As an exercise, the reader may show that this definition agrees with the previous
one.
Finally, for (iii), its easy to see that f ? g is bounded in absolute value by

‖f‖p‖g‖p′ . In fact, f ?g is continuous. To see this, we observe first that Tt(f ?g) =
Tt(f) ? g = f ? Tt(g) and the result follows since if 1 ≤ p <∞, then t 7→ Tt(f)
is continuous with values in Lp and if 1 < p ≤ ∞, t 7→ Tt(g) is continuous with
values in Lp′ .

We remark also that a simple change of variables shows that f ? g = g ? f
when both sides are defined.

126



9.1 Fourier Transforms of L1 functions

It should be clear from the definition of the Fourier transform that f̂ is a bounded
function for f ∈ L1. If in addition f has compact support, then we can differ-
entiate under the integral sign as many times as we wish, so that f̂ is infinitely
differentiable. Since L1 functions of compact support are dense in the space of all
L1 functions and since the Fourier transform is bounded from L1(R) to `∞(R̂d)

(i.e. the space of all bounded functions on R̂), we see that the Fourier transforms
of L1 functions are necessarily continuous. In fact, slightly more is true, namely
the Riemann–Lebesgue Lemma in the context of the line. For this we will first
need the following lemma.

LEMMA 112 Let f, g ∈ L1(R), then f̂ ? g(u) = f̂(u)ĝ(u) for all u ∈ R̂.

Proof. We have

f̂ ? g(u) =

∫ ∫
f(x− y)g(y)e−iuxdydx

=

∫ ∫
f(x− y)g(y)e−iuxdxdy

by Fubini’s Theorem and since f, g ∈ L1

=

∫ ∫
f(z)g(y)e−iu(y+z)dzdy

by making a change of variables in the inner integral

=

∫ ∫
f(z)g(y)e−iuze−iuydzdy

= f̂(u)ĝ(u)

as required.

LEMMA 113 (RIEMANN–LEBESGUE LEMMA) If f ∈ L1(R), then f̂ ∈ C0(R̂).

Proof. Since γt is a summability kernel, γt ? f −→ f in L1 norm as t→ 0+. But

γ̂t ? f(u) = γ̂t(u)f̂(u) = e−
1
2

t2u2

f̂(u).
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So γ̂t ? f ∈ C0(R̂) since it is the product of a bounded continuous function with

a continuous function tending to zero at infinity. But γ̂t ? f −→ f̂ uniformly, and
it follows that f̂ ∈ C0(R̂).

9.2 Fourier Transforms of L2 functions

We start with the following key result.

PROPOSITION 114 Let f ∈ L1(R) ∩ L2(R), then
∫
|f(x)|2dx =

∫
|f̂(u)|2 du

2π
.

Proof. Since f ∈ L2 and since γt is a summability kernel, γt ? f −→ f in L2

norm as t→ 0+. Therefore∫ ∫
f(x)f(x− y)γt(y)dydx −→

∫
f(x)f(x)dx = ‖f‖2

2.

On the other hand since f ∈ L1,∫ ∫
f(x)f(x− y)γt(y)dydx =

∫ ∫
f(x)f(y)γt(x− y)dxdy

=

∫ ∫ ∫
f(x)f(y)e−

1
2

t2u2

eiu(x−y)du

2π
dxdy

=

∫ ∫ ∫
f(x)e−iuxf(y)e−iuye−

1
2

t2u2

dxdy
du

2π

=

∫
f̂(u)f̂(u)e−

1
2

t2u2 du

2π

−→
∫
|f̂(u)|2du

2π

by monotone convergence.

COROLLARY 115 Let f, g ∈ L1(R) ∩ L2(R), then∫
f(x)g(x)dx =

∫
f̂(u)ĝ(u)

du

2π
.

Proof. The proof follows the same line as in the previous proposition. The only
difference is that the final step is justified using dominated convergence, since

now it is known that f̂ ĝ is in L1(R̂) since it is the product of two L2 functions.
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COROLLARY 116 (FOURIER INTEGRAL UNIQUENESS THEOREM) Let f be in
L1(R) and suppose that f̂(u) = 0 for all u ∈ R̂. Then f is the zero element of L1.

Proof. We have f̂ ? γt(u) = f̂(u)γ̂t(u) = 0 for all u ∈ R̂. So, since f ? γt ∈
L1 ∩ L2 and by Proposition 114 applied to f ? γt, we have that ‖f ? γt‖2 = 0.
So, f ? γt is zero almost everywhere. But f ? γt −→ f in L1 norm as t → 0+.
Therefore, f is zero almost everywhere.

At this point, we need to define the inverse Fourier transform. For a function
h ∈ L1(R̂, 1

2π
du), we define for x ∈ R

ȟ(x) =

∫
h(u)eiuxdu

2π
.

Obviously, this definition is very similar to the definition of the Fourier transform
(in that ȟ(x) = 1

2π
ĥ(−x) and so, the uniqueness result above will also apply to

the inverse Fourier transform, namely

h ∈ L1(R̂), ȟ ≡ 0 =⇒ h ≡ 0.

With this in mind, we can now prove the following famous theorem.

THEOREM 117 (PLANCHEREL’S THEOREM) The Fourier transform extends by
continuity to an isometry of L2(R) onto L2(R̂).

Proof. Most of the work is done. We extend the Fourier transform from L1 ∩L2

to L2 by continuity. This defines a linear isometry from L2(R) to L2(R̂). It
remains only to show that the isometry is surjective.
The direct image of L2(R) in L2(R̂) is clearly complete (it is the isometric

image of a complete space). It follows that the image is closed in L2(R̂). If it is not
the whole of L2(R̂), then we may find a nonzero element g of L2(R̂) orthogonal
to the image. Let f ∈ L1(R) be arbitrary. We have

0 =

∫
g(u)f̂ ? γt(u)

du

2π

since f ? γt ∈ L1 ∩ L2,

=

∫
g(u)γ̂t(u)f̂(u)

du

2π
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=

∫ ∫
g(u)γ̂t(u)e

−iuxf(x)dx
du

2π

=

∫ ∫
g(u)γ̂t(u)e

−iuxf(x)
du

2π
dx

by Fubini’s Theorem and since gγ̂t, f ∈ L1,

=

∫
(gγ̂t)ˇ(x)f(x)dx

Since this is true for all f ∈ L1(R), we have (gγ̂t)ˇ(x) = 0 for almost all x. Then
by the uniqueness of the inverse transform gγ̂t ≡ 0 and consequently g ≡ 0. This
contradiction completes the proof.

It is important to note that the Plancherel Theorem allows us to make an
interpretation of the integral ∫

f(x)e−iuxdx

for f ∈ L2 even when the integral does not converge absolutely. Taken at face
value, this is something very mysterious.

9.3 Fourier Inversion

In this section we aim to prove two results about inversion.

THEOREM 118 (THE FOURIER INVERSION THEOREM) Let f ∈ L1(R) and
suppose that f̂ ∈ L1(R̂). Then (f̂)ˇ = f almost everywhere.

Proof. Suppose that g ∈ L1(R) ∩ L∞(R). Then certainly g ∈ L2(R). Also
f ? γt ∈ L2. Therefore∫

g(x)(f ? γt)(x)dx =

∫
ĝ(u)γ̂t(u)f̂(u)

du

2π

=

∫
g(x)eiuxγ̂t(u)f̂(u)dx

du

2π

and letting t→ 0+ using dominated convergence since g ∈ L1(R) and f̂ ∈ L1(R̂)∫
g(x)f(x)dx =

∫
g(x)eiuxf̂(u)dx

du

2π
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=

∫
g(x)eiuxf̂(u)

du

2π
dx

applying Fubini, again since g ∈ L1(R) and f̂ ∈ L1(R̂)

=

∫
g(x)(f̂)ˇ(x)dx

Thus ∫ (
f(x)− (f̂)ˇ(x)

)
g(x)dx = 0

for all g ∈ L1(R) ∩ L∞(R). It’s now easy to see that f(x) = (f̂)ˇ(x) for almost
all x.

The final result on inversion relates to the fact that we may extend the Fourier
inversion operator to an isometry from L2(R̂) to L2(R) as in the Plancherel The-
orem.

PROPOSITION 119 The resulting operator is the inverse of the extension of the
Fourier transform to L2(R).

Proof. Let A : L2(R) −→ L2(R̂) be the extension of the Fourier transform of
L1 ∩ L2 to L2 and let B : L2(R̂) −→ L2(R) be the similarly defined extension
of the inverse Fourier transform. Both of these operators are surjective isometries
and it will suffice to show that B ◦ A(f) = f on a dense subset of L2(R). Let

f ∈ L1(R) ∩ L2(R). Then f ? γt ∈ L1(R) ∩ L2(R). Also f̂ ? γt = f̂ γ̂t ∈ L1(R̂)

since both f̂ and γ̂t are in L2(R̂). By the Fourier Inversion Theorem

(f̂ γ̂t)ˇ = f ? γt.

As t→ 0+, f̂ γ̂t −→ f̂ in L2(R̂) since f̂ ∈ L2(R̂) and by dominated convergence.
Since γt is a summability kernel, f ? γt → f in L2(R). Therefore

B(f̂) = f

for all f ∈ L1(R) ∩ L2(R). But L1(R) ∩ L2(R) is dense in L2(R) and the result
is proved.
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9.4 Defining the Fourier Transform on L1 + L2

Since we now know how to define the Fourier transform on L1(R) and L2(R)
separately, we can define it almost everywhere for the sum of an L1 function and
an L2 function in the obvious way.

DEFINITION If f = f1 + f2 with f1 ∈ L1(R) and f2 ∈ L2(R), then we define

f̂(u) = f̂1(u) + A(f2)(u)

and we see that f̂ ∈ L∞+L2. The definition is good since if f = f1+f2 = g1+g2

with f1, g1 ∈ L1(R) and f2, g2 ∈ L2(R) then f1 − g1 = g2 − f2 ∈ L1 ∩ L2. But
A(h) = ĥ for functions in L1 ∩ L2 and therefore

(f1 − g1)ˆ = A(g2 − f2)

and by linearity, this now gives f̂1 + A(f2) = ĝ1 + A(g2).

EXAMPLE Let f(x) = |x|−1+z with 0 < <z < 1
2
. We have∫

|x|≤1

|f(x)|dx ≤
∫
|x|≤1

|x|−1+<zdx <∞

since <z > 0 and ∫
|x|>1

|f(x)|2dx ≤
∫
|x|>1

|x|−2+2<zdx <∞

since <z < 1
2
. So, f ∈ L1 + L2 and the Fourier transform f̂ is defined almost

everywhere. A change of variable shows that f̂(u) = cz|u|−z where cz is some
constant depending only on z. It is not difficult to show that∫ ∞

−∞
γ1(x)f(x)dx =

∫ ∞

−∞
e−

1
2

u2

f̂(u)
du

2π

both integrals leading to Gamma functions and cz =
√
π

Γ(1
2
z)

Γ(1
2
(1− z))

2z. 2
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σ-algebra, 6
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absolutely integrable, 42
absolutely summable, 42
almost everywhere, 44
almost surely, 44
approximable, 62

Borel function, 33
Borel subset, 18
x σ-field , 18

Carathéodory’s Extension Theorem, 12
convolution product, 105
countably subadditive, 12
counting measure, 7
cylinder set, 81

Dominated Convergence Theorem, 45
Dynkin’s π − λ Theorem, 21

Egorov’s Theorem, 100

Fatou’s Lemma, 44
field, 5
Fourier Integral Uniqueness Theorem,

128
Fourier transform, 124
Fubini’s Theorem, 77

Gauss kernel, 125

Hilbert space, 58
Hölder’s Inequality, 52

inner measure, 27
integrable, 42

Lusin’s Theorem, 66

measurability, 33
measurable rectangle, 70
Minkowski’s Inequality, 53
monotone, 12
monotone class, 23
Monotone Class Theorem, 23
Monotone Convergence Theorem, 44

null set, 25

outer measure., 12

paradoxical, 2
period, 19
Plancherel’s Theorem, 103, 129
premeasure, 6
probability measure, 8

regimented form, 37
regular, 62
Riemann–Lebesgue Lemma, 112, 127

stochastic base, 116
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stopping time, 116
summability kernel, 104
summable, 42

The Fourier Inversion Theorem, 130
Tonelli’s Theorem, 76

Uniform Boundedness Principle, 107

version, 51
Vitali Covering Lemma, 113

Zorn’s Lemma, 96
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