HONOURS ANALYSIS III Math 354 Prof. Dmitry Jacobson

Notes Taken By: R. Gibson

Fall 2010

Contents

1	Overview 1.1 <i>p</i> -adic Distance	3 4
2	Introduction 2.1 Normed Linear Spaces 2.2 Inner Product Spaces 2.3 Metric Space Techniques	5 5 10
3	Completeness 3.1 Basics & Definitions 5.2 3.2 Completion & Density Revisited 5.2 3.3 O.D.E. & Contraction 5.2	21 21 25 27
4	Compactness 4.1 Basics & Definitions 4.2 4.2 Arzela & Compacta 4.2	30 30 33
5	Basic Point-Set Topology - 5.1 Product Topology - 5.2 Conectedness - 5.3 Connected Components/ Path Components -	40 40 42 44
6	Banach Space Techniques 6.1 Linear Functionals 6.2 Baire's Category Theorem, Banach-Steinhaus Theorem & The Open Mapping Theorem 6.3 Convex Sets 6.4 Kernel 6.5 Conjugate Space 6.6 Linear Functionals Revisited 6.7 Bernstein Polynomials 6.8 Inverse & Implicit Function Theorem In \mathbb{R}^n	46 48 53 57 58 60 63 65
7	Linear Operators & The Operator Norm 7.1 The Hahn-Banach Theorem	68 68
	7.2 Examples	70

OVERVIEW

DEFINITION 1. Let X be a metric space. We define **Distance** $d: X \times X \to \mathbb{R}$ to satisfy

- (i) $\forall x \in X, \quad d(x, x) = 0$
- (*ii*) $\forall x \neq y \in X$, d(x, y) > 0
- (*iii*) $\forall x, y \in X, \quad d(x, y) = d(y, x)$
- (iv) $\forall x, y, z \in X$, $d(x, z) + d(z, y) \ge d(x, y)$

EXAMPLE 1. The following are some of the main examples of metric spaces for this course.

• Spaces of sequences (finite or infinite) - with l_p norm.

$$\{(x_1,\ldots,x_n),\ldots\}:\sum_{k=1}^{\infty}|x_k|^p<\infty\}$$

This leads us to a proposition.

PROPOSITION 1. If $\underline{x} = (x_1, x_2, \ldots), \underline{y} = (y_1, y_2, \ldots)$, then

$$d(\underline{x},\underline{y}) = \left(\sum_{k=1}^{\infty} |x_k - y_k|^p\right)^{1/p}$$

is a distance.

٠

EXAMPLE 2. If $\underline{x} = \underline{0}$ and y = (1, 1/2, 1/3, 1/4, ...), then can we prove that

$$d(\underline{x}, \underline{y}) = \sqrt{1 + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{h^2} + \dots} = \sqrt{\frac{\pi^2}{6}}$$

... probably not.

EXAMPLE 3. For $p \ge 1$, an example would be continuous functions f, g on [a, b]. PROPOSITION 2. In the space of continuous functions on [a, b],

$$d(f,g) = \left[\int_a^b |f(x) - g(x)|^p dx\right]^{1/p}$$

defines a distance. We recall the L_p norm to be

$$||f||_p = \left(\int_a^b |f(x)|^p dx\right)^{1/p}$$

We now examine polygons in the plane. There is a problem in the assignment which asks if the difference of areas defines a distance. So we must prove that

$$d(P_1, P_2) = Area(P_1 \triangle P_2)$$

which is the area of

$$(P_1 \cup P_2) \backslash (P_1 \cap P_2)$$

-Section 1.1-

p-ADIC DISTANCE

Let $p \in \{2, 3, 5, 7, 11, 13, ...\} = Primes$. Let $x, y \in \mathbb{Q}$ so

$$x = \frac{a_1}{b_1} \qquad y = \frac{a_2}{b_2}$$

DEFINITION 2. The p-adic Norm is defined as follows

$$x = p^k \cdot \frac{c}{d}$$

 $||x||_p = p^{-k}$

where $k \in \mathbb{Z}$ and

DEFINITION 3. The p-adic Norm is defined to be

$$d_p(x,y) = ||x - y||_p$$

EXAMPLE 4. Working with p-adic distance. Suppose that

$$x = \frac{24}{49}$$

then we have that

$$x = 7^{-2} \frac{24}{1} \Longrightarrow ||x||_7 = 7^2$$
$$x = 3^1 \frac{8}{49} \Longrightarrow ||x||_3 = 3^{-1}$$
$$x = 2^3 \frac{3}{49} \Longrightarrow ||x||_2 = 2^{-3}$$

PROPOSITION 3. $||x - y||_p$ defines a p-adic distance on \mathbb{Q} . **NB:** If x is as above, then

$$||x||_{Eucl} \cdot ||x||_2 \cdot ||x||_3 \cdot ||x||_7 = 1$$

Neat, eh?

-Chapter 2-

INTRODUCTION

-Section 2.1-

NORMED LINEAR SPACES

Linear means exactly what you would think it means. A good way to show this is

$$(a_n)_{n=1}^{\infty} + (b_n)_{n=1}^{\infty} = (a_n + b_n)_{n=1}^{\infty}$$
$$(f+g)(x) = f(x) + g(x) \quad \forall \ x \in [a,b]$$

DEFINITION 4. Suppose that X is a linear space, then we say that the **Norm** of $x \in X$ is a map

$$||\cdot||: X \to \mathbb{R}_+$$

such that

- (i) $||x|| = 0 \iff x = 0$
- (*ii*) $||t \cdot x|| = |t| \cdot ||x||$
- (*iii*) $||x + y|| \le ||x|| + ||y||$

It is a fact that

$$d(x,y) = ||x - y||$$

defines a distance since

$$d(y,x) = ||y - x|| = || - (x - y)|| = ||x - y|| = d(x,y)$$

$$d(x,z) = ||x - z|| = ||(x - y) + (y - z)|| \le ||x - y|| + ||y - z|| = d(x,y) + d(y,z)$$

-Section 2.2-

INNER PRODUCT SPACES

An Inner Product Space is a space together with a map

$$(\cdot, \cdot): X \times X \to \mathbb{R}$$

such that

(i)
$$0 \le (x, x)$$

- (ii) $(x, y) = 0 \iff x = 0$
- (iii) $(x, \alpha y + \beta z) = \alpha(x, y) + \beta(x, z), \quad x, y, z \in X, \alpha, \beta \in \mathbb{R}$

(iv) $(\gamma x + \delta y, z) = \gamma(x, z) + \delta(y, z)$

EXAMPLE 5. The following are some examples of inner products

• Dot Product

$$(\underline{x},\underline{y}) = \underline{x} \cdot \underline{y} = x_1 y_1 + \dots + x_n y_n$$

• Function Space Inner Product

$$f,g \in C([a,b]) \Longrightarrow (f,g) = \int_a^b f(x)g(x)dx$$

and

$$||f|| = \sqrt{\int_a^b [f(x)]^2 dx}$$

PROPOSITION 4.

$$||x|| := \sqrt{(x,x)}$$

always defines a norm. **Proof.** We will need a lemma.

LEMMA 5. The following identity holds.

$$(x,y) \le ||x|| \cdot ||y||$$

Proof.

$$(x + ty, x + ty) = (x, x) + 2t(x, y) + t^{2}(y, y)$$

we know that

$$||x + ty||^2 \ge 0$$

now,

$$D = 4(x, y)^2 - 4(x, x) \cdot (y, y) \le 0$$
$$(x, y) \le \sqrt{(x, x)} \cdot \sqrt{(y, y)} = ||x|| \cdot ||y||$$

With this lemma, we can now prove the above proposition. So **Proof.**

The triangle inequality states that

 $||x + y|| \le ||x|| + ||y||$

and now we can square both sides to obtain

$$(||x+y||)^2 \le (||x|| + ||y||)^2$$

and now

$$(x + y, x + y) = (x, x) + 2(x, y) + (y, y)$$

and

$$||x||^{2} + 2||x|| \cdot ||y|| + ||y||^{2} = (x, x) + 2||x|| \cdot ||y|| + (y, y)$$

by the lemma, and we cancel to obtain

$$\Longrightarrow (x,y) \leq ||x|| \cdot ||y||$$

which yields our result. \Box How to guess whether ||x|| comes from (x, x) or not? The answer is

$$(x + y, x + y) + (x - y, x - y) = (x, x) + 2(x, y) + (y, y) + (x, x) - 2(x, y) + (y, y)$$

then

$$(*) \qquad ||x+y||^2+||x-y||^2=2||x||^2+2||y||^2$$

The norm comes from $(\cdot, \cdot) \iff (*)$ holds for all $x, y \in X$.

Let $(a_1, \ldots, a_n, \ldots)$ be such that PROPOSITION 6.

$$\sum a_i^2 < \infty$$

 $\sum b_j^2 < \infty$

and let $(b_1, \ldots, b_n, \ldots)$ be such that

and let

$$||\underline{a}|| = \left(\sum_{i=1}^{\infty} a_i^2\right)^{1/2}$$

Then

$$\sum_{i=1}^{\infty} a_i b_i \le ||a|| \cdot ||b||$$

and so

$$(\underline{a},\underline{b}) = a_1b_1 + \dots + a_nb_n \le \sqrt{\sum_{i=1}^n a_i^2} \cdot \sqrt{\sum_{j=1}^n b_j^2} \to ||a|| \cdot ||b||$$

as $n \to \infty$. Proof. To prove convergence,

$$\sum_{k=n}^{n+m} a_i b_i \le \sqrt{\sum_{k=n} a_k^2} \cdot \sqrt{\sum_{k=n}^{n+m} b_k^2}$$

the two components on the right converge separately to 0 as $n \to \infty$. This is because

$$\sum_{k=1}^{\infty} a_k^2 < \infty$$

and the same goes for the sum of b_k^2 . Thus, the whole thing converges to 0. Summarizing, we proved that $(C([a,b]), L^2$ -norm) is a metric space, and so is l^2 .

Next, we look at L_p -norm which is

$$||f||_p = \left[\int_a^b |f(x)|^p dx\right]^{(1/p)}$$

and at l_p -space, $p \neq 2$, we have

$$||\underline{a}||_{l_p} = \left(\sum_{k=1}^{\infty} |a_k|^p\right)^{(1/p)}$$

Thus, l_p is the space of all \underline{a} such that

$$\sum_{k=1}^{\infty} |a_k|^p < \infty$$

To prove this we need a lemma.

LEMMA 7. Let a > 0, b > 0, and $p, q \ge 1$ and such that

$$\frac{1}{p} + \frac{1}{q} = 1$$

NB: We say that p,q are Conjugate Exponents. Then

$$(*) \qquad a \cdot b \leq \frac{a^p}{p} + \frac{b^q}{q}$$

Proof.

Let x > 0, then $f(x) = \log(x)$ which is a concave function.

$$f'(x) = \frac{1}{x}$$
 $f''(x) = -\frac{1}{x^2} < 0$

and since f is concave, we can say that

$$f(\alpha x + \beta y) \ge \alpha f(x) + \beta f(y)$$

where $\alpha + \beta = 1$. Also, we know that

$$\log (a \cdot b) = \log a + \log b$$
$$= \frac{1}{p} \log (a^p) + \frac{1}{q} \log (b^q)$$
$$(**) \leq \log \left(\frac{1}{p}a^p + \frac{1}{q}b^q\right)$$

THEOREM 8 (Holder's Inequality). Let p < 1

$$\sum_{k=1}^{n} |a_k b_k| \le \left(\sum_{k=1}^{n} |a_k|^p\right)^{1/p} \left(\sum_{k=1}^{n} |b_k|^q\right)^{1/q}$$

where

$$\frac{1}{p} + \frac{1}{q} = 1$$

Remark. Both sides are homogeneous of degree 1 in $(a_k), (b_k)$. So WLOG, we can rescale $a_k - s$ so that

$$\sum_{k=1}^{n} |a_k|^p = 1$$

and

$$\sum_{k=1}^{n} |b_k|^q = 1$$

so we say that

$$\sum_{k=1}^{n} |a_k b_k| \le \sum_{k=1}^{n} \left(\frac{|a_k|^p}{p} + \frac{|b_k|^q}{q} \right)$$

= $\frac{1}{p} \left(\sum_{k=1}^{n} |a_k|^p \right) + \frac{1}{q} \left(\sum_{k=1}^{n} |b_k|^q \right)$
= $\frac{1}{p} + \frac{1}{q}$
= 1

by our normalization of the sums. Now,

$$RHS = \left(\sum_{k=1}^{n} |a_k|^p\right)^{1/p} \left(\sum_{k=1}^{n} |b_k|^q\right)^{\frac{1}{q}} = 1^{1/p} 1^{1/q} = 1$$

 $and \ so$

 $LHS \leq RHS$

Now, if we let $n \to \infty$, then we get Holder for infinite series. The proof is left to the reader as an excercise.

THEOREM 9 (Minkowski Inequality). (For Sequences With $n < \infty$) Recall that for $\underline{x} = (x_1, \ldots, x_n)$, we have

$$||\underline{x}||_p = \left(\sum_{k=1}^n |x_k|^p\right)^{1/p}$$

We want

$$||\underline{x} + \underline{y}||_p \le ||\underline{x}||_p + ||\underline{y}||_p$$

So, we know that

$$\begin{aligned} ||\underline{x} + \underline{y}||_{p}^{p} &= \sum_{k=1}^{n} |x_{k} + y_{k}|^{p} \\ &\leq \sum_{k=1}^{n} (|x_{k}| + |y_{k}|)^{p} \\ &= \sum_{k=1}^{n} [(|x_{k}| + |y_{k}|)^{p-1} |x|_{k} + (|x_{k}| + |y_{k}|)^{p-1} |y|_{k}] \end{aligned}$$

and we apply Holder to each inner sum and let $b_k = (|x_k| + |y_k|), a_k = |x_k|$

$$\leq \left(\sum k = 1^{n} |x_{k}|^{p}\right)^{1/p} \left(\sum_{k=1}^{n} [(|x_{k}| + |y_{k}|)^{p-1}]^{q}\right)^{1/q} + \left(\sum k = 1^{n} |y_{k}|^{p}\right)^{1/p} \left(\sum_{k=1}^{n} [(|x_{k}| + |y_{k}|)^{p-1}]^{q}\right)^{1/q}$$

And now,

$$\frac{1}{p} + \frac{1}{q} = 1 \Longrightarrow 1 - \frac{1}{p} = \frac{1}{q} \Longrightarrow \frac{p-1}{p} = \frac{1}{q}$$
$$\Longrightarrow (p-1)q = p$$

 $and \ so$

$$RHS = \left[\left(\sum k = 1^n |x_k|^p \right)^{1/p} + \left(\sum k = 1^n |y_k|^p \right)^{1/p} \right] \cdot \left[\sum k = 1^n (|x_k| + |y_k|)^q \right]^{1/q}$$

and

$$RHS \le LHS = \sum_{k=1}^{n} (|x_k| + |y_k|)^p$$
$$\implies \left[\sum_{k=1}^{n} (|x_k| + |y_k|)^p\right]^{1-1/q} \le ||\underline{x}||_p + ||\underline{y}||_p$$

and we can conclude that

$$||\underline{x} + \underline{y}||_p \le ||\underline{x}||_p + ||\underline{y}||_p \qquad \Box$$

EXAMPLE 6. The unit sphere in

$$l_p(\mathbb{R}^n) = \left\{ \underline{x} \in \mathbb{R}^n : \sum_{k=1}^n |x_k|^p = 1 \right\}$$

For n = 2, p = 1, we have

$$\{(x,y): |x|+|y|=1\}$$

For n = 2, p = 2, we have

$$\{(x,y): |x|^2 + |y|^2 = 1\}$$

Now we ask what happens when $p \to \infty ?$ We get

$$[|x_k|^p + |y_k|^p]^{1/p} = (|x_k|^p)^{1/p} \cdot \left(1 + \left(\frac{|y_k|}{|x_k|}\right)^p\right)^{1/p} \to x$$

as $p \to \infty$. Now as another example, we have

$$||(x,y)||_p \to \max\{|x|,|y|\} = ||(x,y)||_{\infty}$$

as $p \to \infty$.

DEFINITION 5. The l_{∞} norm of $\underline{x} = (x_1, \dots, x_n)$ is

$$||\underline{x}||_{\infty} = \max_{k=1}^{n} \{x_k\}$$

and for $f \in C([a, b])$, we get that the l_{∞} norm of f is

$$||f||_{\infty} = \max_{x \in [a,b]} |f(x)|$$

and we can show that

 $||f||_p \to ||f||_{\infty}$

as $p \to \infty$, for any $f \in C([a, b])$.

	SECTION 2.3
	SECTION 2.5
Metric Space Techniques	

DEFINITION 6. We say that (X, d) is a **Metric Space** if $d(\cdot, \cdot)$ defines a distance on the set X.

DEFINITION 7. Let $A \subset X$ where X is a metric space. Let $x \in X$ (may or may not be in A). If every ball B(x,r) centred at x of radius r has at least one point from A for any r > 0, then this is equivalent to calling x a **Contact Point**. Also, just for notational purposes,

$$B(x,r) = \{ y \in X : d(x,y) < r \}$$

Remark: Any $x \in A$ is a contact point of A.

DEFINITION 8. If B(x,r) for any r > 0 has infinitely many points from A, then we say that x is a **Limit Point**.

DEFINITION 9. If $\forall x \in A, \exists r > 0 \ s.t.$

$$B(x,r) \cap A = \{x\}$$

PROPOSITION 10. Let $x \in X$ be a contact point. Then, x must be one of the following.

- x is an isolated point $x \in A$
- x is a limit point of A, $x \in A$
- x is a limit point of A, $x \notin A$

Also, x is not an isolated point if and only if $\exists (x_n)_{n=1}^{\infty} \in A$ where the x_n are distinct such that $x_n \to x$ as $n \to \infty$ and thus

$$\lim_{n \to \infty} d(x, x_n) = 0$$

DEFINITION 10. The Closure \overline{A} of A is the set of all contact points.

 $\overline{A} = A \cup \{Limit \text{ points of } A\}$

PROPOSITION 11.

 $\overline{\overline{A}} = \overline{A}$

Proof.

Let $x \in \overline{\overline{A}}$ and let r > 0. We know that $\exists y \in A$ such that

$$y \in B(x_1, r_1) \subseteq B(x, r)$$

So, x is a contact point of A, and thus $x \in \overline{A}$. \Box

PROPOSITION 12. (i) $A_1 \subseteq A_2 \Longrightarrow \overline{A_1} \subseteq \overline{A_2}$ (ii) $A = A_1 \cup A_2 \Longrightarrow \overline{A} = \overline{A_1} \cup \overline{A_2}$

DEFINITION 11. $A, B \subset X$. We say that A is **Dense** in B if

 $B\subseteq \overline{A}$

and it is also true that A is dense if and only if A is dense in X.

EXAMPLE 7. Points with rational coordinates are dense in \mathbb{R}^k .

DEFINITION 12. We say that X is **Separable** if X has a countable, dense subset.

EXAMPLE 8. Let X be the set of all bounded sequences of real numbers. Distance on X can be the l_{∞} distance.

$$d(\underline{x}, \underline{y}) = \sup_{n} |x_n - y_n|$$
$$||(x_1, \dots, x_n, \dots)||_{\infty} = \sup_{n} |^n x_n|$$

$$\underline{x} = (0.9, 0.99, \dots, 0.99 \dots 99, \dots)$$
$$||\underline{x}||_{\infty} = \sup_{n} \left(\frac{9}{10} + \dots + \frac{9}{10^{n}}\right) = 1$$

PROPOSITION 13. X_{∞} with l_{∞} distance is not separable.

Look at $A \subset X$, $A = \{$ all infinite sequences of 0's and 1's $\}$. A is not countable by the Cantor Diagonalization Argument.

Proof.

Suppose it is

$$\underline{a_1} = (\epsilon_1^1, \dots, \epsilon_1^k, \dots)$$
$$\underline{a_2} = (\epsilon_2^1, \dots, \epsilon_2^k, \dots)$$
$$\underline{a_3} = (\epsilon_3^1, \dots, \epsilon_3^k, \dots)$$
$$\underline{b} = (b_1, \dots, b_n, \dots)$$

If $\epsilon_1^1 = 1$ then $b_1 = 0$. If $\epsilon_1^1 = 0$ then $b_1 = 1$. If $\epsilon_2^2 = 0$, then $b_2 = 1$. If $\epsilon_2^2 = 1$, then $b_2 = 0$. **Claim:** Sequence <u>b</u> is different from all a_i . This is a contradiction which shows that A is uncountable. A has cardinality of the continuum.

Claim: If $\underline{x_1}, \underline{x_2} \in A$, then $d_{\infty}(\underline{x_1}, \underline{x_2}) = 1$.

LEMMA 14. A is not separable. **Proof.**

$$\forall x \in A, \exists y \in B \ s.t. \ y \in B(x, 1/3)$$

Suppose that B is a countable dense subset of A. **Claim:** If $x_1 \neq x_2 \in A$, $y_1, y_2 \in B(x_1, 1/3)$, then $y_1 \neq y_2$. This is a contradiction!

Let $A \subseteq X$ be uncountable. Let $x, y \in A, x \neq y$ and $d(x, y) \geq 1$. We claim that if $B \subset X$ is dense in X, then B cannot be countable. Let $(x_{\alpha})_{\alpha \in A}$ be our set. Consider

$$\{B(x, 1/3) : x \in A\}$$

The set *B* is dense in *X*, so $\forall \alpha \in A$, $B(x_{\alpha}, 1/3)$ contains a point $y_{\alpha} \in B$. LEMMA 15. If $x_{\alpha} \neq x_{\beta}$, then $B(x_{\alpha}, 1/3) \cap B(x_{\beta}, 1/3) = \emptyset$. **Proof.** We know that $y_{\alpha} \in B(x_{\alpha}, 1/3)$ and $y_{\beta} \in B(x_{\beta}, 1/3)$. Moreover, $y_{\alpha} \neq y_{\beta}$.

We know that $y_{\alpha} \in D(x_{\alpha}, 1/3)$ and $y_{\beta} \in D(x_{\beta}, 1/3)$. Moreover, $y_{\alpha} \neq y_{\beta}$. It follows that there is a bijection between A and a subset of B.

Examples Of Countable Dense Sets In C([a, b]) With Various Distances Suppose that $f \in C^k([a, b])$. The first idea is to approximate by polynomials. Bernstein polynomials approximate well.

$$P_n(x) = a_n x^n + \dots + a_0$$

where $a_i \in \mathbb{R}$ and

$$Q_n(x) = b_n x^n + \dots + b_0$$

where $b_j \in \mathbb{Q}$. Those polynomials are dense in C([a, b]) with both L_p and L_{∞} .

$$d_p(f,g) = \left[\int_a^b |f(x) - g(x)|^p dx\right]^{1/p}$$
$$d_\infty(f,g) = \sup_{x \in [a,b]} |f(x) - g(x)|$$

$$\sum_{k=-N}^{N} a_k \sin\left(kx\right) + b_k \cos\left(kx\right)$$

DEFINITION 13. The distance from a point x to a set A is equivalent to

$$d(x,A) = \inf_{a \in A} d(x,a)$$

For example, d(x, A) = 0 if and only if x is a contact point of A.

$$d(A,B) = \inf_{x \in A, y \in B} \{d(x,y)\}$$

Another example is that if $A \cap B \neq 0$, then we can take $x = y \in A \cap B$. Hence d(A, B) = 0. It's not true both ways. We can have $A \cap B \neq 0$ but d(A, B) = 0. DEFINITION 14. Let $A \subset X$. We say that A is **Closed** if $\overline{A} = A$.

EXAMPLE 9. Some examples of closed sets are

• $[a,b] \subset \mathbb{R}$

•
$$\{y \in X : d(y, x_0) \le R > 0\}$$
 or $\{f \in C([a, b]) : |f(x)| \le R\}$ for all $x \in [a, b]$

If f(x) = 0 on [a, b], then

$$d(0,g) = \sup_{x \in [a,b]} |g(x)|$$

and

$$\{g: d(0,g) \le R\}$$

which is exactly the second item on the list above.

PROPOSITION 16. Let $(A_{\alpha})_{\alpha \in I}$ be a collection of closed sets. Then

$$B = \bigcap_{\alpha \in I} A_{\alpha}$$

is also closed. **Proof.**

$$B = \bigcap_{\alpha} A_{\alpha} \Longrightarrow \overline{B} = B \bigcup \{Limit \ Points \ of \ B\}$$

And $\overline{B} = B \iff$ every limit point x of B belongs to B. So, suppose that x is a limit point of $B = \bigcap_{\alpha} A_{\alpha}$. Let r > 0, then B(x, r) contains infinitely many points of

$$B = \bigcap_{\alpha} A_{\alpha}$$

If $y \in B$, then $y \in A_{\alpha}$ for all α . This means that x is a limit point of A_{α} for all $\alpha \in I$. A_{α} is closed, and so every limit point is contained in A_{α} . Thus, $x \in A_{\alpha}$ for all $\alpha \in I$.

$$\implies x \in \bigcap_{\alpha \in I} A_{\alpha} = B \qquad \Box$$

PROPOSITION 17. Let A_1, \ldots, A_n be closed. Then

$$B = \bigcup_{i=1}^{n} A_i$$

is closed. **Proof.**

$$B = \bigcup_{i=1}^{n} A_i$$

Let $x \in B$. We shall show that x cannot be a limit point of B. if

$$x \notin \bigcup_{i=1}^{n} A_i$$

then $x \notin A_i$ for all $i = \{1, ..., n\}$. All the A_i are closed, so x cannot be a limit point of A_i for any i. This implies that $\exists r > 0$ such that $x \notin A$. Let

$$r = \min_{k} d(x, y_k)$$

then

$$B(x,r)\bigcap A = \emptyset$$

 $B(x,r_i)\bigcap A_i = \emptyset$

for any $1 \leq i \leq n$. Now $\exists r_i$ such that

Let

$$r = \min_{1 \le i \le n} r_i$$

then

$$B(x,r)\bigcap A_i = \emptyset$$

for each i. Thus, x is not a limit point of

$$\bigcup_{i=1}^{n} A_i \qquad \Box$$

DEFINITION 15. We say that x is an Interior Point of A if and only if

 $\exists r > 0 \ s.t. \quad B(x,r) \subset A$

DEFINITION 16. We say that A is **Open** if every point in A is an interior point.

PROPOSITION 18. A is open if and only if $X \setminus A$ is closed. **Proof.**

Suppose that A is open, and that $x \in A$, then $B(x,r) \subset A$ and

$$B(x,r)\bigcap A^C = \emptyset$$

Hence, x is not a contact point of A^C . So, $(A^C) \subseteq \overline{A^C} \Longrightarrow A^C$ is closed. If A^C is closed, then $x \in A \Longrightarrow x$ is not a contact point of A^C . This means that $\exists r > 0$ such that

$$B(x,r) \bigcap A^C = \emptyset$$
$$\implies B(x,r) \subset A$$

 $\implies x \text{ is an interior point of } A.$

PROPOSITION 19. If A_{α} is open for any $\alpha \in I$, then

$$B = \bigcup_{\alpha \in I} A_{\alpha}$$

 $is \ also \ open.$

Proof.

 A_{α} is open and so equivalently, we have that A_{α}^{C} is closed

$$\left(\bigcup_{\alpha\in I}A_{\alpha}\right)^{C}=\bigcap_{\alpha\in I}A_{\alpha}^{C}$$

is closed. So, B^C is closed which is equivalent to B being open. Now we invoke Proposition 17.

PROPOSITION 20. A finite intersection of open sets is also open. That is, if A_i is open for i = 0, ..., n, then

$$\bigcap_{i=1}^{n} A_i$$

is also open. Beware, however, that this is not necessarily true for the infinite case. An example of this would be that if

$$A_n = \left(-\frac{1}{n}, 1 + \frac{1}{n}\right) \subset \mathbb{R}$$

which is clearly open for any n, then

$$B = \bigcap_{n=1}^{\infty} A_n = [0, 1]$$

which is closed.

DEFINITION 17. A collection A_{α} , for $\alpha \in I$ of open sets is called a **Basis** (of all open sets) if and only if any open set in X is a union of a sub-collection of A_{α} .

DEFINITION 18. X is called **Second Countable** if and only if there is a countable basis of open sets of X.

LEMMA 21. $\{G_{\alpha}\}$ forms a basis if and only if for any open set A, and for any $x \in A$, there exists α such that

 $x\in G_{\alpha}\subset A$

PROPOSITION 22. Let X be a metric space. We claim that X is second countable if and only if X is separable.

Proof.

Idea is to let $\{y_1, y_1, \ldots, y_n, \ldots\}$ be countable, dense subset of X. Then,

$$\{B(y_i, r_i) : r_i \in \mathbb{Q}\}$$

is a basis of all open sets in X.

 (\Longrightarrow) Let G_1, \ldots, G_n be a countable basis. Choose $x_n \in G_n$. We claim that the set $\{x_n\}$ is dense in X. To prove this, we let $x \in X$, r > 0 and we consider B(x, r) which is an open set. Now, by the lemma above, we know that there exists m such that $x \in G_m \subset B(x, r)$. It follows that $x_m \in G_m \subset B(x, r)$. (\Longleftrightarrow) Let $\{x_n\}$ be a countable dense subset of X. It suffices to show that

$$\left\{B\left(x_n,\frac{1}{k}\right):n,k\in\mathbb{N}\right\}$$

forms a countable basis. To show this, we let A be an open subset of X and we pick $x \in A$. Choose m > 0, such that

$$B\left(x,\frac{1}{m}\right) \subset A$$

Next, we choose k such that

$$d(x, x_k) < \frac{1}{3m}$$

We now claim that

$$x \in B\left(x_k, \frac{1}{2m}\right) \subset B\left(x, \frac{1}{m}\right) \subset A$$
$$\frac{1}{2m} + \frac{1}{3m} = \frac{5}{6m} < \frac{1}{m}$$
$$m \text{ by the lemma.} \qquad \Box$$

This claim implies the previous claim by the lemma.

Fact: \emptyset , X are both open and closed. By X, we mean the entire metric space.

We say that X is **Connected** if and only if any subset $A \subset X$ that is both open and Definition 19. closed is either \emptyset or X.

 \mathbb{R} is connected, but $\mathbb{R} - \{0\}$ is not. Example 10.

DEFINITION 20. Let d_1, d_2 be two distances on X. We say that d_1 and d_2 are **Equivalent** precisely if there are two constants $0 < c_1 < c_2 < \infty$ such that

$$c_1 < \frac{d_1(x, y)}{d_2(x, y)} < c_2$$

This implies that for $r_2 < r_1 < r_3$, we have

$$B_{d_2}(x, r_2) \subset B_{d_1}(x, r_1) \subset B_{d_2}(x, r_3)$$

EXCERCISE: Express
$$r_1, r_3$$
 if we know c_1, c_2 .

Finally, if d_1, d_2 are equivalent, then they define the same open and closed sets. These constants are

$$r_1 = r, r_2 = \frac{r}{C}, r_3 = r \cdot C$$
$$c_1 = \frac{1}{C}, c_2 = C$$

and

$$c_1 = \frac{1}{C}, c_2 = C$$

for C > 1.

COROLLARY 23. Open sets with respect to d_1, d_2 are the same.

Corollary 24. The topologies (space X together with a collection of open sets) defined by d_1, d_2 are the same.

Definition 21. Let X be a set and let $\{A_{\alpha}\}_{\alpha\in I}$ be a collection of open sets. A Topological Space satisfies

(i) \emptyset, X are both open.

(ii)

$$\bigcup_{\alpha \in J} A_{\alpha}$$

is open.

(iii)

$$\bigcap_{i=1}^{n} A_i$$

is open.

PROPOSITION 25. Distances in \mathbb{R}^n defined by

$$d_p(\underline{x}, \underline{y}) = \left(\sum_{j=1}^n |x_i - y_i|^p\right)^{1/p}$$

for $p \ge 1$

$$d_{\infty}(\underline{x}, \underline{y}) = \max_{1 \le j \le n} |x_i - y_i|$$

are equivalent.

DEFINITION 22 (More General Definition). We say that x is a **Contact Point** of $A \subset X$ where X is a topological space if every neighbourhood of x contains a point in A.

A sequence $(x_n)_{n=1}^{\infty} \to x$ if and only if for any neighbourhood U of x, there exists N > 0 such that $x_n \in U$ for $n \geq N$.

Metric Spaces are Hausdorfff.

DEFINITION 23. We say that a space X is **Hausdorff** if for any $x, y \in X$ such that $x \neq y$, there exists r_1, r_2 such that

$$B(x,r_1) \cap B(y,r_2) = \emptyset$$

OR

For any $x \neq y$, there exists open sets U containing x and V containing y such that

 $U\cap V=\emptyset$

DEFINITION 24. We say that a topological space X is **Metrizable** if there exists a metric d on X such that open sets defined by d give the same topology on X.

COROLLARY 26. If a topological space is not Hausdorff, then it is not metrizable.

DEFINITION 25. Let $f: X \to Y$. We say that f is **Continuous** at $x \in X$, if

$$\forall \epsilon > 0, \exists \delta > 0 \ s.t. \ \forall y \in X, d_X(x, y) < \delta \Longrightarrow d_Y(f(x), f(y)) < \epsilon$$

and we say that a f is a Continuous Function if it is continuous $\forall x \in X$. OR

$$\forall (x_n)_{n=1}^{\infty} \to x \ (\lim_{n \to \infty} x_n = x), \lim_{n \to \infty} f(x_n) = f(x)$$

PROPOSITION 27. $f: X \to Y$ is continuous at every point $x \in X$ if and only if for every open set U in Y,

 $f^{-1}(U) \subset X$

is also open. Moreover, this is also equivalent to saying that for every closed set B in Y,

 $f^{-1}(B) \subset X$

is also closed. Another way to say this is

$$X - f^{-1}(B) = f^{-1}(Y - B)$$

Proof.

 (\Longrightarrow) Let $B \subset Y$ be closed and let $f: X \to Y$ be continuous. Now let $f^{-1}(B) = A \subseteq X$. We want A to be closed. It suffices to show that all limit points of A lie in A. We know that there exists $(x_n) \in A$ such that $x_n \to x$ as $n \to \infty$, and that f is continuous at x. By the definition of continuity, we have that

$$f(x_n) \to f(x)$$

Now, $f(x_n) \in B$, and B is closed. Thus $f(x) \in B$, but then $x \in f^{-1}(B) = A$. \Box (\Leftarrow) Let $x \in X$, y = f(x) and let U be an open set, and $y \in U$. Then Y - U is closed. Therefore, $f^{-1}(Y - U) = f^{-1}(A)$ is closed. Moreover, $x \notin A$. So there exists an open set V where $x \in V \subset X - A$. Therefore, $f(V) \subset U$. For any sequence $x_n \to x$, $x_n \in V$ for $n \ge N$. Then $f(x_n) \in U$, and so

$$f(x_n) \to f(x) \quad as \quad n \to \infty$$

Claim: Let K be the Cantor set. We claim that K is uncountable. The idea for the proof is that points in K are like real numbers with only 0's and 2's in expansion (base 3). If $x \in [0, 1]$, then for a Decimal Expansion, we have

$$x = \frac{a_1}{10} + \dots + \frac{a_n}{10^n} + \dots$$

for $a_i \in \{0, 1, \dots, 9\}$. We can also use base 2 for a Binary Expansion

$$x = \frac{a_1}{2} + \dots + \frac{a_n}{2^n} + \dots$$

for $a_i \in \{0, 1\}$. For the Cantor set, we would use a Ternary Expansion

$$x = \frac{a_1}{3} + \dots + \frac{a_n}{3^n} + \dotsb$$

for $a_j \in \{0, 1, 2\}$. PROPOSITION 28. Points in K are in one to one correspondence with

$$\sum_{j=1}^{\infty} \frac{a_j}{3^j}$$

such that $a_j \in \{0, 2\}$. **Proof.** The cantor set K is self similar. To show this we define a map

$$f: K \bigcap \left[0, \frac{1}{3}\right] \to K$$

where f(x) = 3x. If we look at a ternary expansion in "decimal notation" (i.e. $0.22222 \approx 0.100000$), then multiplying the ternary expansion of a number is just the same as multiplying a decimal expansion by 10. \Box

We now examine how to prove that a set $A \in X$ is dense in $B \in X$. Assume for simplicity that $A \subset B$. We need to show that

$$\forall x \in B, \forall \epsilon > 0, \quad \exists \ y \in B(x, \epsilon) \cap A$$

Now, if we construct the cantor set by letting $[0,1] = I_1^0$ and letting the following two intervals to be I_1^1, I_2^1 where the superscript means the step and the subscript means the enumeration of the interval within the set. Thus, at step n, there are 2^n intervals written as

$$I_1^n, I_2^n, \ldots, I_{2^n}^n$$

each of which has length

$$|I_j^n| = \frac{1}{3^n}$$

Now, every $x \in K$ can be written as

$$x = \bigcap_{k=1}^{\infty} I_{m_k}^k$$

We also make the claim that K has length 0. The sum of the intervals that we remove is

$$\frac{1}{3} + 2\frac{1}{9} + 4\frac{1}{3^3} + \dots + \frac{2^n}{3^{n+1}} + \dots$$

which is a geometric progression

$$\frac{1}{3}\sum_{i=0}^{\infty} \left(\frac{2}{3}\right)^i = \frac{1/3}{1-2/3} = 1 = |[0,1]|$$

And thus, this set has length 0.

THEOREM 29. If $f: X \to Y$ is continuous, and $g: Y \to Z$ is continuous, then

 $g \circ f : X \to Z$

is also continuous **Proof.** Let $U \subset Z$ to be an open set. Then

$$(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U))$$

Now, we know that $g^{-1}(U)$ is open, and thus $f^{-1}(g^{-1}(U))$ is also open which completes the proof. \Box

DEFINITION 26. Let X, Y be metric spaces. The map $f : X \to Y$ is called an **Isometry** if for all $x_1, x_2 \in X$, we have

$$d_X(x_1, x_2) = d_Y(f(x_1), f(x_2))$$

EXAMPLE 11. Parseval's Identity If we take $f \in C([0, 2\pi])$ and we define

$$a_0 = 0,$$
 $a_n = \frac{1}{2\pi} \int_0^{2\pi} f(x) \sin(nx) dx$
 $b_n = \frac{1}{2\pi} \int_0^{2\pi} f(x) \cos(nx) dx$

then

$$\int_{0}^{2\pi} |f(x)|^{2} dx = ||f||_{2}^{2} = C \cdot \left(\sum_{n=0}^{\infty} a_{n}^{2} + \sum_{n=1}^{\infty} b_{n}^{2}\right)$$
$$f \to \{\underline{a} = (a_{0}, \dots, a_{n}, \dots), \underline{b} = (b_{1}, \dots, b_{n}, \dots)\}$$

or we could write

$$\frac{1}{2\pi} \int_0^{2\pi} f(x) [\cos(nx) + i\sin(nx)] dx$$

or

$$\frac{1}{2\pi} \int_0^{2\pi} f(x) e^{inx} \, dx$$

for

$$f \to \{(a_0, a_1 + ib_1, \dots, a_n + ib_n, \dots\}$$

 $and \ so$

$$||f||_{2}^{2} = C \cdot (||\underline{a}||_{l^{2}}^{2} + ||\underline{b}||_{l^{2}}^{2})$$

Thus, we have

$$||(\underline{a},\underline{b}|| = ||f||_{L^2} = \frac{\sqrt{||\underline{a}||_2^2 + ||\underline{b}||_2^2}}{\sqrt{C}}$$

DEFINITION 27. Let X, Y be topological spaces. The map $f: X \to Y$ is a Homeomorphism if

- (i) f is bijective.
- (ii) Both $f: X \to Y$ and $f^{-1}: Y \to X$ are continuous functions.

We say that X, Y are **Homeomorphic** if and only if there exists a homeomorphism $f : X \to Y$. Then open/closed sets, closure, limit points and boundary are all the same for X and Y. Also, continuous functions on X, Y are the same.

-Chapter 3-

Completeness

Section 3.1-

BASICS & DEFINITIONS

DEFINITION 28. A sequence (x_n) in a metric space X is a **Cauchy Sequence** if for any $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that if m, n > N, then

$$d(x_n, x_m) < \epsilon$$

DEFINITION 29. We say that a metric space X is **Complete** if and only if every Cauchy sequence is convergent. That is, if (x_n) is Cauchy, then there exists $z \in X$ such that

$$d(z, x_n) \to 0$$

as $n \to \infty$.

EXAMPLE 12. Examples of Complete Metric Spaces

• The space l^2 . Now, l^2 is the space of sequences. Let $\underline{x}^1, \ldots, \underline{x}^k, \ldots \in l^2$ where

$$\underline{x}^k = (x_1^k, \dots, x_n^k, \dots) \in l^2$$

and such that

$$\sum (x_j^k)^2 < \infty$$

Now, suppose that the sequence (\underline{x}^k) is Cauchy in l^2 which is equivalent to

$$||\underline{x}^n - \underline{x}^m||_2 \to 0$$

as $m, n \to \infty$. We want to find

$$\underline{y} = (y_1, \ldots, y_n, \ldots) \in l^2$$

such that $||\underline{x}^k - \underline{y}||_2^2 \to 0$ as $k \to \infty$. We know that

$$||\underline{x}^k - \underline{x}^l||_2^2 = \sum_{j=1}^{\infty} (x_j^k - x_j^l)^2 \ge (x_m^k - x_m^l)^2$$

For each m, (x_m^k) is cauchy in \mathbb{R} . Now there exists $y_m \in \mathbb{R}$ such that $x_m^k \to y_m$ as $k \to \infty$. The sequence y_j is forced upon us. So, let

$$y = (y_1, \ldots, y_n, \ldots)$$

and we claim now that $\underline{y} \in l^2$. We let $\epsilon > 0$ and let N_1 be such that $||\underline{x}^n - \underline{x}^m||_2^2 < \epsilon$ if $m, n > N_1$, and we get

$$\sum_{j=1}^{\infty} (x_j^m - x_j^n)^2 = \sum_{j=1}^{N_2} (x_j^m - x_j^n)^2 + \sum_{j=N_2+1}^{\infty} (x_j^m - x_j^n)^2$$

and the first sum is $\leq \epsilon$ and the second sum is $\leq \epsilon$. Fix n, and let $m \to \infty$. As $m \to \infty$, $x_j^m \to y_j$. This implies that

$$\sum_{j=1}^{N_2} (y_j - x_j^n)^2 \le \epsilon$$

M-2 is any natural number. let $M_2 \rightarrow \infty$. This gives

$$\sum_{j=1}^{\infty} (y_j - x_j^n) < \infty$$

Now, if $(\underline{x}^n) \in l^2$, we have that $d^2(\underline{y}, \underline{x}^n) \leq \epsilon$ and thus $y \in l^2$. Now

$$\sqrt{\sum y_j^2} \le \sqrt{\sum x_j^2} + \sqrt{\sum (x_j^n - b_j)^2} \le \sqrt{\epsilon}$$

and so

$$\lim_{n \to \infty} \sum_{j=1}^{\infty} (x_j^n - b_j)^2 \to 0$$

which follows from the inequality

$$\sum_{j=1}^{\infty} (x_j^n - y_j)^2 \le \epsilon$$

provided that $n > M_1$ and the fact that ϵ is arbitrary yields our claim. \Box

Excercise. Show that l^p is complete.

Let's examine C([a, b]) with d_{∞} distance

$$d_{\infty}(f,g) = ||f - g||_{\infty} = \max_{x \in [a,b]} |f(x) - g(x)|$$

THEOREM 30. The space $(C([a, b]), d_{\infty})$ is complete. **Proof.**

Let $f_1(x), \ldots, f_n(x), \ldots$ be a Cauchy sequence in C([a,b]). Fix $x_0 \in [a,b]$. Then $(f_n(x_0))$ is a Cauchy sequence.

$$|f_i(x_0) - f_j(x_0)| \le \max_{x \in [a,b]} |f_i(x) - f_j(x)| \to 0$$

as i, j simultaneously approach ∞ . Therefore, $(f_n(x_0))$ converges to a limit that we call $g(x_0)$. It is clear that

$$d_{\infty}(f_i(x), g(x)) \to 0$$

as $i \to \infty$. Let $\epsilon > 0$, let $N \in \mathbb{N}$ be such that

$$d_{\infty}(f_n, f_m) < \epsilon$$

for n, m > N.

$$\implies \forall x \in [a, b], \quad d(f_n(x), f_m(x)) < \epsilon$$

Let $m \to \infty$, then $f_m(x) \to g(x)$. Now, passing to the limit, we get that

$$\implies |f_n(x) - g(x)| \le \epsilon$$

if n > N, then

$$d_{\infty}(f_n,g) \leq \epsilon$$

It now remains to show that g(x) is continuous. Fix $\epsilon > 0$ and choose N > 0 such that

$$d_{\infty}(f_n, f_m) < \frac{\epsilon}{2}$$

for each $m \ge N$. Now, let $f_N(x)$ be uniformly continuous on [a,b] (we can do this since [a,b] is a compact subset of \mathbb{R}). Let $\delta > 0$ be such that if $x, y \in [a,b]$ and $|x-y| < \delta$, then

$$|f(x) - f(y)| < \frac{\epsilon}{2}$$

Let m > N. Suppose that $f_m(x) \to g(x)$. As before, let $|x - y| < \delta$, then

$$|g(y) - g(x)| \le |g(y) - f_N(y)| + |f_N(y) - f_N(x)| + |f_N(x) - g(x)| < \frac{3\epsilon}{2} \qquad \Box$$

THEOREM 31. Let $1 \le p < \infty$. Then $(C([a, b]), d_p)$ is not complete. **Proof.**

We shall define a Cauchy sequence

$$f_n(x) \to g(x) = \begin{cases} 0, & x \in [-1,0] \\ 1, & x \in (0,1] \end{cases}$$

Let

$$f_n(t) = \begin{cases} nt, & t \in \left[0, \frac{1}{n}\right]\\ 1, & t > 1\frac{1}{n} \end{cases}$$

Now,

$$\int_0^{1/n} f_n(t)dt = \int_0^{1/n} nt \, dt = \left[\frac{nt^2}{2}\right]_0^{1/n} = \frac{1}{2n} \to 0$$

as $n \to \infty$. We prove now for p = 1. Let

$$f_n(x) = \begin{cases} 0, & x \in \left[-1, \frac{1}{2n}\right] \\ 2^n \left(x - \frac{1}{2n}\right), & x \in \left[\frac{1}{2^{n+1}}, \frac{1}{2^n}\right] \\ 1, & x \in \left[\frac{1}{2^n}, 1\right] \end{cases}$$

so then, for m > n

$$f_m(x) - f_n(x) = \begin{cases} 0, & x \le \frac{1}{2^{m+1}} \\ 2^m \left(x - \frac{1}{2^{m+1}} \right), & x \in \left[\frac{1}{2^{m+1}}, \frac{1}{2^m} \right] \\ 1, & x \in \left[\frac{1}{2^m}, \frac{1}{2^{n+1}} \right] \\ 1 - 2^n \left(x - \frac{1}{2^{n+1}} \right), & x \in \left[\frac{1}{2^{n+1}}, \frac{1}{2^n} \right] \end{cases}$$

Now,

$$d_1(f_m, f_n) = \int_{1/2^{m+1}}^{1/2^n} |f_m(x) - f_n(x)| dx \le \left(\frac{1}{2^n} - \frac{1}{2^{m+1}}\right) \cdot 1 \to 0$$

as $m, n \to \infty$ \Box .

 $\ensuremath{\mathbf{Exercise.}}$ Let

$$h_{n,p}(x) = \begin{cases} 0, & x \in [-1,0]\\ (nx)^{1/p}, & x \in [0,\frac{1}{n}]\\ 1, & x \in [\frac{1}{n},1] \end{cases}$$

and

$$\left[\int_{0}^{1/n} |h_{n,p}(x)|^{p} dx\right]^{1/p} = \left[\int_{0}^{1/n} (|nx|^{1/p})^{p} dx\right]^{1/p} = \left[\int_{0}^{1/n} (nx) dx\right]^{1/p} = \left(\frac{1}{2n}\right)^{1/p} \to 0$$

as $n \to \infty$. Use $h_{n,p}(x)$ to modify the construction for p = 1.

THEOREM 32. The space X is complete if and only if for every sequence of nested closed balls

$$\cdots \subset B(x_n, r_n) \subset \cdots \subset B(x_1, r_1)$$

such that $r_n \to 0$ as $n \to \infty$. We then have a nonempty intersection. **Proof.**

 (\Longrightarrow) Let (x_n) be a sequence of centres of the balls. Then, (x_n) is a Cauchy sequence. Indeed,

$$d(x_n, x_m) \le \max(r_n, r_m) \to 0$$

as $n, m \to \infty$. X is complete, so $x_n \to y \in X$ as $n \to \infty$. We want to show that

$$y \in \bigcap_{i=n}^{1} B(x_i, r_i)$$

We know that

$$y = \lim_{n \to \infty} x_n$$

for $x_m \in B(x_n, r_n)$, m > n, we get

$$\lim_{n \to \infty} d(x_m, x_n) \le r_n \Longrightarrow d(y, x_n) \le r_n$$

 (\Leftarrow) We must prove now that if X is not complete, then \exists a sequence of balls

$$\cdots \subset B(x_n, r_n) \subset \cdots \subset B(x_1, r_1)$$

such that $r_n \downarrow 0$ and

$$\bigcap_{n=1}^{\infty} B(x_n, r_n) = \emptyset$$

Suppose now that X is not complete. Then there exists a Cauchy sequence (x_n) such that x_n doesn't have a limit in X. Also, there exists n_1 such that

$$d(x_m, x_{n_1}) < \frac{1}{2}$$

for $m \ge n_1$. Now, let $B_1 = B(x_{n_1}, 1)$, then there exists $n_2 > n_1$ such that

$$d(x_m, x_{n_2}) < \frac{1}{2^2} = \frac{1}{4}$$

for each $m \ge n_2$. Now let $B_2 = B(x_{n_2}, 1/2)$. We claim that $B_2 \subset B_1$. The induction step is that there exists $n_k > n_{k-1}$ such that

$$d(x_m, x_{n_k}) < \frac{1}{2^k}$$

for all $m \ge n_k$. Now, let

$$B_k = B\left(x_{n_k}, \frac{1}{2^k}\right)$$

Now, we claim that $B_k \subset B_{k-1}$. We know that

where

$$r_k = \frac{1}{2^k} \to 0$$

 $\cdots \subset B_2 \subset B_1$

as $k \to \infty$. Any point lying in

$$\bigcap_{k=1}^{\infty} B_k$$

must be a limit of (x_k) . We assumed that (x_k) doesn't converge. Thus

$$\bigcap_{k=1}^{\infty} B_k = \emptyset$$

and this contradiction completes the (\Leftarrow) direction of the proof. \Box

In general, there exist complete metric spaces, and there exists r_n that doesn't converge to zero such that

$$\cdots \subset B(x_2, r_2) \subset B(x_1, r_1)$$

but that

$$\bigcap_{k=1}^{\infty} B(x_k, r_k) = \emptyset$$

Hint (Problem 5(ii), Assignment 1): Prove that

{All 3-adic rationals in [0,2]} $\subset K + K$

and then $a/3^n$ is dense in [0,2] where $0 \le a \le 2 \cdot 3^n$.

-Section 3.2-

Completion & Density Revisited

DEFINITION 30. The Completion of an incomplete metric space X is a metric space Y such that

 $f:X\to Y$

is a function that satisfies

• f is 1-to-1, with

$$d(f(x_1), f(x_2)) = d(x_1, x_2)$$

- [f is an isometry from X to f(X)]
- f(X) as dense in Y
- Y is complete

PROPOSITION 33. Every incomplete metric space has a completion that is unique up to isometry. **Proof (Idea).** Let Z be the set of all Cauchy Sequences $\underline{x} = (x_1, \ldots, x_n, \ldots)$ in X. DEFINITION 31. We say that two Cauchy sequences (x_n) and (y_n) are **Equivalent** if and only if

$$d(x_n, y_n) \to 0$$

as $n \to \infty$.

PROPOSITION 34. Equivalence is an equivalence relation. **Proof.**

The only non-trivial part of this part is transitivity. Thus, if $(x_n) \sim (y_n)$ and $(y_n) \sim (z_n)$, then we know that for $n > n_1$, $d(x_n, y_n) < \frac{\epsilon}{2}$

and for $n > n_2$,

$$d(y_n, z_n) < \frac{\epsilon}{2}$$

and thus

 $d(x_n, z_n) < \epsilon$

for $n > N = \max\{n_1, n_2\}$. \Box

DEFINITION 32. If we let Y denote the set of all equivalence classes in Z with respect to \sim , then for $(x_n), (y_n)$ Cauchy sequences in X, we define

$$d\left(\overline{(x_n)},\overline{(y_n)}\right) = \lim_{n \to \infty} d_X(x_n,y_n)$$

PROPOSITION 35.

$$d = 0 \iff (x_n) \sim (y_n)$$

Proof.

So, if $(x_n) \sim (x'_n)$, then

$$\lim_{n \to \infty} d(x_n, y_n) = \lim_{n \to \infty} d(x'_n, y_n)$$

We have

$$f: X \to Y$$

such that $f(x) = \{x, x, x, ...\}$. It remains to show that

- f(X) is dense in Y
- Y is complete

For the first part, let $(x_n^1), (x_n^2), \ldots, (x_n^k)$ be Caucy sequences. We know that

 $d_Y((x_n^{k_1}), (x_n^{k_2})) \to 0$

as $k_1, k_2 \rightarrow infty$. Now, let $y \in Y$. y is an equivalence class of the sequence (x_n) . Let $\epsilon > 0$, and let N be such that

$$d(x_n, x_m) < \epsilon$$

for all n, m > N. Choose, n > N, and we get

$$d_Y(y, f(x_n)) = d_Y(y, (x_n, x_n, \dots, x_n, \dots)) \le \epsilon$$

where $f(x_n) \in f(X)$. This implies that f(X) is dense in Y. For the second part, let y_1, \ldots, y_n be Cauchy in Y. Choose

$$\left\{x_n: d_X(f(x_n), y_n) < \frac{1}{n}\right\}$$

We claim that (x_n) is a Cauchy sequence in X. If $z = \overline{(x_n)}$, then $y_n \to z$ in Y.

We now ask the question: Why are complete metric spaces cool? A possible answer would involve the Contraction Mapping Principle.

O.D.E. & CONTRACTION

DEFINITION 33. If X is a metric space and $A: X \to X$, then we say that A is a Contraction Mapping if there exists $0 < \alpha < 1$ such that

Section 3.3-

 $d(A(x), A(y)) < \alpha \cdot d(x, y)$

for any $x, y \in X$. It is a fact that if A is a contraction mapping, then A is continuous.

THEOREM 36 (Contraction Mapping Principle). If X is complete, and A is a contraction mapping, then there exists a unique point $x_0 \in X$ such that $A(x_0) = x_0$ is a fixed point of A. Moreover, for any $x \in X$, $A^n(x) \to x_0$ as $n \to \infty$.

Proof.

Let $x \in X$ and consider

$$\{x, A(x), \dots, A^n(x), \dots\} = \{x_0, \dots, x_n, \dots\}$$

We claim that (x_n) is a Cauchy sequence. To this end, we begin with

$$d(A^{m}(x), A^{m+k}(x)) = d(A^{m}(x), A^{m}(A^{k}(x))) \le \alpha^{m} d(x, A^{k}(x))$$

By induction on m, we see

$$d(A^{2}(x), A^{2}(y)) \leq \alpha d(A(x), A(y)) \leq \alpha^{2} d(x, y) \leq \cdots$$

and so if $m \to \infty$, then $\alpha^m \to 0$.

Now, we know that $A^n(x) \to x_0$ as $n \to \infty$, since X is complete. We now want an a priori bound on $d(x, A^k(x))$ for each k. $d(x, A^k(x)) = h$

$$a(x, A(x)) = b$$

$$d(x, A^{k}(x)) \le d(x, A(x)) + d(A(x), A^{2}(x)) + \dots + d(A^{k-1}(x), A^{k}(x))$$

Where

$$d(A^{i}(x), A^{i-1}(x)) \le \alpha^{i}b$$

 $and \ so$

$$d(x, A^k(x)) \le b(1 + \alpha + \dots + \alpha^{k-1}) \le \frac{b}{1 - \alpha}$$

which is the bound we need. We also know that

$$A^{n+1}(x) \to A(A^n(x)) \to A(x_0)$$

as $n \to \infty$. And thus $A(x_0) = x_0$ which means that x_0 is a fixed point of A. A cannot have two fixed points since if x_0, y_0 are fixed, then

$$Ax_0 = x_0 \qquad A(y_0) = y_0$$

then

$$d(A(x_0), A(y_0)) = d(x_0, y_0)$$

which is a contradiction that completes the proof. $\hfill \Box$

Remark. Alternatively to our original proof, we let our sequence be $x_n = Ax_{n-1}$ so that $x_n = A^n x_0$ and since A is continuous, and since $x_n \to x^*$, we get that

$$Ax^* = A \lim_{n \to \infty} x_n = \lim_{n \to \infty} Ax_n = x^*$$

which shows existence of a fixed point.

DEFINITION 34. We say that a map f is Lipschitz, denoted $f \in Lip_K$ if

$$|f(x) - f(y)| < K \cdot |x - y|$$

and if K < 1 then f is a contraction mapping.

EXAMPLE 13. 1. Suppose that $f : [a,b] \to \mathbb{R}$ and that f is Lipschitz with K > 0. If K < 1 then we know that f is a contraction mapping from $[a,b] \to [a,b]$. Hence if

$$x_0, x_1 = f(x_1), x_2 = f(f(x_0)), \dots$$

then $f^n(x) \to y$ such that f(y) = y. Sufficient condition is that if $f \in C^1([a, b])$,

$$|f'(t)| \le K < 1$$

for all $t \in [a, b]$.

$$f(y) - f(x) = (y - x) \cdot f'(t)$$

for some $t \in [x, y] \subset [a, b]$. So

$$\left|\frac{f(y) - f(x)}{y - x}\right| = |f'(t)| \le K < 1$$

2. Solving ODE's.

$$\frac{d}{dx}y = f(x,y) \qquad y(x_0) = y_0$$

Now, suppose that

$$|f(x, y_1) - f(x, y_2)| \le M \cdot |y_1 - y_2|$$

for M fixed, then $f \in Lip_M$ in y. We assume that f is continuous on some rectangle $R \subset \mathbb{R}^2$ such that $(x_0, y_0) \in R$. Then, on some small interval

$$|x - x_0| \le d$$

there exists a unique solution to the ODE satisfying the initial condition $y(x_0) = y_0$. **Proof.**

Solving the ODE above is equivalent to solving an integral equation

$$\varphi(x) = y_0 + \int_{x_0}^x f(t, \varphi(t)) dt \qquad \varphi(x_0) = y_0$$

and we note that

$$\varphi'(x) = f(x,\varphi(x))$$

f is continuous on R and so

$$|f(x,y)| \le K$$

for all points $(x, y) \in R_1$ where R_1 contains (x_0, y_0) . Now we choose d > 0 so that if

• $|x - x_0| \le d$ and $|y - y_0| \le Kd$, and

• Md < 1

then $(x, y) \in R_1$. Let C be the space of continuous functions φ on $[x_0 - d, x_0 + d]$ such that

$$|x - y_0| \le K \cdot d$$

Let d_{∞} be the sup distance

$$d(\varphi_1,\varphi_2) = \sup_{x \in [x_0-d,x_0+d]} |\varphi_1(x) - \varphi_2(x)|$$

then C is complete. Now we need to define a contraction mapping and so let

$$A\varphi = \psi(x) = y_0 + \int_{x_0}^x f(t,\varphi(t)) dt$$

So we claim that A is a contraction map from $C \to C$. If this claim is true, then there exists a unique fixed point φ of A such that $A\varphi = \varphi$ which means that this unique φ solves the integral equation uniquely and thus solves the ODE uniquely.

Now, to prove the claim, we define a starter function $\varphi \in C$ such that

$$|x - x_0| \le d$$

and we have that

$$\begin{aligned} |\psi(x) - y_0| &= |A(\varphi(x)) - y_0| = \left| \int_{x_0}^x f(\varphi(t), t) \, dt \right| \\ &\leq \max_{t \in [x_0, x]} |f(\varphi(t), t)| \cdot |x - x_0| \\ &\leq Kd \end{aligned}$$

Now, for the contraction (with respect to the sup norm)

$$\begin{aligned} |A(\varphi_{1}(x)) - A(\varphi_{2}(x))| &= \left| y_{0} + \int_{x_{0}}^{x} f(t,\varphi_{1}(t)) \ dt - y_{0} - \int_{x_{0}}^{x} f(t,\varphi_{2}(t)) \ dt \right| \\ &= \left| \int_{x_{0}}^{x} \left[f(t,\varphi_{1}(t)) - f(t,\varphi_{2}(t)) \right] dt \right| \\ &\leq \int_{x_{0}}^{x} \left| f(t,\varphi_{1}(t)) - f(t,\varphi_{2}(t)) \right| \ dt \\ &\leq \int_{x_{0}}^{x} M \cdot |\varphi_{1}(t) - \varphi_{2}(t)| \ dt \\ &\leq M \cdot |x - x_{0}| \cdot \max_{t \in [x_{0},x]} |\varphi_{1}(t) - \varphi_{2}(t)| \\ &\leq M \cdot d \cdot d_{\infty}(\varphi_{1},\varphi_{2}) \end{aligned}$$

Thus,

$$d_{\infty}(A(\varphi_1), A(\varphi_2)) \le M \cdot d \cdot d_{\infty}(\varphi_1, \varphi_2)$$

remember that $M \cdot d < 1$ and $M = \alpha$.

Fact. Let X be a complete metric space. If A^n is a contraction map from X. Then A(x) = x also has a unique solution.

We will leave the proof of this until when we need to use it.

-Chapter 4-

Compactness

Section 4.1-

BASICS & DEFINITIONS

DEFINITION 35. Let $A \subset X$ where X is a metric space. We say that A is **Sequentially Compact** if every sequence in A has a subsequence which converges to some $x \in X$ ($x \notin A$ is possible).

DEFINITION 36. $A \subset X$ is called an ϵ -net if for each $x \in X$, there exists $y \in A$ such that

 $d(x,y) \le \epsilon$

DEFINITION 37. X is **Totally Bounded** if for each $\epsilon > 0$, there exists a finite ϵ -net in X. **OR** X is **Totally Bounded** if for any $\epsilon > 0$, there exists a finite set x_1, \ldots, x_n such that

$$X \subset B(x_1, \epsilon) \bigcup B(x_2, \epsilon) \bigcup \cdots \bigcup B(x_n, \epsilon)$$

where $n = n(\epsilon)$.

Other problems where knowing what $n(\epsilon)$ is useful include

- Coding
- Complexity

We note first that a totally bounded space is bounded. That is,

$$d(x_1, x_2) \le 2\epsilon + \max_{y_1, y_2 \in \epsilon - net \ A} d(y_1, y_2) = 2\epsilon + diam(\epsilon - net \ A)$$

Fact. If $B \subset X$ is totally bounded, then $\overline{B} \subset X$ is also totally bounded.

We now ask the question: What is the minimal number of points in an ϵ -net? $[0,1]^n$,

least number of points
$$\approx \left(\frac{1}{\epsilon} + 1\right)^n$$

Hint: We can use without proof the fact that all norms in \mathbb{R}^2 are equivalent. This implies that we can use our favourite norm in \mathbb{R}^n to define the operator norm, namely

$$\frac{||Ax||_p}{||x||_p} \quad \text{or} \quad \frac{||Ax||_\infty}{||x||_\infty}$$

Now, suppose that $C_1 < C_2$, so if

$$\frac{1}{C_1} \le \frac{d_1(x, y)}{d_2(x, y)} < C_1$$

$$\frac{1}{C_1} = \frac{d_1(x, y)}{d_1(x, y)} = C_1$$

then

$$\frac{1}{C_2} \le \frac{d_1(x, y)}{d_2(x, y)} < C_2$$

EXAMPLE 14. Examples of totally bounded sets.

- In \mathbb{R}^n , a set is totally bounded iff the set is bounded (n is fixed).
- In l^2 , take the set

$$A = \left\{ x = (x_1, \dots, x_n, \dots) : |x_1| \le 1, |x_2| \le \frac{1}{2}, \dots |x_n| \le \frac{1}{2^n} \right\}$$

We claim that A is totally bounded. **Proof.** Let $\epsilon > 0$ and choose m such that

$$\frac{1}{2^m} < \frac{\epsilon}{2}$$

Now, let

$$C_1 = \{ \underline{x} = (x_1, \dots, x_m, 0, 0, \dots, 0, \dots) : \underline{x} \in A \}$$

First, we claim that C_1 is totally bounded. C_1 can be covered by $N(\epsilon) < \epsilon^{-m}$ balls of radius ϵ . Now we claim that the whole set C lies in an ϵ -neighbourhood of C_1 . It suffices to show that for any $x \in C$, there exists $y \in C_1$ such that

$$d(x,y) \le \epsilon$$

To this end, take $x = (x_1, ..., x_m, x_{m+1}, ...) \in C$ and $y = (x_1, ..., x_m, 0, ..., 0, ...) \in C_1$. Now,

$$d^{2}(x,y) = \sum_{k=m+1}^{\infty} |x_{k}^{2} \leq \frac{1}{(2^{m+1})^{2}} + \frac{1}{(2^{m+2})^{2}} + \cdots$$
$$= \frac{1}{4^{m}} \left(1 + \frac{1}{4} + \frac{1}{16} + \cdots \right)$$
$$= \frac{1}{4^{m}} \frac{1}{1 - 1/4} = \frac{1}{3 \cdot 4^{m-1}} < \epsilon^{2}$$

Now, the ϵ -net in C_1 is also a finite (2ϵ) -net in C. So since, ϵ is arbitrary, we conclude that C is totally bounded.

We remark that the same construction would work if

$$|x_k| \le a_k \quad s.t. \quad \sum_{k=1}^{\infty} a_k^2 < \infty$$

• We claim that the whole of l^2 is not totally bounded. To this end, define

$$x_1 = (1, 0, 0, 0, \ldots)$$
$$x_2 = (0, 1, 0, 0, \ldots)$$
$$x_3 = (0, 0, 1, 0, \ldots)$$

$$A = \{x_1, x_2, \ldots\}$$

We know that

$$d^2(x_m, x_n) = 1^2 + 1^2 = 2$$

for any m, n. So, for any $\epsilon < \sqrt{2}/2$, A cannot be covered by a finite ϵ -net.

THEOREM 37. Let X be complete, and suppose that $A \subset X$. A is sequentially compact if and only if A is totally bounded.

 (\Longrightarrow) Suppose that A is not totally bounded. There exists an $\epsilon > 0$ such that A doesn't have a finite ϵ -net. Choose $x_1 \in A$, then there exists $x_2 \in A$ such that

$$d(x_1, x_2) \ge \epsilon$$

and there exists x_3 such that

$$d(x_3, x_1) \ge \epsilon \quad d(x_3, x_2) \ge \epsilon$$

and continuing this way, we see that there exists x_k such that for any j < k,

$$d(x_k, x_j) \ge \epsilon$$

Now, we claim that x_j cannot have a convergent subsequence. To yield this claim, we simply say that any subsequence is not Cauchy.

 (\Leftarrow) Suppose that X is complete and A is totally bounded. Let (x_a) be a sequence of points in A. Let

$$\epsilon_1, \epsilon_2 = \frac{1}{2}, \dots, \epsilon_k = \frac{1}{k}$$

For any k, there exists a finite set $a_1^k, a_2^k, \ldots, a_{n_k}^k$ such that

$$\bigcup_{i=1}^{n} B(a_i^k, \epsilon_k) = A$$

One of $B(a_i^1, 1)$ has infinitely many x_k 's. In a ball B_i of radius 1, there is an infinite subsequence of x_k 's

$$x_1^{(1)}, \dots, x_n^{(1)}, \dots$$

Also, one of the balls

$$B\left(a_j^2, \frac{1}{2}\right)$$

has infinitely many $x_j^{(1)}$. Call it B_2 . Call the corresponding subsequence

$$x_1^{(2)}, \dots, x_n^{(2)}, \dots$$

One of

$$B\left(a_{j}^{k}, \frac{1}{k}\right)$$

has infinitely many points of

$$x_1^{(k-1)}, \dots, x_n^{(k-1)}, \dots$$

Call it B_k . Elements lying in B_k for a subsequence

$$x_1^{(k)},\ldots,x_n^{(k)},\ldots$$

Now, let $y_k = x_k^{(k)}$. y_k is a subsequence of x_k 's. y_k is Cauchy. For $m \ge 1$,

$$d(y_k, y_{k+m}) \le diam\left(B\left(a_j^k, \frac{1}{k}\right)\right) \le \frac{2}{k}$$

X is complete. $y_k \to z \in X$. \Box

Section 4.2-

Arzela & Compacta

PROPOSITION 38. X is complete, and $A \subseteq X$ is compact if and only if for all $\epsilon > 0$, there exists in X a sequentially compact ϵ -net that covers A.

DEFINITION 38. Let $\mathcal{F} = \{\varphi(x)\}$ be a family (collection) of functions on [a, b]. We say that \mathcal{F} is Uniformly Bounded if there exists M > 0 such that

$$|\varphi(x)| \le M, \ \forall x \in [a,b], \ \forall \varphi \in \mathcal{F}$$

DEFINITION 39. We say that the family \mathcal{F} is **Equicontinuous** if for every $\epsilon > 0$, there exists $\delta > 0$ such that $\forall x_1, x_2 \in [a, b]$, with $|x_1 - x_2| < \delta$, and $\forall \varphi \in \mathcal{F}$, we get

$$|\varphi(x_1) - \varphi(x_2)| < \epsilon$$

Remark. Both of the above definitions work for any metric space *X*.

THEOREM 39 (Arzela). Let \mathcal{F} be a family of continuous functions on [a, b]. Then \mathcal{F} is sequentially compact in $(C([a, b]), d_{\infty})$ (which is complete by Theorem 30) if and only if \mathcal{F} is uniformly bounded and equicontinuous. **Proof.**

 (\Longrightarrow) It is true that \mathcal{F} is sequentially compact in $(C([a, b]), d_{\infty})$ if and only if \mathcal{F} is totally bounded in C([a, b]) by Theorem 36.

Now, let $\epsilon > 0$, then \mathcal{F} can be covered by a finite $(\epsilon/3)$ -net. There exists $\varphi_1, \ldots, \varphi_k \in C([a, b])$ such that for any $\varphi \in C([a, b])$, we have

$$d_{\infty}(\varphi,\varphi_j) < \frac{\epsilon}{3}$$

for some $1 \leq j \leq k$. Now, $|\varphi_j(x)| \leq M_j$ for all $x \in [a, b]$. Take

$$M = \max\{M_j\} + \frac{\epsilon}{3}$$

and for any $x \in [a, b]$ and for any $\varphi \in \mathcal{F}$, there exists $1 \leq j \leq k$ such that

$$|\varphi(x) - \varphi_j(x)| \le \frac{\epsilon}{3}$$

Now, for all x,

$$|\varphi(x)| \le |\varphi_j(x)| + \frac{\epsilon}{3} \le M_j + \frac{\epsilon}{3} \le M$$

 $and \ since$

$$d_{\infty}(\varphi,\varphi_j) \le \frac{\epsilon}{3}$$

which means that \mathcal{F} is uniformly bounded.

Each $\varphi(x) \in C([a, b])$ is uniformly continuous, so there exists δ_i such that

$$|x_1 - x_2| < \delta_j \Longrightarrow |\varphi_j(x_1) - \varphi_j(x_2)| < \frac{\epsilon}{3}$$

and let $\delta = \min\{\delta_j\}$. Let $x_1, x_2 \in [a, b]$ such that $|x_1 - x_2| < \delta$. Let $\varphi \in \mathcal{F}$ and choose $1 \leq j \leq k$ so that

$$d_{\infty}(\varphi,\varphi_j) < \frac{\epsilon}{3}$$

and now

$$\begin{aligned} |\varphi(x_1) - \varphi(x_2)| &\leq |\varphi(x_2) - \varphi_j(x_1)| + |\varphi_j(x_1) - \varphi_j(x_2)| + |\varphi_j(x_2) - \varphi(x_2)| \\ &\leq \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon \end{aligned}$$

(\Leftarrow) We know that $(C([a, b]), d_{\infty})$ is complete and hence it is sequentially compact if and only if it is totally bounded. We claim that \mathcal{F} is totally bounded. Let $\epsilon > 0$. By uniform boundedness, we get that

$$|\varphi(x)| \le M$$

Now, let $\delta > 0$, then for any $x_1, x_2 \in [a, b]$, we have that

$$|x_1 - x_2| < \delta \Longrightarrow |\varphi(x_1) - \varphi(x_2)| < \frac{\epsilon}{5}$$

for any $\varphi \in \mathcal{F}$. Now, let

$$\frac{b-a}{N} < \delta$$

 $and \ let$

$$x_0 = a$$
 $x_1 = a + \frac{b-a}{N}$ $x_2 = a + 2\frac{b-a}{N}$ \cdots $x_{N-1} = a + (N-1)\frac{b-a}{N}$ $x_N = b$

Now we let m > 0 and

$$\frac{2M}{m} < \frac{\epsilon}{5}$$

and $y_0 = -M$ and $y_m = M$ so that the points y_k subdivide the interval [-M, M] into m equal parts. Now, we take any continuous function $\varphi \in \mathcal{F}$. We look at values $\{\varphi(x_0), \varphi(x_1), \ldots, \varphi(x_N)\}$ and for each j, we choose y_j such that

$$|\varphi(x_j) - y_j| \le \frac{\epsilon}{5}$$

Now let ψ be a piecewise-linear function such that $\psi(x_j) = y_j$. The set of all possible ψ (call it A) is finite and

 $|A| \le (M+1)^{n+1}$

Furthermore, since we know that the slope is between -3 and 3, it follows that the number of functions

$$|A| \le (M+1) \cdot 7^n$$

Now we claim that the set A of possible ψ form an ϵ -net in \mathcal{F} . To this end, we first note that for any $0 \leq k \leq n$,

$$|\varphi(x_k) - \psi(x_k)| < \frac{\epsilon}{5}$$

and

$$\varphi(x_{k+1}) - \psi(x_{k+1})| < \frac{\epsilon}{5}$$

by our choice of ψ . Also, by uniform continuity, we get

$$|\varphi(x_k) - \varphi(x_{k+1})| < \frac{\epsilon}{5}$$
$$\implies |\psi(x_k) - \psi(x_{k+1})| < \frac{3\epsilon}{5}$$

Now, for any $x \in [x_k, x_{k+1}]$, we have by linearity that

$$|\psi(x) - \varphi(x_k)| \le \frac{3\epsilon}{5}$$

Then

$$|\varphi(x) - \psi(x)| \le |\varphi(x) - \varphi(x_k)| + |\varphi(x_k) - \psi(x_k)| + |\psi(x_k) - \psi(x)| = \alpha + \beta + \gamma$$

We know that $\alpha < \epsilon/5$ by uniform continuity, and $\beta < \epsilon/5$ by construction of ψ and $\gamma < 3\epsilon/5$. Thus

$$|\varphi(x) - \psi(x)| < \epsilon$$

for any $x \in [a, b]$ which completes the proof. \Box .

Recall that $A \subseteq X$ is sequentially compact if and only if any sequence $(x_n) \in A$ has a subsequence that converges in X.

DEFINITION 40. A subset $A \subseteq X$ is Sequentially Compact In Itself if and only if any sequence $(x_n) \in A$ has a convergent subsequence that converges in A.

EXAMPLE 15. If $B = \mathbb{Q} \cap [0, 1]$ then B is sequentially compact but not in itself.

EXAMPLE 16. If A = X then sequential compactness is equivalent to sequential compactness in itself.

DEFINITION 41. A sequentially compact metric space is called **Compactum**.

PROPOSITION 40. Let $A \subseteq X$. If A is sequentially compact, then A is sequentially compact in itself if and only if A is as a closed subset of X.

COROLLARY 41. Any closed bounded subset of \mathbb{R}^n is sequentially compact in itself.

PROPOSITION 42. Let X be a metric space. X is a compactum if and only if X is complete and totally bounded. **Proof.** EXCERCISE

PROPOSITION 43. Every compactum has a countable dense subset.

THEOREM 44. The following are equivalent:

- (i) X is a compactum.
- (ii) An arbitrary open cover $\{U_{\alpha}\}_{\alpha \in I}$ of X has a finite subcover. That is there exists $\alpha_1, \ldots, \alpha_n \in I$ such that

$$X \subseteq \bigcup_{i=1}^{n} U_{\alpha_i}$$

(iii) (Finite Intersection Property) A family $\{F\}_{\alpha \in I}$ of closed subsets of X such that every finite collection of F_n 's has a nonempty intersection has

$$\bigcap_{\alpha \in I} F_{\alpha} \neq \emptyset$$

Proof.

 $((i) \iff (ii))$ Suppose that X is sequentially compact in itself. Let $\epsilon_n = 1/n$ and take a finite ϵ_n -net; with

centres $a_k^{(n)}$ for each n so that

$$X \subseteq \bigcup B\left(a_k^{(n)}, \frac{1}{n}\right)$$

We proceed by contradiction. Assume that there exists an open cover $\{U_{\alpha}\}$ without a finite subcover and choose one of

$$B\left(a_k^{(n)}, \frac{1}{n}\right)$$

that cannot be covered by a finitely many U_{α} 's. Now, say

$$B\left(a_{k_0(n)}^{(n)}, \frac{1}{n}\right)$$

Let $x_n = \{x_{k_0(n)}^{(n)}\}$. Now, X is a compactum, so a subsequence $x_{n_j} \to y \in X$. $y \in U_\beta$, for some $\beta \in I$. U_β is open and so

$$B(y,\epsilon) \subseteq O_{\beta}$$

for some $\epsilon > 0$. Now choose n so that

$$\frac{1}{n} < \frac{\epsilon}{2}$$

 $and \ then$

$$d(y, a_{k_0(n)}^{(n)}) < \frac{\epsilon}{2}$$

Now, we claim that

$$B\left(a_{k_0(n)}^{(n)}, \frac{1}{n}\right) \subseteq B(y, \epsilon) \subseteq O_{\beta}$$

which is trivially true. But this is a contradiction which completes this part of the proof. $((ii) \Longrightarrow (i))$ Suppose that any open cover of X has a finite subcover. Then we claim that X is complete, and that X is totally bounded. To show total boundedness, we let $\epsilon > 0$ and then

$$X \subseteq \bigcap_{x \in X} B(x, \epsilon = U_x)$$

has a finite subcover. Thus, there exists $x_1, \ldots, x_{n(\epsilon)}$ such that

$$X \subseteq \bigcap_{k=1}^{n(\epsilon)} B(x_k, \epsilon)$$

is a finite ϵ -net and ϵ is arbitrary, so total boundedness follows. To show completeness, we let

$$\cdots \subseteq B_k \subseteq \cdots \subseteq B_1$$

be a sequence of closed, nested spheres of radius $r_k \to 0$ as $k \to \infty$. Now, suppose, for a contradiction, that

$$\bigcap_{k=1}^{\infty} B_k = \emptyset$$

Now,

is an open cover of X. It cannot have a finite subcover, otherwise
$$B_j = \emptyset$$
 for $j > N$ which is a contradiction that completes the final portion of the proof. \Box

 $\bigcup_{k\in\mathbb{N}}(X\backslash B_k)$
Remark. Open cover property is usually taken as a definition of compactness for general topological spaces. To get a "sequential" definition for general topological spaces, one should generalize the notion of sequence to "nets."

THEOREM 45. If X is compact, and $f: X \to Y$ is continuous, then f(X) is compact. **Proof.**

Let

$$f(X) \subseteq \bigcup_{\alpha \in I} V_{\alpha}$$

Then, for any α , define $f^{-1}(V_{\alpha}) = U_{\alpha}$ which is open and $\{U_{\alpha}\}_{\alpha \in I}$ is an open cover of X which is compact. Then there exists a finite subcover

$$X \subseteq U_{\alpha_1} \cup U_{\alpha_2} \cup \dots \cup U_{\alpha_n}$$

which implies that

$$f(X) \subseteq V_{\alpha_1} \cup \dots \cup V_{\alpha_n}$$

is a finite subcover of f(X) which yields our claim. \Box

THEOREM 46. If X is compact and $f : X \to Y$ is continuous, one-to-one and onto, then f^{-1} is also continuous and hence f is also a homeomorphism. **Proof.**

Define Y = f(X) to be compact. Let $B \subseteq X$ be closed. Then B is compact since closed subsets of compact metric spaces are compact. Now, f(B) = C is closed in Y which completes the proof. \Box

If we let X, Y be compact metric spaces and if C(X, Y) is the set of continuous functions from X to Y. Now, let $f, g \in C(X, Y)$ and define

$$d_{\infty}(f,g) = \sup_{x \in X} d_Y(f(x),g(x))$$

THEOREM 47. Let $D \subseteq C(X, Y)$ where X, Y are compact. Then D is compact in C(X, Y) if and only if for every $\epsilon > 0$, there exists $\delta > 0$ such that for every $x_1, x_2 \in X$,

$$d_X(x_1, x_2) < \delta \Longrightarrow d_Y(f(x_1), f(x_2)) < \epsilon$$

for every $f \in D$.

Proof. (Sketch)

Let $M_{X,Y}$ be the space of all mappings (not necessarily continuous) from X to Y. Define d_{∞} as before. Now, C(X,Y) is a closed subset of $M_{X,Y}$. Also, if $f_n : X \to Y$ converges uniformly with respect to d_{∞} then the limit function is continuous.

THEOREM 48. A closed subset Y of a compact set X is compact. **Proof.**

Let (U_{α}) be a cover of Y. $(U_{\alpha}) \cup (x \setminus Y)$ is an open cover of X which is compact. This implies that a finite subcover $U_{\alpha_1}, \ldots U_{\alpha_k}, (X \setminus Y)$ possibly of X. Hence, the subcover covers Y. \Box

PROPOSITION 49. Let X be a metric space. Then Y is sequentially compact in X if and only if \overline{Y} is compact in itself.

PROPOSITION 50. Any function that is continuous on a compact metric space X is uniformly continuous. **Proof.**

Suppose, for a contradiction that there exists $\epsilon > 0$ such that there exists $(x_n), (x'_n)$ in X such that

$$d(x_n, x'_n) < \frac{1}{n} \Longrightarrow |f(x_n) - f(x'_n)| \ge \epsilon$$

Now, X is compact, so there exists $x_{n_k} \to y \in X$. Then $x'_{n_k} \to y$. f is continuous and so $f(x_{n_k}), f(x'_{n_k}) \to f(y)$. This contradicts our assumption and the proof is complete. \Box

PROPOSITION 51. If X is compact, then $f: X \to \mathbb{R}$ attains a least upper bound U and greatest lower bound L.

Proof.

Suppose, for a contradiction, that U is not attained. Then, for each n, there exists $x_n \in X$ such that

$$U > f(x_n) \ge U - \frac{1}{n}$$

by sequential compactness, $x_{n_k} \to y \in X$. Now, by continuity, $f(x_{n_k}) \to f(y)$. Thus, f(y) = U which contradicts our assumption and completes the proof for attaining the supremum. For the infimum, it is symmetric. We just replace f by -f. \Box

THEOREM 52. (General Arzela)

Let $D \subseteq C(X, Y)$ where X, Y are compact metric spaces. Then D is sequentially compact in C(X, Y) (which is equivalent to \overline{D} is compact in C(X, Y)) if and only if for every $\epsilon > 0$, there exists $\delta > 0$ such that for every $x_1, x_2 \in X$,

$$d(x_1, x_2) < \delta \Longrightarrow d_Y(f(x_1), f(x_2)) < \epsilon$$

for every $f \in D$.

Proof.

We remarked that it suffices to show that it suffices to show that D is totally bounded in M(X, Y) with respect to

$$d_{\infty}(f,g) = \sup_{x \in X} d_Y(f(x),g(x))$$

where M(X,Y) is the space of all maps from X to Y (not necessarily continuous). Also, it was proven that C(X,Y) is closed in M(X,Y)

To prove that D is totally bounded, we shall be approximating functions in D by piecewise constant (but discontinuous) functions.

Now, let $\epsilon > 0$, and in the definition of equicontinuity, choose $\delta > 0$ such that

$$d_X(x_1, x_2) < \delta \Longrightarrow d_Y(f(x_1), f(x_2)) < \epsilon$$

for all $f \in D$. Let $\{x_1, \ldots, x_n\}$ be a $(\delta/2)$ -net in X. Then let

$$A_1 = B\left(x_1, \frac{\delta}{2}\right); \quad A_2 = B\left(x_2, \frac{\delta}{2}\right) \setminus A_1; \quad A_3 = B\left(x_3, \frac{\delta}{2}\right) \setminus (A_1 \cup A_2)$$

so that

$$A_k = B\left(x_k, \frac{\delta}{2}\right) \setminus (A_1 \cup \dots \cup A_{k-1})$$

Now, $A_1 \cup \cdots \cup A_n = X$. The A_j are disjoint. Also, if $x_1, x_2 \in A_i$, then

$$d_X(x_1, x_2) < \delta$$

Now, if Y is compact, then there exists a finite $(\epsilon/2)$ -net $\{y_1, \ldots, y_m\} \subseteq Y$. We shall approximate functions in D by the set of mappings that are constant on A_j 's and take values in $\{y_1, \ldots, y_m\}$. This is a finite set and the number of functions is less than or equal to m^n .

We call this set Φ and we claim that for every $f \in D$, there exists $\varphi \in \Phi$ such that $d_{\infty}(f, \varphi) \leq 2\epsilon$. To this end, for all $1 \leq i \leq n$, there exists $1 \leq j \leq m$ such that

$$d_Y(f(x_i), y_j) < \epsilon$$

Now, let $\varphi \in \Phi$ be defined by letting $\varphi(x_i) = y_j$, then

$$d_Y(f(x),\varphi(x)) \le d_Y(f(x),f(x_i)) + d_Y(f(x_i),\varphi(x_i)) + d_Y(\varphi(x),\varphi(x_i))$$

The first two terms are less than ϵ and the last term is 0. Thus,

$$d_Y(f(x),\varphi(x)) < 2\epsilon$$

and the proof is complete. \Box

EXAMPLE 17. Let $f_n(x) = x^n$ and we wish to show that $\{f_n\} \subseteq C([0,1])$ is uniformly bounded and uniformly equicontinuous.

Clearly, it is uniformly bounded by 1. For uniform equicontinuity, we have

$$f_n'(x) = nx^{n-1}$$

 $and\ so$

$$f_n'(1) = n$$

We suppose for a contradiction that for every $\epsilon > 0$, there exists $\delta > 0$ such that for each $x, y \in X$,

$$|x - y| < \delta \Longrightarrow |f_n(x) - f_n(y)| < \epsilon$$

for each $n \in \mathbb{N}$. By Taylor's theorem, we get

$$|f_n(x) - f_n(y)| = |f'_n(x)| \cdot |x - y|$$

the rest is provided in a note online.

Chapter 5-

BASIC POINT-SET TOPOLOGY

Section 5.1-

PRODUCT TOPOLOGY

$$U_1 \times \cdots \times U_n \times \cdots$$

The basis of open sets are the sets where

(i) U_j 's are open in X_j 's

(ii) $U_j = X_j$ except for finitely many j's PROPOSITION 53. Let

$$f: Y \to X = \prod_{i=1}^{\infty} X_i$$

be a function. Then f is continuous (with respect to the product topology) if and only if

$$f(y) = [f_1(y), \cdots, f_n(y), \cdots]$$

where the $f_i(y)$ are continuous for each *i*. **Proof.**

It suffices to show that $f^{-1}(Basis element of the product topology)$ is open in Y. Let

 $U = U_1 \times U_n \times X_{n+1} \times X_{n+2} \times \cdots$

 $and \ so$

$$f^{-1}(U) = f_1^{-1}(U_1) \cap \dots \cap f_n^{-1}(U_n) \cap Y \cap Y \cap \dots = V$$

is open, as we disregard the intersections with Y and also since each $f_i^{-1}(U_i)$ is open. \Box

EXAMPLE 18. If we let

 $f:\mathbb{R}\to\mathbb{R}^\infty$

be such that

 $x \mapsto (x, \cdots, x)$

then we can see that f is not continuous in the box topology.

THEOREM 54. (Easy Version Of Tikhov Theorem) Suppose that X_j is compact for each j, then

$$X = \prod_{i=1}^{\infty} X_i$$

with the product topology is also compact.

Proof.

Suppose that X has an open cover O that has no finite subcover. We first claim that there exists $x_1 \in X_1$ such that no basis set of the form

$$U_1 \times U_2 \times \cdots$$

is overed by finitely many open sets O. To show that this claim holds, we will suppose, for a contradiction that for any x_1 , there exists U_1 containing x_1 such that

$$U_1(x_1) \times X_2 \times \cdots$$

is covered by finitely many sets in O. Then the sets

$$\{U(x_1): x_1 \in X_1\}$$

are open covers of X. If X_1 is compact, then

$$X_1 \subseteq U_1(x_1) \cup \cdots \cup U_1(x_k)$$

and each $U_i \times X_2 \times \cdots \times X_n \times \cdots$ is covered by finitely many open sets in O. Thus

$$X_1 \times \cdots \times X_n \times \cdots$$

is covered by finitely many sets in O which contradicts our assumption proving the claim. Now, by induction, there exists $X_2 \in X_2$ such that no basis set of the form

$$U_1 \times U_2 \times X_3 \times \cdots \times X_n \times \cdots$$

such that $(x_1, x_2) \in U_1 \times U_2$ can be covered by finitely many open sets in O. This is step 2 in the induction. This is proven using the compactness of X_2 . Now, for step k, we have that for each $k \in \mathbb{N}$, there exists $x_k \in X_k$ such that no element of the form

$$U_1 \times \cdots \times U_k \times X_{k+1} \times \cdots$$

can be covered by finitely many open sets in O. Now, consider

$$\underline{x} = (x_1, \cdots, x_n, \cdots) \in X_1 \times \cdots \times X_k \times \cdots$$

and so there exists $v \in O$, such that $x \in V$. So there exists a basis element

$$\underline{U} = U_1 \times \cdots \times U_m \times X_{m+1} \times \cdots$$

which contradicts step m of the induction. \Box

Suppose now that X is a metric space. Is the product topology metrizable? The answer is yes. We wish to put a metric on

$$\prod_{j=1}^{\infty} X_j$$

Step 1. Let d_j be the metric on X_j . Replace d_j by

$$\tilde{d}_j(x,y) = \frac{d_j(x,y)}{1+d_j(x,y)} \le 1$$

It is a fact that d_j preserves topology on X_j . Step 2. Let

$$\underline{x} = (x_1, \cdots, x_n, \cdots) \quad \underline{y} = (y_1, \cdots, y_n, \cdots)$$

and we say that

$$D(\underline{x},\underline{y}) = \sum_{k=1}^{\infty} \frac{\tilde{d}_j(x_k, y_k)}{2^k}$$

and we're done!

EXAMPLE 19. We recall that the rational numbers can be completed to p-adic rational numbers, so

$$\mathbb{Q} \to \mathbb{Q}_p = \left\{ \sum_{j=-m}^{\infty} a_j p^j : m \in \mathbb{N} \text{ finite, } 0 \le a_j \le p-1 \right\}$$

-Section 5.2-

 ${\rm Conectedness}$

DEFINITION 42. Let $A \subseteq X$ and we say that ∂A is the **Boundary** of A if ∂A is the set of points $x \in X$ such that $\exists x_n \in A$ such that $x_n \to x$ and $\exists y_n \in A^C$ such that $y_n \to x$ also.

PROPOSITION 55. Let X be a metric space and let $A \subseteq X$. Then, ∂A is closed, and also $\partial(A \cup B) \subseteq \partial A \cup \partial B$. We can also find an example where $\partial(A \cup B) \neq \partial A \cup \partial B$. **Proof.** Excercise.

DEFINITION 43. Let X be a topological space. We say that X is **Connected** if and only if we have for subsets $A, B \subseteq X$ either both open or both closed with $A \cap B = \emptyset$ that

$$X = A \cup B \Longrightarrow \begin{cases} A = \emptyset, B = X & of \\ A = X, B = \emptyset \end{cases}$$

If X is not connected, then X is called **Disconnected**.

We make the remark that if $X = A \cup B$, then A, B are both closed and so.

PROPOSITION 56. X is connected if and only if we have that the only subsets that are both open and closed are \emptyset and X.

EXAMPLE 20. Any set with discrete topology with greater than 2 elements is disconnected.

PROPOSITION 57. The interval [a, b] is connected.

Proof.

Suppose that $[a, b] = A \cup B$ where A, B are both open in [a, b] and $A \cap B = \emptyset$ with $A, B \neq \emptyset$ (so, we're looking for a contradiction). Suppose that $a \in A$, then $[a, a + \epsilon) \subseteq A$ for some $\epsilon > 0$ which must happen since A is open. Let

$$C = \{c \in (a, b] : [a, c] \subseteq A\}$$

Clearly, $b \notin C$. Let $L = \sup C$, then either $L \in A$ or $L \in B$. If $L \in A$ which is open, then we can find $\epsilon_1 > 0$ such that

$$(L - \epsilon_1, L + \epsilon_1) \subseteq A$$

Then

$$\left[a,L+\frac{\epsilon}{2}\right]\subseteq A$$

so L cannot be an upper bound which contradicts our assumption. If $L \in B$, then we can find $\epsilon_2 > 0$ such that

$$(L - \epsilon_2, L + \epsilon_2) \subseteq B$$

and so L cannot be the least upper bound which is also a contradiction to our assumption. \Box

DEFINITION 44. X is called **Path Connected** if for each $x, y \in X$ there exists a continuous map $f : [a,b] \to X$ such that

$$f(a) = x \quad f(b) = y$$

PROPOSITION 58. If X is path connected, then X is connected. **Proof.**

Suppose for a contradiction that X is disconnected. Thus $X = A \cup B$ where A, B are open and $A \cap B = \emptyset$. Then, $U = f^{-1}(A)$ is open in [a,b] and $V = f^{-1}(B)$ is open in [a,b]. Now, $U \cup V = [a,b]$ since [a,b] is connected and we have a contradiction which completes the proof. \Box

COROLLARY 59. All open and half open intervals are connected.

COROLLARY 60. Convex sets are connected.

DEFINITION 45. If X is a linear space, then $A \subseteq X$ is **Convex** if for every $x, y \in A$, we have

 $\{tx + (1-t)y; t \in [0,1]\} \subseteq A\}$

That is, there is a line segment connecting every $x, y \in A$.

COROLLARY 61. Any star like set B in \mathbb{R}^n is connected.

PROPOSITION 62. Let $f: X \to Y$ be continuous and surjective. Then

- (i) If X is connected, then Y is connected.
- (ii) If X is path connected, then Y is path connected.

Proof.

- (i) Suppose for a contradiction that Y is disconnected, then $Y = A \cup B$ where A, B are open with $A \cap B = \emptyset$. Now, $U = f^{-1}(A)$ and $V = f^{-1}(B)$ are both open, with $U \cap V = \emptyset$ and also, $U \cup V = \emptyset$ and $U \cup V = X$.
- (ii) Let $y_1, y_2 \in Y$ and let $x_1 \in f^{-1}(\{y_1\})$ and $x_2 \in f^{-1}(\{y_2\})$. We know that X is path connected, so there exists a continuous map $h : [a, b] \to X$ such that $h(a) = x_1$ and $h(b) = x_2$. Now, $f \circ h : [a, b] \to Y$ is also continuous since both f and h are continuous, so

$$(f \circ h)(a) = f(x_1) = y_1$$
$$(f \circ h)(b) = f(x_2) = y_2$$

so Y is path connected. \Box

THEOREM 63 (Intermediate Value Theorem). Let X be connected, and let $f : X \to \mathbb{R}$ be a continuous map and also, let a < b. If there exists $x_1 \in X$ such that $f(x_1) = a$ and there exists $x_2 \in X$ such that $f(x_2) = b$, then for any $c \in (a, b)$, there exists $y \in X$ such that f(y) = c. **Proof.**

Suppose for a contradiction that there exists $c \in (a, b)$ such that $f(y) \neq c$ for each $y \in X$. Then f(X) cannot be connected. This is because

$$f(X) \subseteq (-\infty, c) \cup (c, +\infty)$$

and so if we let $U = f^{-1}((-\infty, c))$ and $V = f^{-1}((c, \infty))$, then $U \cap V = \emptyset$ and $U \cup V = X$. Also, $U, V \neq \emptyset$ with $x_1 \in U, x_2 \in V$ which explains the impossibility of connectedness in this case which contradicts our assumption. \Box

COROLLARY 64. There exists two antipodal points x, -x on earth such that T(x) = -T(-x). **Proof.**

Let $f : S^2 \to \mathbb{R}$ where f(x) = T(x) - T(-x). If f(y) = 0, then we're done. Thus, we suppose for a contradiction that $f(y) = C \neq 0$, so f(-y) = -C. S^2 is path-connected which implies that it's continuous. Now, $0 \in (-c, c)$. By the intermediate value theorem. \Box

Section 5.3-

CONNECTED COMPONENTS/ PATH COMPONENTS

Suppose that X is not path connected and let $x \in X$, then we define

$$P(x) = \{y \in X : \exists a \text{ continuous } x \to y \text{ path}\}$$
$$= \{y \in X : \exists f : [a, b] \to X \text{ s.t. } f(a) = x, f(b) = y\}$$

PROPOSITION 65. P(x) is path connected. **Proof.** Follow that path from y_1 to x then from x to y_2 .

PROPOSITION 66. If $x \sim y$ is defined to be the relation where $y \in P(x)$, then it is an equivalence relation. **Proof.**

- 1. $x \sim x$
- 2. $x \sim y$ implies $y \sim x$
- 3. $x \sim y$ and $y \sim z$ implies $x \sim z$.

Path components are equivalence classes of ~. If $y \notin P(x)$, then $P(x) \cap P(y) = \emptyset$.

PROPOSITION 67. Let $A \subseteq X$ if A is connected, then \overline{A} is also connected. **Proof.**

Suppose for a contradiction that A is connected but \overline{A} is disconnected. Then $Cl(A) = B \cup C$ where both Band C are closed in \overline{A} and hence also in X. Now, we know that a closed set B in \overline{A} have the form $\tilde{B} \cap \overline{A}$ where \tilde{B} is closed in X. So

$$A = (B \cap A) \cup (C \cap A)$$

where B and C are closed in X (by our remark above) and so if we let

$$B \cap A = B_1 \qquad C \cap A = C_1$$

and then

 $A = B_1 \cup C_1$

where B_1, C_1 are both closed in A. A is connected, so one of B_1 and C_1 must be empty. Suppose that $C_1 = \emptyset$, then $B \cap A = A$ and thus $B \cap \overline{A} = \overline{A}$ and so $C = \emptyset$ which contradicts our assumption that \overline{A} is disconnected, and completes the proof. \Box

LEMMA 68. Let $A \subseteq X$ where A is both open and closed and let $C \subseteq X$ be connected. Then if $C \cap A \neq \emptyset$ then $C \subseteq A$. **Proof.** Let A be both open and closed in X. Thus, $A \cap C$ is both oen and closed in C. C is connected, so if $C \neq \emptyset$, then we know that

$$A \cap C = \begin{cases} C \\ \emptyset \end{cases}$$

but by what we just said above, we're done and $A \cap C$ is forced to be equal to C. \Box

PROPOSITION 69. Let $(C_{\alpha})_{\alpha \in I}$ be a family of connected subspaces of X. Suppose that for any $\alpha, \beta \in I$, we have $C_{\alpha} \cap C_{\beta} \neq \emptyset$. Then

 $\bigcup_{\alpha \in I} C_{\alpha}$

is connected. **Proof.** We use the lemma for this proof. The details are left to the reader as an excercise.

An application of this would be if C_{α} is the collection of all connected subsets $Y \subseteq X$ such that $x \in X$. By the above proposition,

$$\bigcup_{\alpha \in I} C_{\alpha}$$

is connected.

DEFINITION 46. Let $x \in X$ and let $(C_{\alpha})_{\alpha \in I}$ be the collection of all connected subsets $Y \subseteq X$ containing x. Then we say that

$$C(x) = \bigcup_{\alpha \in I} C_{\alpha}$$

is the Connected Component of x.

PROPOSITION 70. If $y \notin C(x)$ then $C(x) \cap C(y) = \emptyset$.

PROPOSITION 71. If each point in X has a neighbourhood that is path connected, then path components in X are connected components. $x \sim y$ if $y \in C(x)$ is an equivalence relation.

EXAMPLE 21. Open subsets of \mathbb{R}^n . Open sets of a normed linear space.

-Chapter 6-

BANACH SPACE TECHNIQUES

DEFINITION 47. A complex vector space X is said to be **Normed** if there exists a function $|| \cdot || : X \to \mathbb{C}$ such that

- (i) $||x|| \ge 0 \quad \forall x \in X$
- (*ii*) $||x|| = 0 \iff x = 0$
- (*iii*) $||\alpha x|| = |\alpha| ||x|| \quad \forall x \in X, \alpha \in \mathbb{C}$
- (iv) $||x + y|| \le ||x|| + ||y|| \quad \forall x, y \in X$

PROPOSITION 72. The space (X, d) where d(x, y) = ||x - y|| always defines a metric space. **Proof.**

Simply check the four axioms of a distance. The only non-trivial part is the triangle inequality, so for any $x, y, z \in X$, we have

 $d(x,y) = ||x-y|| = ||x-z+z-y|| \le ||x-z|| + ||z-y|| = d(x,z) + d(z,y) \qquad \Box$

DEFINITION 48. A normed vector space $(X, || \cdot ||)$ is said to be a **Banach Space** if it is complete with respect to the metric induced by $|| \cdot ||$.

EXAMPLE 22. (a) Consider the space

$$X = C^0([a,b]) = \{f : [a,b] \to \mathbb{C} : f \text{ is continuous}\}$$

with norm

$$||f||_{\infty} = \sup_{x \in [a,b]} |f(x)|$$

this is a Banach space.

(b) Consider

$$X = l_2 = \left\{ x : \mathbb{N} \to \mathbb{C} : \sum_{i=1}^{\infty} |x_i|^2 < \infty \right\}$$

with norm

 $||x|| = \sqrt{(x,x)}$

and this space is a Hilbert space which implies that it is Banach.

Section 6.1-

LINEAR FUNCTIONALS

DEFINITION 49. A map $A: X \to Y$ between vector spaces X, Y is said to be **Linear** if

 $A(\alpha x + \beta y) = \alpha A x + \beta A y$

for any $x, y \in X$ and $\alpha, \beta \in \mathbb{C}$.

DEFINITION 50. If a linear map $A: X \to Y$ between normed vector spaces X, Y has norm

$$||A|| = \sup\{||Ax||_Y : x \in X, ||x||_x \le 1\}$$

and satisfies $||A|| < \infty$, then we say that A is a **Bounded Linear Map**.

PROPOSITION 73. If A is bounded, then the following are true.

$$||A|| = \inf\{K > 0 : ||Ax||_Y \le K||x||_X\} = \sup\{||Ax|| : ||x|| = 1\}$$

(ii)

$$||Ax||_Y \le ||A|| \, ||x||_X$$

 $(iii) \ A \ maps \ B_1^X(0) = \{x: ||x|| \leq 1\} \ into \ B_{||A||}^Y(0) = \{y: ||y|| \leq ||A||\}.$

DEFINITION 51. If $Y = \mathbb{C}$, then the linear map $A : X \to \mathbb{C}$ is said to be a Linear Functional (not necessarily bounded).

THEOREM 74. Let $A: X \to Y$ be linear and X, Y be normed linear spaces. The following are equivalent.

- (i) A is bounded.
- (ii) A is continuous.
- (iii) A is continuous at some $x_0 \in X$.

Proof.

 $(i) \Rightarrow (ii)$

$$||Ax_1 - Ax_2|| = ||A(x_1 - x_2)||_Y \le ||A|| ||x_1 - x_2||_X$$

and continuity follows by taking $\epsilon > 0$ and

$$0 < \delta < \frac{\epsilon}{||A||}$$

 $\begin{array}{ll} (ii) \Rightarrow (iii) & \textit{Trivial.} \\ (iii) \Rightarrow (i) & \textit{Let } A \textit{ be continuous at } x_0 \in X. \textit{ Take } \epsilon > 0, \textit{ and there exists } \delta > 0 \textit{ such that for any } x \in X, \end{array}$

$$||x - x_0|| < \delta \Longrightarrow ||A(x - x_0)|| < \epsilon$$

Let $||h|| \leq \delta$ so that

$$||x_0+h-x_0||<\delta \Longrightarrow ||A(x_0+h)-Ax_0||=\frac{||Ah||}{\delta}<\frac{\epsilon}{\delta}$$

Then, if $||x|| \leq 1$, then

$$||Ax||| \leq \frac{\epsilon}{\delta} \Longrightarrow ||A|| \leq \frac{\epsilon}{\delta}$$

and then A is bounded. \Box

EXAMPLE 23. Let $A: C^0([a,b]) \to C^0([a,b])$ and $K: [a,b]^2 \to \mathbb{C}$ be continuous, then

$$(Af)(t) = \int_{a}^{b} K(t,s)f(s)ds$$

is bounded.

-Section 6.2-

BAIRE'S CATEGORY THEOREM, BANACH-STEINHAUS THEOREM & THE OPEN MAPPING THEOREM

THEOREM 75 (Baire's Category Theorem). If (X, d) is a complete metric space, then the intersection of every countable collection of dense open subsets of X is dense in X. In particular, the intersection is nonempty.

Proof.

Let $V_1, \ldots, v_n, \ldots \subseteq X$ be open and dense. So, for any $i, \overline{V}_i = X$ and V is open. Let $x_0 \in X$ and look at

$$B_X(x_0,\epsilon) = \{x \in X : d(x,x_0) < \epsilon\}$$

We want to show that

$$B_X(x_0,\epsilon) \cap \left(\bigcap_{n=1}^{\infty} V_n\right) \neq \emptyset$$

First, we notice that since V_1 is dense, we have that $B_X(x_0, \epsilon) \cap V_1 \neq \emptyset$ so there exists $x_1 \in B_X(x_0, \epsilon) \cap V_1$ and there exists $r_1 > 0$ such that

$$B_X(x_1, r_1) \subseteq B_X(x_0, \epsilon) \cap V_1$$

and continuing after n steps, $B_X(x_{n-1}, r_{n-1}) \cap V_n \neq \emptyset$ so there exists $x_n \in B_X(x_{n-1}, r_{n-1}) \cap V_n$ and

$$0 < r_n < \frac{1}{n}$$

so that

$$B_X(x_n, r_n) \subseteq B_X(x_{n-1}, r_{n-1}) \cap V_n$$

So this is in fact a sequence of nested balls $B_X(x_n, r_n) \subseteq \cdots \subseteq B_X(x_0, \epsilon)$ with the sequence $(x_n)_{n=1}^{\infty}$ and

$$d(x_{n+k}, x_{n+m}) \le 2r_n \le \frac{2}{n} \to 0$$

as $n \to \infty$ so this sequence is Cauchy. Thus, by completeness, there exists x^* such that

$$x_n \to x^*$$

as $n \to \infty$. Now, $x^* \in \overline{B_X(x_n, r_n)} \in V_n$ for every n and thus

$$x^* \in \bigcap_{n=1}^{\infty} V_n$$

and $x^* \in B_X(x_0, \epsilon)$, and finally

$$x^* \in B_X(x_0,\epsilon) \cap \left(\bigcap_{n=1}^{\infty} V_n\right) \neq \emptyset$$

and this completes the proof.

COROLLARY 76. If (X, d) is complete then any countable intersection of G_{δ} supersets of X is again G_{δ} dense. **Proof.**

$$G_{\delta} = \bigcap_{i=1}^{\infty} U_i$$

for U_i open in X. If G_{δ} is dense, then so are the U_i and we have

$$\bigcap_{i=1}^{\infty} G^i_{\delta} = \bigcap_{i=1}^{\infty} \bigcap_{j=1}^{\infty} U^j_i = \bigcap_{i,j=1}^{\infty} U^j_i$$

which by Baire's Category Theorem is dense and $E \subseteq X$ is nowhere dense if \overline{E} contains no nonempty open subsets of X so $X \setminus E$ is open and dense. \Box

DEFINITION 52. We say that the set F is First Category where

$$F = \bigcap_{i=1}^{\infty} E_i$$

and E_i is nowhere dense if everything else is second countable.

THEOREM 77. Let (X, D) be complete, then X is not first category.

THEOREM 78 (Banach Steinhaus). Let X be Banach, and let Y be a normed vector space and let $(A_{\alpha})_{\alpha \in a}$ be a collection of bounded linear maps $A_{\alpha} : X \to Y$, then either

- There exists $M < \infty$ such that $||A_{\alpha}|| \leq M$ for each $\alpha \in a$ or
- ٠

$$\sup_{\alpha \in a} \|A_{\alpha}x\| = \infty$$

for all $x \in F$, where F is G_{δ} dense.

Proof.

Let $\varphi_{\alpha}(x) = ||A_{\alpha}x||_{Y}$ and let

$$\varphi_{\alpha} = \sup_{\alpha} \varphi_{\alpha}(x) = \sup_{\alpha} \|A_{\alpha}x\|$$

and $\varphi, \varphi_{\alpha} : X \to \mathbb{R}$ where φ is a function and φ_{α} is continuous. Now, let

$$V_{\alpha}^{n} = \varphi_{\alpha}^{-1}(n, +\infty) = \{x \in X : \varphi_{\alpha}(x) > n\}$$

and let

$$V^n = \varphi^{-1}(n, +\infty) = \{x \in X : \varphi(x) > n\}$$

and we can see that

$$V^n = \bigcup_{\alpha \in a} V^n_\alpha$$

So

(i)

$$x \in \bigcup_{\alpha} V_{\alpha}^{n} \Longrightarrow x \in V_{\alpha_{0}}^{n} \Longrightarrow n < \varphi_{\alpha_{0}}(x) \le \varphi(x)$$
$$\Longrightarrow X \in V^{n}$$

(ii)

$$x \in V^n \Longrightarrow \sup_{\alpha} \varphi_{\alpha}(x) > n$$

assuming that for each α , $\varphi_{\alpha}(x) \leq n$, but then

 $\sup_{\alpha}\varphi_{\alpha}(x) \le n$

which is a contradiction and so there exists α_0 such that $\varphi_{\alpha}(x) > n$ which implies that

$$x \in V_{\alpha_0}^n \subseteq \bigcup_{\alpha} V_{\alpha}^n$$

and V^n is then open because each V^n_{α} is open.

Case 1. There exists $n_0 \in \mathbb{N}$ such that V^{n_0} is not dense, and so there exists $x_0 \in X$, $\delta > 0$ such that

$$\overline{B(x_0,\delta_0)} \cap \overline{V^{n_0}} = \emptyset$$

and if $||x||_X \leq \delta$ then $x_0 + x \notin V^{n_0}$ but $x_0 + x \in \overline{B(x_0, \delta_0)}$ and so

$$\varphi(x+x_0) \le n_0$$

if and only if for each $\alpha \in a$, we have

$$|A_{\alpha}x_0|| \le n_0 \quad ||A_{\alpha}(x+x_0)|| \le n_0$$

now let $x = (x + x_0) - x_0$ such that $||x|| \le \delta$, then

$$||A_{\alpha}x||_{Y} = ||A_{\alpha}(x+x_{0}) - A_{\alpha}x_{0}|| \le ||A_{\alpha}(x+x_{0})|| + ||A_{\alpha}x_{0}|| \le 2n_{0}$$

and we can say that for any

$$\hat{x} = \frac{x}{\delta_0}$$

we have

$$\|\hat{x}\| \le 1$$

and so

$$\|A_{\alpha}\hat{x}\| \le \frac{2n_0}{\delta_0}$$

for every $\alpha \in a$, and finally

$$\sup_{\alpha} \|A_{\alpha}\| \le \frac{2n_0}{\delta_0} = M$$

Case 2. Every V^n is dense in X. By Baire's theorem,

$$\bigcap_{n=1}^{\infty} V_i^n$$

is G_{δ} dense in X so for every

$$x \in \bigcap_{n=0}^{\infty} V^n$$

and $\varphi(x) = \infty$ and we're done. \Box

This theorem can be interpreted as if X is Banach and Y is normed linear with our collection of A, then either there exists $B_Y(0, M) \subseteq Y$ such that for every $\alpha \in a$, we have

$$A_{\alpha}(B_X(0,1)) \subseteq B_Y(0,M)$$

or A_{α} maps F to $A_{\alpha}x$.

Now, before we continue, we first define for a Banach space X,

$$B_X(x_0, r) = \{ x \in X : ||x - x_0|| < r \}$$

THEOREM 79 (Open Mapping Theorem). Let X, Y be Banach spaces and let $A : X \to Y$ be a bounded linear map such that A(X) = Y (i.e. A is onto), then there exists $\delta > 0$ such that

$$B_Y(0,\delta) \subseteq A(B_X(0,1))$$

An alternative way of stating this theorem is: For each y with $||y|| < \delta$, there exists an x such that ||x|| < 1 such that Ax = y.

Proof.

Given $y \in Y$, there exists $x \in X$ such that Ax = y. If ||x|| < k, then it follows that $y \in A(kB_X(0,1))$. Thus, Y is the union of the sets $A(kB_X(0,1))$ for k = 1, 2, ... Now, since Y is complete, the Baire Category Theorem implies that there exists a nonempty open set W in the closure of some $A(kB_X(0,1))$. This means that every point of W is the limit of a sequence Ax_n , where $x_n \in kB_X(0,1)$. Now we fix k and W.

Choose $y_0 \in W$ an choose $\eta > 0$ so that $y_0 + y \in W$ for any $||y|| < \eta$. For any such y, there exist sequences $(x'_n), (x''_n)$ in $kB_X(0,1)$ such that

$$Ax'_n \to y_0 \qquad Ax''_n \to y_0 + y_0$$

as $n \to \infty$. Setting $x_n = x''_n - x'_n$, we get that $||x_n|| < 2k$ and thus $Ax_n \to y$ as $n \to \infty$. Since this holds for each y with $||y|| < \eta$, we get from the linearity of A that for every $y \in Y$ and for all $\epsilon > 0$ there exists an $x \in X$ such that

(*)
$$||x|| \le \delta^{-1} ||y||$$
 & $||y - Ax|| < \epsilon$

when we simply put $\delta = \frac{\eta}{2k}$.

We're almost there, we just need $\epsilon = 0$.

First, take $y \in \delta B_Y(0,1)$ and let $\epsilon > 0$. By (*), we have that there exists x_1 with $||x_1|| < 1$ and

$$\|y - Ax_1\| < \frac{1}{2}\delta\epsilon$$

Now, suppose that x_1, \ldots, x_n are chosen so that

$$\|y - Ax_1 - \dots - Ax_n\| < 2^{-n}\delta\epsilon$$

then using (*) with y replaced by the vector on the left hand side of the above inequality, we obtain x_{n+1} so that the above holds with n + 1 in place of n, and

$$||x_{n+1}|| < 2^{-n}\epsilon$$

for n = 1, 2, ... Now, if we set $s_n = x_1 + ... + x_n$, then we get that (s_n) is a Cauchy sequence in X, and thus by completeness, there exists $x \in X$ such that $s_n \to x$. Then since ||x|| < 1, we use the above and get that $||x|| < 1 + \epsilon$, and since A is continuous, $As_n \to Ax$. Now, by (*), $As_n \to y$ and thus Ax = y. We have now that

$$\delta B_Y(0,1) \subseteq A((1+\epsilon)B_X(0,1))$$

or

$$A(B_X(0,1)) \subseteq \frac{1}{1+\epsilon} \delta B_Y(0,1)$$

for every $\epsilon > 0$. The union of the sets on the left, taken over each $\epsilon > 0$ is precisely $\delta B_Y(0,1)$ which completes the proof. \Box

THEOREM 80. Let X and Y be Banach spaces and let A be a bounded linear functional from $X \to Y$ which is one to one, then there exists $\delta > 0$ such that for each $x \in X$

 $||Ax|| \ge \delta ||x||$

That is, $A^{-1}: Y \to X$ is also a bounded linear functional. **Proof.** If we choose δ as we chose in the Open Mapping Theorem, then the conclusion of that theorem, combined with the fact that A is now one to one shows that

$$||Ax|| < \delta \Longrightarrow ||x|| < 1$$

Thus, $||x|| \ge 1$ implies that $||Ax|| \ge \delta$ and so $||Ax|| \ge \delta ||x||$, as needed. The functional A^{-1} is defined on Y by the requirement that $A^{-1}y = x$ if y = Ax. A trivial verification then shows that A^{-1} is linear and

$$\|A^{-1}\| \le \frac{1}{\delta}$$

follows from the fact that $||Ax|| \ge \delta ||x||$. \Box

DEFINITION 53. A Linear Manifold L in a Banach space X is a set such that for any $x, y \in L$ and for any $\alpha, \beta \in \mathbb{R}$, we have

$$\alpha x + \beta y \in L$$

A linear manifold L is called a **Subspace** if and only if it is a closed subset of X.

EXAMPLE 24. Consider $\mathbb{R}^{\infty} = X$. Let

$$L = \{(x_1, \dots, x_n, \dots) : x_k = 0 \ \forall \ k > N\}$$

Then, L is a linear submanifold of X. L is not closed. If we have

$$x_n = \left(1, \frac{1}{2}, \dots, \frac{1}{2^n}, 0, 0, \dots\right) \to x = \left(1, \frac{1}{2}, \dots, \frac{1}{2^n}, \frac{1}{2^{n+1}}, \dots\right)$$

and $x \notin L$.

PROPOSITION 81. Let X be Banach with $z_1, \ldots, z_n, \ldots \in X$. Consider

$$M = \left\{ \sum_{j} \alpha_{j} z_{j} : \alpha_{j} \neq 0 \text{ only for finitely many } j \right\}$$

then M is a linear submanifold of X. Let \overline{M} be the closure of M. Then \overline{M} is a linear subspace of X. **Proof.**

First, we note that \overline{M} is closed. We want to prove that M is a linear submanifold of X. Let $x, y \in \overline{M}$. Fix $\epsilon > 0$, then there exists $x_1, y_1 \in M$ such that

$$||x_1 - x|| < \epsilon \quad ||y_1 - y|| < \epsilon$$

Let $\alpha, \beta \in \mathbb{R}$. and we examine

$$\begin{aligned} \|\alpha x_{1} + \beta y_{1} - \alpha x_{1} - \beta y_{1}\| &\leq \|\alpha x - \alpha x_{1}\| + \|\beta y - \beta y_{1}\| \\ &\leq |\alpha| \cdot \|x - x_{1}\| + |\beta| \cdot \|y - y_{1}\| \\ &\leq (|\alpha| + |\beta|)\epsilon \end{aligned}$$

and ϵ is arbitrary, and $(\alpha x_1 + \beta y_1) \in M$ is close to $\alpha x + \beta y$ which implies that $\alpha x + \beta y \in \overline{M}$ as required. In the statement of this proposition, \overline{M} is a subspace generated by z_1, \ldots, z_n, \ldots). \Box Section 6.3-

Convex Sets

DEFINITION 54. Let $A \subseteq X$ be a linear space. A is said to be a **Convex Set** if for every $x, y \in A$, we have that

$$\alpha x + \beta y \in A$$

where $\alpha, \beta \in [0, 1]$ and $\alpha + \beta = 1$.

We say that A is a Convex Body if A is convex and A has an interior point (that is, it contains some ball).

EXAMPLE 25. Let $X = l_2$. Let

$$\Phi = \left\{ (\xi_1, \dots, \xi_n, \dots) : \sum_{n=1}^{\infty} n^2 \xi_n^2 < \infty \right\}$$

we claim that Φ is convex but does not contain any ball in l_2 (that is, it's not a convex body). **Proof.**

Let $\xi = (\xi_1, \ldots, \xi_n, \ldots) \in \Phi$, let $\eta = (\eta_1, \ldots, \eta_n, \ldots) \in \Phi$. Let $t \in (0, 1)$. We have to show that

$$t\xi + (1-t)\eta \in \Phi$$

so

$$\begin{split} \sum_{n=1}^{\infty} n^2 (t\xi_n + (1-t)\eta_n)^2 &= -t^2 \sum_{n=1}^{\infty} n^2 \xi_n^2 + 2t(1-t) \sum_{n=1}^{\infty} \xi_n \eta_n + (1-t)^2 \sum_{n=1}^{\infty} n^2 \eta_n^2 \\ &\leq t^2 \sum_{n=1}^{\infty} n^2 \xi_n^2 + 2t(1-t) \left(\sum_{n=1}^{\infty} n^2 \xi_n^2 \right)^{1/2} \left(\sum_{n=1}^{\infty} n^2 \eta_n^2 \right)^{1/2} \\ &+ (1-t)^2 \sum_{n=1}^{\infty} n^2 \eta_n^2 \\ &= \left[t \left(\sum_{n=1}^{\infty} n^2 \xi_n^2 \right)^{1/2} + (1-t) \left(\sum_{n=1}^{\infty} n^2 \eta_n^2 \right)^{1/2} \right]^2 \\ &\leq [t \cdot 1 + (1-t) \cdot 1]^2 = 1 \end{split}$$

and thus we have that Φ is convex.

Now we suppose for a contradiction that Φ contains some ball. Φ is symmetric (that is, if $\xi \in \Phi$, then $-\xi \in \Phi$). Φ will contain all

$$\{z = tx + (1 - t)y : x \in B_1, y \in -B_1\}$$

It is left as an excercise to show that if the radius of B_1 is r, then Φ will contain $\overline{B}(0,r)$ and so Φ should contain a segment of every line passing through 0. Then let

$$l = t\left(1, \frac{1}{2}, \dots, \frac{1}{n}, \dots\right)$$

Then $l \cap \Phi = \{0\}$. Suppose that $A \subseteq X$, where A is convex, symmetric. Suppose further that

 $B(x,r) \subseteq A$

Then

 $B(0,r)\subseteq A$

To prove this, we first notice that

$$B(x,r) = \{x + y : ||y|| \le r\}$$
$$B(-x,r) = \{-x + y : ||y|| \le r\}$$

So, let $y \in X$ such that $||y|| \leq r$ and we write

$$y = \frac{1}{2}[(x+y) + (-x+y)]$$

where the first term is in B(x,r) and the second term is in B(-x,r). Now we claim that if we take a line l in the direction

$$\left(1,\frac{1}{2},\ldots,\frac{1}{n},\ldots\right)$$

Then

$$l \cap \left\{ x = (x_1, \dots, x_n, \dots) : \sum_{n=1}^{\infty} n^2 x^2 < \infty \right\} = (0, \dots, 0, \dots)$$

To this end, suppose that $A \cap l \neq 0$, then there exists $t \neq 0$ such that

$$z = \left(t, \frac{t}{2}, \dots, \frac{t}{n}, \dots\right) \in A$$

 $and \ consider$

$$\sum_{n=1}^{\infty}n^2\frac{t^2}{n^2} = \sum_{n=1}^{\infty}t^2 = \infty$$

and so $z \notin A$ which is a contradiction and which yields our claim.

LEMMA 82. If $Im(\alpha_j) > 0$, Im(z) < 0, we have

$$\sum_{j=1}^{n} \frac{1}{z - \alpha_j} \neq 0$$

THEOREM 83 (Gauss-Lucas). Let P(z) be a complex polynomial defined as

$$P(z) = a_0 + a_1 z + \dots + a_n z^n$$

then

$$P'(z) = a_1 + 2a_2z + \dots + na_nz^{n-1}$$

and the roots of P'(z) lie inside a **Convex Hull** of the roots of P(z). **Proof.** We first note that

$$CH(z_1,\ldots,z_n) = \bigcap_{\substack{B_{\alpha} \ half-plane_{z_1,\ldots,z_n \in B_{\alpha}}}}$$

WLOG, assume that P(z) has simple roots

$$P(z) = (z - \alpha_1) \cdots (z - \alpha_n)$$

 B_{α}

then

$$\frac{P'(z)}{P(z)} = \frac{(z-\alpha_2)\cdots(z-\alpha_n)}{P(z)} + \dots + \frac{(z-\alpha_1)\cdots(z-\alpha_{n-1})}{P(z)}$$
$$= \frac{1}{z-\alpha_1} + \dots + \frac{1}{z-\alpha_n}$$

by the extended product rule applied to the factored polynomial P(z). Now, the set of roots of P'(z) is defined as

$$\left\{z:\frac{1}{z-\alpha_1}+\dots+\frac{1}{z-\alpha_n}=0\right\}$$

and applying the lemma yields our result.

THEOREM 84. If A is convex, then \overline{A} is also convex. **Proof.** Let $x, y \in \overline{A}$. For every $\epsilon > 0$, there exists $x_1, y_1 \in A$ such that

$$\|x - x_1\| \le \epsilon \qquad \|y - y_1\| \le \epsilon$$

Now, let $t \in (0, 1)$ and we want that

$$tx + (1-t)y \in \overline{A}$$

We know that

$$tx_1 + (1-t)y_1 \in A$$

and

$$\begin{aligned} \|tx + (1-t)y - tx_1 - (1-t)y_1\| &\leq \|tx - tx_1\| + \|(1-t)y - (1-t)y_1\| \\ &\leq t\|x - x_1\| + (1-t)\|y - y_1\| \\ &\leq t\epsilon + (1-t)\epsilon = \epsilon \end{aligned}$$

as required.

THEOREM 85. Suppose that M_{α} is convex for each $\alpha \in I$, then

$$\bigcap_{\alpha \in I} M_{\alpha}$$

is also convex. **Proof.** If

$$x, y \in \bigcap_{\alpha \in I} M_{\alpha}$$

then, $x, y \in M_{\alpha}$ for all $\alpha \in I$. Then $tx + (1-t)y \in M_{\alpha}$ for $t \in (0,1)$. Thus

$$[tx + (1-t)y] \in \bigcap_{\alpha \in I} M_{\alpha}$$

Now, if x_1, \ldots, x_{n+1} are in general position, then $CH(x_1, \ldots, x_{n+1})$ is a simplex with vertices at x_1, \ldots, x_{n+1} . If no 3 points lie on the same straight line, then no 4 points lie in the same plane, and so on. If x_j is not in the subspace containing all $x_1, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{n+1}$.

We note that if $A: X \to \mathbb{R}$ is a bounded, continuous linear functional, then the norm of A is defined by

$$||A|| = \sup_{x \in X: ||x|| = 1} |Ax|$$

EXAMPLE 26. Consider $f \in C[a, b]$, and let

$$Af = \int_{a}^{b} f(x)dx$$

is a linear functional. To compute the norm, we let $\|f\|\leq 1$ so that

$$\sup_{x} |f(x)| \le 1$$

then

$$\left| \int_{a}^{b} f(x) dx \right| \leq \|f\| \cdot |b - a|$$
$$\implies \|A\| \leq |b - a|$$

so if

$$f = \chi_{[a,b]} \Rightarrow \|f\| = 1$$

 $and\ thus$

$$\int_{a}^{b} 1 dx = b - a$$
$$\implies ||A|| = |b - a|$$

Now consider $g \in C[a, b]$, and define

$$A_1 f = \int_a^b f(x)g(x)dx$$

 $and \ let$

$$\sup_{x \in [a,b]} |g(x)| = M$$

then

$$\left| \int_{a}^{b} f(x)g(x)dx \right| \leq \int_{a}^{b} |f(x)| \cdot |g(x)|dx \leq ||f|| \int_{a}^{b} |g(x)|dx$$

and so

$$||A_1|| \le \int_a^b |g(x)| dx$$

 $One \ can \ show \ that$

$$||A_1|| = \int_a^b |g(x)| dx$$

Proof. (Sketch)

If $g(x) \ge 0$, then this is easy. Just take $f \equiv 1$ on [a, b]. Then

$$A_1 f = \int_a^b 1 \cdot g(x) dx = \int_a^b |g(x)| dx$$

But if g(x) crosses zero at some point in [a, b], then the idea is to take a piecewise continuous function f defined by

$$f(x) = \begin{cases} 1 & g \ge 0\\ -1 & g < 0 \end{cases}$$

and approximate sgn(g(x)) by continous functions.

Kernel

DEFINITION 55. The Kernel of a continuous linear functional A is defined as

$$ker(A)=\{x\in X: Ax=0\}$$

PROPOSITION 86. Let L = ker(A), then L is a linear submanifold (closed linear subspace) of X. **Proof.**

Suppose that $x_1, x_2 \in L$. Then

$$A(t_1x_1 + t_2x_2) = t_1Ax_1 + t_2Ax_2 = 0$$

If $x_j \in L$, and $x_j \to y$, then $0 = Ax_j \to A_y = 0$ and so

 $y \in L$

and we're done. $\hfill \Box$

DEFINITION 56. Let L be a linear subspace of a Banach space X. Then we say that L has **Index** k if and only if

(i) There exists k linearly independent vectors $x_1, \ldots, x_k \in X$ such that for every $x \in X$, there exists $t_1, \ldots, t_k \in \mathbb{R}$ and $y \in L$ such that

$$(*) \qquad x = y + t_1 x_1 + \dots + t_k x_k$$

(ii) There is no set of (k-1) elements $\tilde{x}_1, \ldots, \tilde{x}_{k-1}$ such that (*) holds.

THEOREM 87. Let $A \neq 0$ be a continuous linear functional on X. Then L(A) (i.e. the kernel of A) has index k = 1. That is, there exists $x_0 \notin L$ such that for any $y \in X$, there exists $\lambda \in \mathbb{R}$ and $x \in L$ such that

$$y = x + \lambda x_0$$

Proof.

Since $A \neq 0$, there exists $x_0 \in X$ such that $Ax_0 \neq 0$. Let $y \in X$, let

$$\lambda = \frac{Ay}{Ax_0}$$

Now we want $x \in ker(A) = L$ so let

$$x = y - x_0 \frac{Ay}{Ax_0}$$
$$\implies Ax = Ay - \frac{Ay}{Ax_0}(Ax_0) = 0$$

and so $x \in ker(A)$. Now we claim that if x_0 is fixed, then there is only one way to write $y = \lambda x_0 + x$. To this end, we suppose for a contradiction that

$$y = \lambda_1 x_0 + x_1$$

Now, if $\lambda = \lambda_1$, then $x = x_1$, so $\lambda \neq \lambda_1$, so

$$(\lambda_1 - \lambda)x_0 = x - x_1$$

$$\implies x_0 = \frac{x - x_1}{\lambda_1 - \lambda}$$

now $x, x_1 \in L$ and so $x - x_1 \in L$ by linearity, and also

$$\frac{x-x_1}{\lambda_1-\lambda} \in L$$

but we assumed that $x_0 \notin L$. This contradiction yields the result. Conversely, if L is a subspace of X of index k = 1, then there exists a linear functional A such that L = ker(A). Consider the set

$$L_1 = \{x \in X : Ax = 1\}$$

If $x_0 \in X$ such that $Ax_0 = 1$ then

$$L_1 = x_0 + ker(A)$$

so if $Ax_0 = A\tilde{x}_0 = 1$, then

$$A(x_0 - \tilde{x}_0) = 0$$

since both $x_0, \tilde{x}_0 \in ker(A)$. Now, we want to compute

$$d(L_1, 0) = \inf\{\|x\| : Ax = 1\}$$

We claim that $d(L_1, 0) = 1/||A||$. To show this, we suppose that $x \in L_1$ so that

$$|Ax| = 1 \le ||A|| \cdot ||x|$$
$$\implies ||x|| \ge \frac{1}{||A||}$$

 $and\ so$

$$d \ge \frac{1}{\|A\|}$$

and the other direction follows by the definition of ||A||.

	6 5
SECTION	0.0

CONJUGATE SPACE

Suppose that X is a normed linear space and that A_1, A_2 are continuous functionals on X, then so is $t_1A_1 + t_2A_2$ for $t_j \in \mathbb{R}$.

||A|| defines a distance on the space X^* of all continuous linear functionals on X and we say that X^* is **Conjugate Space**. We also note that

$$||A_1 + A_2|| \le ||A_1|| + ||A_2||$$

THEOREM 88. X^* is always complete whether X is complete or not. **Proof.**

Let $A_n : X \to \mathbb{R}$ be a cauchy sequence of linear functionals. Consider a sequence of real numbers $(A_n x)$. This is a Cauchy sequence in \mathbb{R} . Now, let $x \in X$ and so

$$|A_n x - A_m x| \le ||A_n - A_m||_{op} \cdot ||x||$$

where the norm of the difference fo the functionals tends to zero as $m, n \to \infty$ and where the norm of x is fixed. Thus

$$A_n x \to B x$$

as $n \to \infty$. Now, since $A_n x \to Bx$, $A_n y \to By$, we have

$$A_n(t_1x + t_2y) \to t_1Bx + t_2By$$

Let N be such that

$$\|A_n - A_{n+p}\| < 1$$

for $n \ge N$, $p \ge 0$. Therefore,

$$||A_{n+p}|| \le ||A_n|| + 1$$

So,

$$|A_{n+p}x| \le (||A_n|| + 1)||x|$$

and as $p \to \infty$, we get

$$|Bx| \le (||A_n|| + 1)||x|$$

and so B is bounded since

$$||B||_{op} = \sup_{||x||=1} \frac{|Bx|}{||x||} \le (||A_n||+1)||x|| < \infty$$

It remains now to show that $||A_n - B||_{op} \to 0$ as $n \to \infty$. To this end, let $\epsilon > 0$, then there exists $x = x_{\epsilon} \in X$ such that

$$\begin{aligned} |A_n - B|| &\leq \frac{|A_n x_{\epsilon} - Bx_{\epsilon}|}{\|x_{\epsilon}\|} + \frac{\epsilon}{2} \\ &= \left|A_n\left(\frac{x_{\epsilon}}{\|x_{\epsilon}\|}\right) - B\left(\frac{x_{\epsilon}}{\|x_{\epsilon}\|}\right)\right| + \frac{\epsilon}{2} \\ &y = \frac{x_{\epsilon}}{\|x_{\epsilon}\|} \end{aligned}$$

and we let

We know that

$$By = \lim_{n \to \infty} A_n y$$

So, there exists $n_0 = n_0(\epsilon)$ such that for any $n > n_0$, we have

$$|A_ny - By| < \frac{\epsilon}{2}$$

Thus

$$|A_n - B||_{op} \le \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

for any $n > n_0$. Thus, X^* is in fact complete.

Remark. We can replace $A_n : X \to \mathbb{R}$ by $T_n : X \to Y$, where Y is a linear normed space and complete. Then it follows that X^* is Banach. So, $A_n x = y_n \in Y$ will be a Cauchy sequence and Y is Complete, so $y_n \to z = Bx$, and the rest of the proof is virtually identical.

We have thus shown that the space of all bounded linear operators $T: X \to Y$ where Y is Banach is complete and moreover it is Banach.

EXAMPLE 27. Look at the space of sequences

$$Y = \{x = (x_1, \dots, x_n, \dots) : x_n \to 0 \text{ as } n \to \infty\}$$

Now, let $a = (a_1, \ldots, a_n, \ldots) \in l_1$ have

$$\sum_{j=1}^{\infty} |a_j| < \infty$$

 $and \ let$

$$Ax = \sum_{j=1}^{\infty} a_j x_j$$

we know that $|x_j| < \epsilon$ for $j \ge N$ and so

$$\sum_{j=N}^{\infty} |a_j x_j| \le \epsilon \sum_{j=N}^{\infty} |a_j| \to 0$$

as $N \to \infty$.

Proposition 89.

$$||A|| = ||a||_1 = \sum_{j=1}^{\infty} |a_j|$$

Proof.

Let $Y \subseteq l_{\infty}$ and let $x \in Y$. Now,

$$\|x\| = \sup_{j=1}^{\infty} |x_j|$$

and so let $||x_j|| < 1$. Then

$$|Ax| = \left|\sum_{j=1}^{\infty} a_j x_j\right| \le \sup_{j=1}^{\infty} |x_j| \sum_{j=1}^{\infty} |a_j| = ||a_1||_1$$

 $and\ so$

$$||A||_{op} \le ||a||_1$$

For the converse, fix $\epsilon > 0$ and suppose that

$$\sum_{j=1}^N |a_j| \ge \|a\|_1 - \epsilon$$

Then, let

$$x_{j} = \begin{cases} 1 & a_{j} \ge 0, j \le N \\ -1 & a_{j} < 0, j \le N \\ 0 & j > N \end{cases}$$

and let $x = (x_1, \ldots, x_N, 0, 0, \ldots)$. Then ||x|| = 1 and we have

$$\sum_{j=1}^{\infty} a_j x_j = \sum_{j=1}^{N} |a_j| \ge ||a|| - \epsilon$$

as required. $\hfill \Box$

-Section 6.6-

LINEAR FUNCTIONALS REVISITED

PROPOSITION 90. Let

$$C = \{x = (x_1, \dots, x_n, \dots) : x_n \to 0\}$$

and define the linear functional

$$Ax = \sum_{j=1}^{\infty} a_j x_j$$

where

$$\sum_{j=1}^{\infty} |a_j| < \infty$$

Then, $C^* = l_1$. **Proof.**

Let $e_j = (0, \ldots, 0, 1, 0, \ldots) \in C$ where there is a 1 at the j^{th} index and zeros everywhere else. Now, let A be a bounded linear functional on C, then

$$Ae_j = a_j \qquad \forall a_j$$

If $x = (x_1, ..., x_n, 0, ..., 0, ...)$, then we have that

$$x = x_1 e_1 + \dots + x_n e_n$$

so that

$$Ax = x_1a_1 + x_2a_2 + \dots + x_na_n$$

Now we claim that

$$\sum_{j=1}^{\infty} |a_j| < \infty$$

To this end, we suppose, for a contradiction that

$$\sum_{j=1}^{\infty} |a_j| = \infty$$

but that $||A||_{op} < M$ where M > 0. Thus, there exists $N \in \mathbb{N}$ such that

$$\sum_{j=1}^{N} |a_j| > M$$

 $Now \ let$

$$x_j = \begin{cases} 1 & j < N, a_j > 0 \\ -1 & j \le N, a_j < 0 \\ 0 & j > N, \|x\|_{\infty} = 1 \end{cases}$$

.

then

$$Ax = \sum_{j=1}^{N} a_j \cdot sgn(a_j) = \sum_{j=1}^{N} |a_j| > M$$

but then M > M which contradicts our assumption and completes the proof. \Box

EXAMPLE 28. Consider l_2 and let $x = (x_1, \ldots, x_n, \ldots)$ such that

$$\sum_{j=1} |x_j|^2$$

and let $a = (a_1, \ldots, a_n, \ldots)$ such that

$$\sum_{j=1} |a_j|^2$$

and define the linear functional

$$Ax = \sum_{j=1}^{\infty} a_j x_j$$

and we claim that $Ax < \infty$. To this end we write

$$|(a,x)| = \left|\sum_{j=1}^{\infty} a_j x_j\right| \le ||a||_2 ||x||_2$$

so that

$$||A||_{op} = \sup_{||x|| \neq 0} \frac{|Ax|}{||x||} = (a, x) \le ||a||_2 = (a_1^2 + \dots + a_n^2 + \dots)^{\frac{1}{2}}$$

now take x = a so that

$$\frac{Ax}{\|x\|} = \frac{(a,a)}{\|a\|} = \frac{\|a\|^2}{\|a\|} = \|a\|$$

and thus

$$\|A\|_{op} = \|a\|$$

Every bounded linear functional on l_2 is obtained like this.

PROPOSITION 91. $(l_2)^* = l_2$. *Proof.*

The proof for this is similar to the proof of the above proposition. Let $x = (x_1, \ldots, x_n, \ldots) \in l_p$ so that

$$\sum_{j=1}^{\infty} |x_j|^p < \infty$$

then let $a = (a_1, \ldots, a_n, \ldots) \in l_q$ where

$$\frac{1}{p} + \frac{1}{q} = 1$$

So,

$$Ax = \sum_{j=1}^{\infty} a_j x_j \le ||a||_q ||x||_p$$

by Hölder's inequality. Thus,

$$||A||_{op} = ||a||_q$$

and all bounded linear operators on $l_p, p \in (1, \infty)$ will have this form and thus,

$$(l_p)^* = l_q$$

for all $p, q \in (1, \infty)$ such that

$$\frac{1}{p} + \frac{1}{q} = 1$$

and we have proven something stronger than what we set out to prove! Bonus! \Box

EXAMPLE 29. Let $x = (x_1, \ldots, x_n, \ldots) \in l_1$ so that

$$\sum_{j=1}^{\infty} |x_j| < \infty$$

and let $a = (a_1, \ldots, a_n, \ldots) \in l_{\infty}$ so that

$$\sup_{j=1}^{\infty} |a_j| \le T < \infty$$

Then

 $and \ so$

and thus

$$\sum_{j=1}^{\infty} a_j x_j < \infty$$

$$\sum_{j=1}^{\infty} |a_j| < \infty$$

$$\|A\|_{op} = \sup_{j=1}^{\infty} |a_j|$$

and thus $(l_1)^* = l_\infty$.

We now know that $C^* = l_1$ and that $(l_1)^* = l\infty$, however $(l_\infty)^* = A$ where A is the space of horrible nightmares. The main point here though, is that C, l_1, l_∞ are not reflexive.

THEOREM 92. $X \subseteq (X^*)^*$, and $X \cong \{ a \text{ linear subspace of } (X^*)^* \}$. **Proof (Idea).** Let A be a bounded linear functional on X and let $z \in X$. Now, define $l_z(A) = Az$ (δ function at z). If $A_1, A_2 \in X^*$ then

 $l_z(t_1A_1 + t_2A_2) = t_1A_1z + t_2A_2z = t_1l_z(A) + t_2l_z(A)$

Now, if ||A|| < 1, then

 $|Az| \le ||A||_{op} \cdot ||z||_X$

and thus

$$\|l_z\| \le \|z\|_X$$

and now we claim that $||l_{op,X^{**}} = ||z||_X$ which follows directly from the Hahn-Banach Theorem.

SECTION 6.7		
BERNSTEIN POLYNOMIALS		

LEMMA 93. We claim that

$$[x + (1 - y)]^n = \sum_{k=0}^n x^k \binom{n}{k} (1 - y)^{n-k}$$

Proof.

$$\left(x\frac{d}{dx}\right): \quad nx[x+(1-y)]^{n-1} = \sum_{k=0}^{n} kx^k \binom{n}{k} (1-y)^{n-k}$$
$$x^2 \left(\frac{d}{dx}\right)^2: \quad n(n-1)x^2[x+(1-y)]^{n-2} = \sum_{k=0}^{n} k(k-1)\binom{n}{k} (1-y)^{n-k}$$

Now evaluate both at y = x so that

$$1 = \sum_{k=0}^{n} \binom{n}{k} x^{k} (1-x)^{n-k}$$

$$nx = \sum_{k=0}^{n} kx^{k} \binom{n}{k} (1-x)^{n-k}$$
$$n(n-1)x^{2} = \sum_{k=0}^{n} k(k-1)x^{k} \binom{n}{k} (1-x)^{n-k}$$

Now, adding the above three identities together yields our result.

THEOREM 94 (Bernstein Approximation Theorem). Let $f \in C([0,1])$ and define the nth Bernstein Polynomial of f by

$$B_n(f;x) = \sum_{k=0}^n f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k}$$

where

$$\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{1\cdot 2\cdots k}$$

then

$$\sup_{x \in [0,1]} |f(x) - B_n(f;x)| \to 0$$

as $n \to \infty$. **Proof.**

We consider

$$\begin{split} \sum_{k=0}^{n} \left(x - \frac{k}{n}\right)^{2} \binom{n}{k} x^{k} (1-x)^{n-k} \\ &= \sum_{k=0}^{n} \left(x^{2} - \frac{2k}{n}x + \frac{k^{2}-k}{n^{2}} + \frac{k}{n}\right) \binom{n}{k} x^{k} (1-x)^{n-k} \\ &= x^{2} \sum_{k=0}^{n} \binom{n}{k} x^{k} (1-x)^{n-k} - \frac{2x}{n} \sum_{k=0}^{n} k \binom{n}{k} x^{k} (1-x)^{n-k} \\ &\quad + \frac{1}{n^{2}} \sum_{k=0}^{n} k(k-1) \binom{n}{k} x^{k} (1-x)^{n-k} + \frac{1}{n^{2}} \sum_{k=0}^{n} k \binom{n}{k} x^{k} (1-x)^{n-k} \\ &= x^{2} \cdot 1 - \frac{2x}{n} \cdot nx + \frac{1}{n^{2}} n(n-1)x^{2} + \frac{1}{n^{2}} \\ &= \frac{x(1-x)}{n} = \frac{x-x^{2}}{n} \end{split}$$

by applying the three identities from Lemma 88. Now, let $\delta > 0$ and fix $x \in [0, 1]$ and look at

$$\sum_{k=0}^{n} \left(x - \frac{k}{n}\right)^{2} \binom{n}{k} x^{k} (1-x)^{n-k} \ge \sum_{k:|x-k/n| > \delta} \delta^{2} \binom{n}{k} x^{k} (1-x)^{n-k}$$

Now, since $f \in C([0,1])$, we can say that f is uniformly continuous on [0,1] and so

$$|f(x) - B_n(f;x)| = \left| f(x) \sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k} - \sum_{k=0}^n f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k} \right|$$

$$\leq \sum_{k=0}^n \left| f(x) - f\left(\frac{k}{n}\right) \right| \binom{n}{k} x^k (1-x)^{n-k}$$

$$= S_1 + S_2$$

We wish to construct S_1 and S_2 so that S_1 sums over all k such that

$$\left|x - \frac{k}{n}\right| > \delta$$

and so that S_2 sums over the rest of k between 0 and n. That is

$$\left|x - \frac{k}{n}\right| \le \delta$$

Now, to bound S_1 , we have

$$\left| f(x) - f\left(\frac{k}{n}\right) \right| \le 2 \cdot \|f\|_{\infty} = 2 \sup_{x \in [0,1]} |f(x)|$$

and so

$$S_1 \le 2 \|f\|_{\infty} \frac{x(1-x)}{n\delta^2}$$
$$\le \frac{\|f\|_{\infty}}{2n\delta}$$

by the fact that x(1-x) has maximum value 1/4. Now, to bound S_2 we choose $\epsilon > 0$ and there exists $\delta > 0$ such that

$$|x-y| < \delta \Longrightarrow |f(x) - f(y)| < \frac{\epsilon}{2}$$

Now, in the second sum we know that

$$\left|x - \frac{k}{n}\right| < \delta \Longrightarrow \left|f(x) - f\left(\frac{k}{n}\right)\right| < \frac{\epsilon}{2}$$

so that

$$S_2 \le \frac{\epsilon}{2} \sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k} = \frac{\epsilon}{2}$$

Then

$$S_1 + S_2 < \frac{\epsilon}{2} + \frac{\|f\|_{\infty}}{2n\delta^2}$$

Finally, let n be large so that

$$\frac{\|f\|_{\infty}}{2n\delta^2} < \frac{\epsilon}{2}$$

which gives that

$$S_1+S_2 < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

-Section 6.8-

Inverse & Implicit Function Theorem In \mathbb{R}^n

THEOREM 95 (Inverse Function Theorem). Let $\Omega \subseteq \mathbb{R}^n$ and let $F : \Omega \to \mathbb{R}^n$ be such that $F \in C^1(\Omega)$ where $F = [F_1, \ldots, F_n]$ and $F_i \in C^1(\Omega)$ for each $1 \le i \le n$. Let $a \in \Omega$ and let DF(a) be invertible where

$$(DF)_{ij} = \frac{\partial F_i}{\partial x_j}$$

and if we let $F(a) = b \in \mathbb{R}^n$, then

(i) There exists open sets $U, V \subseteq \Omega$ such that $a \in U, b \in V$ and $F : U \to V$ is a bijection.

(ii) The inverse function $G = F^{-1}$ defined by G(F(x)) = x is contained in $C^{1}(V)$.

Proof.

Part (i). Let A = DF(a) and let

$$\epsilon = \frac{1}{4\|A^{-1}\|_{op}}$$

and $x \mapsto DF(x)$ is a continuous map from $\Omega \to Mat_{n \times n}(\mathbb{R})$. There exists an open ball U containing a such that

$$\|DF(x) - A\|_{op} < 2\epsilon$$

for any $x \in U$. So let $x, x + h \in U$ and let $f(t) = F(x + th) - t \cdot Ah$ for $t \in [0, 1]$. Also, bear in mind that x and h are both vectors. Now we look at

$$||f'(t)|| = ||DF(x+th) \cdot h - Ah||| \le 2\epsilon \cdot ||h|$$

and now

$$2\epsilon \|h\| = 2\epsilon \|A^{-1} \cdot A \cdot h\| \le 2\epsilon \|A^{-1}\|_{op} \cdot \|Ah\| = \frac{\|Ah\|}{2}$$

by our definition of ϵ . Now, we have

$$||f'(t)|| \le \frac{1}{2} ||Ah||$$

and by the Generalized Intermediate Value Theorem we get

$$||f(1) - f(0)|| \le \frac{1}{2} ||Ah||$$

and by our definition of f, this is the same as

$$||F(x+h) - F(x) - Ah|| \le \frac{1}{2} ||Ah||$$

and so by the Triangle Inequality,

$$||F(x+h) - F(x)|| \ge ||Ah|| \left(1 - \frac{1}{2}\right) = \frac{||Ah||}{2}$$

 $and\ since$

$$\|Ah\| = \frac{1}{4\epsilon}$$

and since by the computation of $2\epsilon \|h\|$ which gives

$$\|h\| \leq \frac{\|Ah\|}{4\epsilon} \Longrightarrow \|Ah\| \geq 4\epsilon \|h\|$$

we get

$$\|F(x+h) - F(x)\| \ge 2\epsilon \|h\|$$

and this implies that F is 1-to-1 on U.

We now claim that if $x_0 \in U$ and r > 0 is such that $\overline{B}(x_0, r) \subseteq U$ then

$$B(F(x_0), \epsilon r) \subseteq F(B(x_0, r))$$

to this end, let $S = \overline{B}(x_0, r)$ and let

$$\|y - F(x_0)\| < \epsilon r$$

 $\psi(x) = \|y - F(x)\|^2$

For $x \in S$, define

It suffices to show (for the claim) that $\psi(x) = 0$ for some $x \in S$. First, ψ is continuous since F is continuous and y is fixed and S is compact, so ψ takes a minimum and a maximum on S and in particular, ψ takes a minimum at say $x = x_1$. Second, ψ is differentiable particularly at x_1 and

$$\psi'(x) = DF(x) \cdot (y - F(x))$$

noticing that 0 denotes the zero vector $\vec{0}$ and at the minimum,

$$\psi'(x_1) = 0 = DF(x_1) \cdot (y - F(x_1))$$

and since $DF(x_1)$ is invertible, we must have that $y = F(x_1)$ and so $\psi(x_1) = 0$ as required. We have just shown that every point in F(U) is an interior point. Since $B(F(x), \epsilon r) \subseteq F(U)$, take V = F(U)and we have yielded (i) of the theorem. Part (ii).

Define $G = F^{-1}$ by G(F(x)) = x. Then $G \in C^{1}(V)$. Let $y, y + k \in V$. Now, let $x = G(y) \in U$ and let h = G(y + k) - G(y) so that x + h = G(x + k). Then $x + h \in U$. Now, DF(x) is invertible. Also,

$$\|DF(x) - A\|_{op} < 2\epsilon$$

on U, so let $B(x) = [DF(x)]^{-1}$. Now

(*)
$$k = F(x+h) - F(x) = DF(x) \cdot h + r(h)$$

where

$$\frac{\|r(h)\|}{\|h\|} \to 0$$

as $||h|| \to 0$. Apply B = B(x) to both sides of (*) so that

$$Bk = [B(x) \cdot DF(x)] \cdot h + B \cdot r(h) = h + B \cdot r(h)$$

since $B \cdot DF(x) = Id$. Then

$$h = G(y+k) - G(y) = B \cdot k - B \cdot r(h)$$

We've already proven that

$$\|F(x+h) - F(x)\| > \frac{1}{2} \|Ah\| \ge 2\epsilon \|h\|$$

which implied that the map is 1-to-1. This now becomes

$$\|k\| \ge 2\epsilon \|h\|$$

if $||k|| \to 0$, then $||h|| \to 0$ since ϵ is fixed. Therefore, the map G is continuous at y since we've shown that

$$\lim_{\|k\|\to 0} G(y+k) = G(y)$$

Now, to show that G is differentiable, we look at

$$\frac{\|B \cdot r(h)\|}{\|k\|} \le \frac{\|B\|_{op} \cdot \|r(h)\|}{2\epsilon \|h\|} = \frac{\|B\|_{op}}{2\epsilon} \cdot \frac{\|r(h)\|}{\|h\|} \to 0$$

as $||k|| \to 0$, since

$$\frac{\|r(h)\|}{\|h\|} \to 0$$

by definition of remainder. Thus, G is differentiable at y and its derivative is

$$DG(y) = [DF(G(y))]^{-1} \qquad \Box$$

THEOREM 96 (Implicit Function Theorem). Let $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, $y = (y_1, \ldots, y_m) \in \mathbb{R}^m$ and let $E \subseteq \mathbb{R}^{n+m}$ and $F : E \to \mathbb{R}^n$ be such that $F \in C^1(E)$. Now, let $(a, b) \in E$ be such that F(a, b) = 0 and let M = DF(a, b) where M is an $n \times (n+m)$ matrix so write

$$DF = (D_xF \mid D_yF)$$

where $D_x F$ is $n \times n$ and $D_y F$ is $n \times m$. Also,

$$(D_x F)_{ij} = \left(\frac{\partial F_i}{\partial x_j}\right) \qquad (D_y F)_{ij} = \left(\frac{\partial F_i}{\partial y_j}\right)$$

Now suppose that $D_x F$ is invertible, then there exists an open set $W \subseteq \mathbb{R}^n$ containing b and a **unique** function $G: W \to \mathbb{R}^n$ such that G(b) = a and

 $F(G(y), y) \equiv 0$

where G(y) = x is then dependent and y is independent. Moreover, $G \in C^1(W)$.

COROLLARY 97. We have

$$\frac{\partial(x_1,\ldots,x_n)}{\partial(y_1,\ldots,y_m)} = [-D_x F]^{-1} \cdot [D_y F]$$

-Chapter 7-

LINEAR OPERATORS & THE OPERATOR NORM

-Section 7.1-

THE HAHN-BANACH THEOREM

THEOREM 98 (Hahn-Banach Theorem). Let L be a linear subspace of a normed linear space X. Let f(x) be a linear functional defined on L. Then f(x) can be extended to a linear functional F on X such that

$$||F||_{op,X} = ||f||_{op,L}$$

Note that **extended** means that $F|_L = f$. That is, for any $x \in L$, F(x) = f(x). **Proof.**

We shall give a proof in case X is separable (contains a countable dense subset). Let $x_0 \in X, x_0 \notin L$ and let

$$L_1 = \{x_1 + tx_0 : t \in \mathbb{R}, x_1 \in L\}$$

Now, let $y \in L_1$ which implies that

 $y = tx_0 + x \qquad x \in L, t \in \mathbb{R}$

So,

$$F(y) = tF(x_0) + f(x)$$

and let $F(x_0) = -C$ which gives

F(y) = f(x) - Ct

We want to show that

$$||F||_{op,X} \le ||f||_{op,L}$$

We should then have that

$$|F(y)| = |f(x) - Ct| \le ||f|| \cdot ||x + tx_0|| = ||f|| \cdot |t| \cdot \left||x_0 + \frac{x}{t}\right||$$

assuming $t \neq 0$, so let $z = \frac{x}{t}$. Then we rewrite

$$|F(y)| = t \left| f\left(\frac{x}{t}\right) - c \right| = t \cdot |f(z) - c|$$

so that

$$|f(z) - c| \le ||f|| \cdot ||z + x_0||$$

then

$$-f(z) - ||f|| \cdot ||z + x_0|| \le f(z) - C \le ||f||_{op} \cdot ||z + x_0||_X - f(z)$$

which implies that

(*)
$$f(z) - ||f||_{op} \cdot ||z + x_0||_X \le C \le f(z) + ||f||_{op} \cdot ||z + x_0||_X$$

Now, if (*) holds, then

$$||F||_{op,X} \le ||f||_{op,L}$$

and we can do an induction step so that (*) should hold for any $z \in L$. We now want to show that

$$\sup_{z \in L} (f(z) - \|f\|_{op} \cdot \|z + x_0\|_X) \le \inf_{z \in L} (f(z) + \|f\|_{op} \cdot \|z + x_0\|_X)$$

so we claim that if $z_1, z_2 \in L$, then

$$f(z_2) + ||f|| \cdot ||z_2 + x_0|| \ge f(z_1) - ||f|| \cdot ||z_1 + x_0|$$

To this end, we write

$$f(z_1) - f(z_2) \le f(z_1 - z_2) \le ||f||_{op} \cdot ||z_2 - z_2|| = ||f|| \cdot ||(z_1 + x_0) - (z_2 + x_0)|$$

$$\le ||f|| (||(z_1 + x_0)|| + ||(z_2 + x_0)||)$$

and our claim follows. So, we can now extend f to

$$\{L + tx_0 : t \in \mathbb{R}\}$$

such that $||F||_{L_1} \leq ||f||_L$. Let us take a countable dense subset $x_1, \ldots, x_n \in X$ where the x_i 's are linearly independent and not in L. First, extend f to F_1 on $L + \langle x_1 \rangle = L_1$. Then extend to F_2 on $L_1 + \langle x_2 \rangle = L_2$, and continue until we obtain F_n defined on $L_{n-1} + \langle x_n \rangle = L_n$. At each step, we have that

$$||F||_{op,X} = ||f||_{op,L}$$

This way, we obtain a bounded linear functional F, defined on a dense subset of X such that ||F|| = ||f||. It is now left as an excercise to show that on the rest of X, we can define F by continuity, so that $x_n \to z$ gives

$$F(z) = \lim_{n \to \infty} F(x_n)$$

and

$$|F(x_n) - f(x_m)| \le ||f|| \cdot ||x_n - x_m||$$

where $|F(x_n) - f(x_m)|, ||x_n - x_m|| \to 0$. This will define a bounded linear functional F on X.

COROLLARY 99. Let $x_0 \in X$, where $x_0 \neq 0$ and let M > 0, then there exists $f \in X^*$ where f is a bounded linear functional on X such that $\|f\|_{op} = M$

and

$$f(x_0) = M \cdot ||x_0|| = ||f||_{op} \cdot ||x_0||_X$$

Proof.

Define f on $\langle x_0 \rangle$ by $F(tx_0) = M \cdot t \cdot ||x_0||$ and the rest follows from Hahn Banach.

We recall that for any $x_0 \neq 0, x_0 \in X$, there exists a linear functional $A \in X^*$, such that

 $|Ax_0| = ||A||_{op} \cdot ||x_0||_X$

and if X is a normed linear space, then so is X^* . Also, we can define a linear functional on X^* by $A \in X^*$, $f_{x_0}(A) = Ax_0$

with

$$(\lambda_1 A_1 + \lambda_2 A_2)(x_0) = \lambda_1 A_1 x_0 + \lambda_2 A_2 x_0$$

This way, X can be realized as a linear submanifold of X^{**} . So on X^* , we have

$$||L_{x_0}||_{op} = \sup_{A \in X^*} \frac{|Ax_0|}{||A||_{op}} \le ||x_0||_X$$

and

$$|L_{x_0}A| = |Ax_0|$$

with $||A||_{op} \neq 0$. Now, Hahn-Banach implies what we just recalled. This shows that

 $||L_{x_0}||_{op} = ||x_0||_X$

So, X can be isometrically embedded in X^{**} .

-Section 7.2-

EXAMPLES

Also recall that if X is reflexive if $X^{**} = X$. EXAMPLE 30. We now consider the norms of some linear operators.

(*i*) Let X = C([0, 1]) and take

$$(Tf)(x) = g(x)f(x)$$

and we ask for which g is T continuous. The answer to this is continuous g. To find $||T||_{op}$, we let $g \in C([0,1])$ and let $f \equiv 1$ so that $Tf = T1 = g \in C([0,1])$. Then

$$||T||_{op} = ||g||_{\infty} = \sup_{x} |g(x)|$$

Now we claim that since

$$||T||_{op} = \sup \frac{|Tf|}{||f||}$$

 $and \ so$

$$\sup_{x} |f(x)g(x)| \le \sup_{x} |f(x)| \sup_{x} |g(x)| = ||f||_{\infty} \cdot \sup_{x} |g(x)|$$

Now, find f(x) such that $\sup |f \cdot g| = \sup |f| \sup |g|$. Just take $f \equiv 1$!

(ii) Let $X = l_2$ and take

$$Tx = (\alpha_1 x_1, \dots, \alpha_n x_n, \dots)$$

and we ask for which $\alpha = (\alpha_1, \ldots, \alpha_n, \ldots)$ is T a bounded linear operator. Now, T is bounded if and only if $\sup_k |\alpha_k| \leq M < \infty$. This is true since if $\alpha_j \leq M$ for each j, then

$$\sum_{k=1}^\infty |\alpha_k x_k|^2 \le M^2 \sum_{k=1}^\infty |x_k|^2$$

and so

$$||Tx||_{l_2}^2 \le M^2 ||x||_{l_2}^2$$

Now, suppose that $\sup_k |\alpha_k| = \infty$, then take $k_1 < \cdots < k_n < \cdots$ such that $|\alpha_{k_n}| > n$ then let

$$x = \left(0, \dots, 0, 1, 0, \dots, 0, \frac{1}{2}, 0, \dots, 0, \frac{1}{n}, 0, \dots\right)$$

where terms only appear at the k_j index and zeros everywhere else. Then

$$\|x\|_2^2 = \sum_{k=1}^\infty \frac{1}{n^2} < \infty$$

now,

$$Tx = \left(0, \dots, 0, \alpha_{k_1}, 0, \dots, 0, \frac{\alpha_{k_2}}{2}, 0, \dots, 0, \frac{\alpha_{k_n}}{n}, 0, \dots\right) \notin l_2$$

so T is not well defined since

 $|\alpha_{k_n}| \ge 1$

and it is left as an excercise to show that

$$||T||_{op} = \sup_{k} |\alpha_k|$$

and note that we have already proven " \leq ". Take a sequence of "test vectors" $x^{(j)} \in l_2$ such that

$$\frac{\|Tx^{(j)}\|_2}{\|x^{(j)}\|_2} \to \sup_k |a_k|$$

Suppose taht $\alpha_j \neq 0$ for all j, then

$$T^{-1}x = \left(\frac{x_1}{\alpha 1}, \dots, \frac{x_n}{\alpha_n}, \dots\right)$$

and whe ask when T, T^{-1} are both continuous. So

$$0 < m < |\alpha_j| \le M < \infty$$

for any j and so

$$\frac{1}{|\alpha_j|} < M_2 < \infty$$

(iii) Consider the shift operator

$$Tx = (0, x_1, \dots, x_n, \dots)$$

that shifts to the left so that the inverse is the right shift operator S. Then we define the left inverse to be S such that $T \circ S = Id$ and we define the right inverse to be S such that $S \circ T = Id$. Now, if we let

$$Sx = (x_2, \dots, x_n, \dots)$$

then, S is a left inverse, but T has no right inverse since we "lose" the x_1 term after applying S. Thus, $T \circ S \neq Id$ since T is not onto l_2 . (iv) Let $Y = C^{1}([0, 1])$ and let

$$||f||_{C^1} = \sup_x |f(x)| + \sup_x |f'(x)|$$

and let $T: C^1 \to C^0$ where

$$(Tf)(x) = f'(x)$$

Then T is bounded for $||T_{op}|| \leq 1$. Now, let

$$Sf(x) = \int_0^x f(s)ds$$

where $S: C^0 \to C^1$ then T(S(f)) = f so that S is the right inverse of T. However, it is left as an excercise to show that T has no left inverse. But, let $Y \subseteq C^1$ defined by

$$Y = \{ f \in C^1 : f(0) = 0 \}$$

then, S is a left inverse on Y.

$Fin. \\ \text{Good Luck On The Final!}$
References

- [1] D. Jakobson: 35 Lectures (Sept. $8^{th} \rightarrow$ Dec. $1^{st}),$ McGill University (2010).
- [2] Walter Rudin: Principles Of Mathematical Analysis, Second Edition; McGraw-Hill (1976).
- [3] Walter Rudin: Real & Complex Analysis, Third Edition; McGraw-Hill (1987).
- [4] A.N. Kolmogorov & S.V. Fomin: Elements of the Theory of Functions & Functional Analysis (Volumes 1 & 2), Third Edition; Dover (1999).