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1 Introduction

1.1 Definitions

↩→ Definition 1.1: Diffferential equation

A diffferential equation (DE) is an equation with derivatives. Ordinary DE’s (ODE) will be covered in this
course; other types (PDE’s, SDE’s, DDE’s, FDE’s, etc.) exist as well but won’t be discussed. ODE’s only
have one independent variable (typically, 𝑦 = 𝑓 (𝑥) or 𝑦 = 𝑓 (𝑡)).

⊛ Example 1.1: A Trivial Example

d𝑦
d𝑥 = 6𝑥. Integrating both sides:∫ d𝑦

d𝑥 d𝑥 =

∫
6𝑥 d𝑥 =⇒ 𝑦(𝑥) = 3𝑥2 + 𝐶.

⊛ Example 1.2: Another One

d2𝑢

d𝑡2
= 0 =⇒ 𝑦 = 𝑎𝑡 + 𝑏.

↩→ Definition 1.2: Order

The order of a differential equation is defined as the order of the highest derivative in the equation.

1.2 Initival Values

Remark 1.1. Note the existence of arbitrary constants in the previous examples, indicating infinite solutions. We often
desire unique solutions by fixing these coefficients. For first order ODEs, we simply specify a single initial condition
(say, some 𝑦(𝑥0) = 𝛼0). For higher order ODEs of degree 𝑛, we can either specify 𝑛 − 1 initial conditions for 𝑛 − 1
derivatives (say, 𝑦(𝑥0) = 𝛼0, 𝑦′(𝑥0) = 𝛽0), or boundary conditions (say, 𝑦(𝑥0) = 𝛼0, 𝑦(𝑥1) = 𝛼1) where values for the
solution itself are specified.

⊛ Example 1.3: A Less Trivial Example

d𝑦
d𝑥 = 𝑦. We cannot simply integrate both sides as before, as we have no way to know what

∫
𝑦 d𝑥

(the RHS) is equal to. We can fairly easily guess that 𝑦 = 𝑒𝑥 is a solution; its derivative is equal to
itself, hence it does indeed solve the equation. This is not the only solution; indeed, given 𝑦 = 𝑐𝑒𝑥 ,
we have

d𝑦
d𝑥 = 𝑐𝑒𝑥 = 𝑦 = 𝑐𝑒𝑥 .

1.2 Introduction: Initival Values 3



Luckily, we were rather limited in how many places constants could appear; this doesn’t always
hold.

1.3 Physical Applications

⊛ Example 1.4: Simple Pendulum

Let 𝜃 be the angle of a pendulum of mass 𝑚 from vertical and length 𝑙. Then, we have the equation
of motion

𝑚𝑙 ¥𝜃 = −𝑚𝑔 sin𝜃 =⇒ ¥𝜃 + 𝑔

𝑙
sin𝜃 = 0 =⇒ ¥𝜃 + 𝜔2 sin𝜃 = 0.

Take 𝜃 small, then, sin𝜃 ≈ 𝜃. Then, ¥𝜃 + 𝜔2𝜃 = 0. This is linear simple harmonic motion, and has
periodic solutions; how do we know this is a valid solution to the non-linear model?

↩→ Lecture 01; Last Updated: Thu Jan 4 15:16:18 EST 2024

⊛ Example 1.5: Lorenz Equations

d𝑥
d𝑡 = 𝜎(𝑦 − 𝑥)

d𝑦
d𝑡 = 𝑟𝑥 − 𝑦 − 𝑥𝑧

d𝑧
d𝑡 = 𝑥𝑦 − 𝑏𝑧

These are a famous set of equations originally derived from atmospheric modeling, known for its
chaotic behavior for particular parameters. This is a nonlinear system of de’s, and beyond the scope
of this class (indeed, it is not solvable exactly).

1.4 Uniqueness

Given an ODE of the general form 𝑦(𝑛) = 𝑓 (𝑡 , 𝑦, 𝑦′, . . . , 𝑦𝑛−1), if we wish to determine 𝑦(𝑛)(𝑡0) uniquely, we
need to specify the initial conditions

𝑦(𝑡0), 𝑦′(𝑡0), . . . , 𝑦(𝑛−1)(𝑡0).

Moreover, this not only determines uniqueness of 𝑦(𝑛)(𝑡0), byt the uniqueness of solution 𝑦 for 𝑡 ∈ 𝐼 for some
“interval of validity” 𝐼.

1.4 Introduction: Uniqueness 4



↩→ Definition 1.3: Autonomous/Nonautonomous

An ODE of the form
𝑦(𝑛) = 𝑓 (𝑦, 𝑦′, . . . , 𝑦(𝑛−1))

is called autonomous; that is, if it has no explicit dependence on the independent variable. Otherwise,
the system is called nonautonomous.

↩→ Definition 1.4: Linear/Nonlinear

Linear ODEs of dimension 𝑛 have a solution space which is a vector space of dimension 𝑛. As a result,
solutions can be written as a linear combination of 𝑛 basis solutions (or “fundamental set of solutions”).
Solutions to nonlinear ODEs cannot be written this way (except locally).

Alternatively (but equivalently), if we can write an 𝑛th order ODE in the form

𝑎𝑛(𝑡)𝑦𝑛(𝑡) + · · · 𝑎1(𝑡)𝑦′(𝑡) + 𝑎0(𝑡)𝑦(𝑡) = 𝑔(𝑡),

or equivalently,
𝑛∑
𝑖=0

𝑎𝑖(𝑡)𝑦 𝑖(𝑡) = 𝑔(𝑡), ⊛

where each 𝑎𝑖(𝑡) and 𝑔(𝑡) are known functions of 𝑡, then we say that the ODE is linear. Otherwise, it is
nonlinear.

⊛ Example 1.6

The pendulum
¥𝜃 + 𝜔2 sin𝜃 = 0

is autonomous and linear;
¥𝜃 + 𝜔2 sin𝜃 = 0

is autonomous and nonlinear, due to the sin𝜃 term (indeed, this is a nonlinear oscillator equation);
a damped-forced oscillator

¥𝜃 + 𝑘2 ¤𝜃 + 𝜔2𝜃 = 𝐴 sin(𝜇𝑡)

is nonautonomous and linear.

Remark 1.2. Note that the following definitions apply only to linear ODEs.

↩→ Definition 1.5: Homogeneous/Nonhomogeneous

A linear ODE of the form ⊛ is homogeneous if 𝑔(𝑡) = 0; otherwise it is nonhomogeneous.

1.4 Introduction: Uniqueness 5



↩→ Definition 1.6: Constant/Variable

A linear ODE of the form ∗ is constant coefficient if 𝑎 𝑗(𝑡) = constant ∀ 𝑗; if at least one 𝑎 𝑗 not constant, it is
non-constant or variable coefficient.

Remark 1.3. Note that while we define linearity of ODEs in terms of the form of 𝑦(𝑛) = 𝑓 (𝑡 , 𝑦, . . . ), this more
“helpfully” relates to the form of the solution of such an ODE, which is indeed linear.

1.5 Solutions

Given an 𝑛 order ODE 𝑦(𝑛) = 𝑓 (𝑡 , 𝑦, . . . ), and assuming 𝑓 continuous, then for 𝑦(𝑡) to be a solution, we
need 𝑦 to be 𝑛-times differentiable; hence, 𝑦, . . . , 𝑦(𝑛−1) must all exist and be continuous. Then, 𝑦(𝑛), being a
continuous function of continuous functions, is, itself, continuous.

↩→ Definition 1.7: Solution

The function 𝑦(𝑡) : 𝐼 → R is a solution to an ODE on an interval 𝐼 ⊆ R if it is 𝑛-times differentiable on 𝐼,
and satisfies the ODE on this interval.

Given an well-defined IVP with 𝑛 − 1 initial values defined at 𝑡0, then 𝑦(𝑡) is a solution if 𝑡0 ∈ 𝐼, 𝑦
satisfies the initial values, and 𝑦(𝑡) is a solution on the interval.

↩→ Definition 1.8: Interval of Validity

The largest 𝐼 on which 𝑦(𝑡) : 𝐼 → R solves an ODE is called the interval of validity of the problem.

↩→ Lecture 02; Last Updated: Thu Jan 11 11:05:26 EST 2024

2 First Order ODEs

2.1 Separable ODEs

↩→ Definition 2.1: Separable ODE

An ODE of the form
𝑦′ = 𝑃(𝑡)𝑄(𝑦)

is called separable. We solve them:

d𝑦
d𝑡 = 𝑃(𝑡)𝑄(𝑦)

=⇒
∫

1
𝑄(𝑦) d𝑦 =

∫
𝑃(𝑡)d𝑡 .

Finish by evaluating both sides.

2.1 First Order ODEs: Separable ODEs 6



⊛ Example 2.1

d𝑦
d𝑡 = 𝑡𝑦 (1)

=⇒ 1
𝑦

d𝑦 = 𝑡 d𝑡 (2)

=⇒ ln |𝑦 | = 𝑡2

2 + 𝐶 (3)

=⇒ |𝑦 | = 𝐾𝑒
𝑡2
2 where 𝐾 = 𝑒𝐶 (4)

=⇒ 𝑦 = 𝐵𝑒
𝑡2
2 where 𝐵 = ±𝐾 = ±𝑒𝐶 (5)

Note that we call line (3) an implicit solution. In this case, we could easily turn this into an explicit
solution by solving for 𝑦(𝑡); this won’t always be possible.

Note that it would appear, based on the definition, that 𝐵 ≠ 0 (as 𝑒 ... ≠ 0); however, plugging
𝑦 = 0 into (1) shows that this is indeed a solution. It is quite easy to verify that (5) is a valid solution;

d
d𝑡

(
𝐵𝑒

𝑡2
2

)
= 𝐵𝑡𝑒

𝑡2
2 = 𝑡 · 𝑦,

as desired; this holds ∀𝐵 ∈ R.

Remark 2.1. Is it valid to split the differentials like this?

1
𝑄(𝑦)

d𝑦
d𝑡 = 𝑃(𝑡)

=⇒
∫

1
𝑄(𝑡)

d𝑦
d𝑡 d𝑡 =

∫
𝑃(𝑡)d𝑡

Let 𝑔(𝑦) = 1
𝑄 (𝑦) and 𝐺(𝑦) =

∫
𝑔(𝑦)d𝑦. By the chain rule,

d
d𝑡 (𝐺(𝑦(𝑡))) =

d𝑦
d𝑡 · d

d𝑦𝐺(𝑦(𝑡)) =
d𝑦
d𝑡 · 𝑔(𝑦(𝑡)) =

d𝑦
d𝑡 · 1

𝑄(𝑦(𝑡)) .

Integrating both sides with respect to time, we have

𝐺(𝑦(𝑡)) =
∫

1
𝑄(𝑦(𝑡))

d𝑦
d𝑡 d𝑡 =

∫
𝑃(𝑡)d𝑡 + 𝐶

=⇒
∫

𝑔(𝑦)d𝑦 =

∫
𝑃(𝑡)d𝑡 + 𝐶

=⇒
∫

1
𝑄(𝑦) d𝑦 =

∫
𝑃(𝑡)d𝑡 + 𝐶

This was our original expression obtaining by “splitting”, hence it is indeed “valid”.

2.1 First Order ODEs: Separable ODEs 7



⊛ Example 2.2

d𝑦
d𝑥 =

𝑥2

1 − 𝑦2

=⇒
∫

(1 − 𝑦2)d𝑦 =

∫
𝑥2 d𝑥

=⇒ 𝑦 −
𝑦3

3 =
𝑥3

𝑥
+ 𝐶

=⇒ 𝑦 − 1
3(𝑦

3 + 𝑥3) = 𝐶

Suppose we have the same ODE but now with an IVP 𝑦(0) = 4. Then, plugging this into our
implicit solution:

4 − 1
3(64 + 0) = 𝐶 =⇒ 𝐶 = 4 − 64

3 = −52
3 ,

so our IVP solution is
𝑦 − 1

3(𝑦
3 + 𝑥3) = −52

3 .

2.2 Linear First Order ODEs
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↩→ Definition 2.2: Integrating Factor

A linear first order ODE of the form

𝑎1(𝑡)𝑦′(𝑡) + 𝑎0(𝑡)𝑦(𝑡) = 𝑔(𝑡)

=⇒ 𝑦′ + 𝑎0
𝑎1
𝑦 =

𝑔

𝑎1

=⇒ 𝑦′ + 𝑝(𝑡)𝑦 = 𝑞(𝑡).

To solve, we multiply by some integrating factor 𝜇(𝑡);

𝜇(𝑡)𝑦′(𝑡) + 𝑝(𝑡)𝜇(𝑡)𝑦(𝑡) = 𝜇(𝑡)𝑞(𝑡)

It would be quite convenient if 𝑝(𝑡)𝜇(𝑡) = 𝜇′(𝑡); in this case, we’d have

𝜇(𝑡)𝑦′ + 𝜇′(𝑡)𝑦 = 𝜇(𝑡)𝑞(𝑡)
d
d𝑡 (𝜇(𝑡)𝑦(𝑡)) = 𝜇(𝑡)𝑞(𝑡)

=⇒ 𝜇(𝑡)𝑦(𝑡) =
∫

𝜇(𝑡)𝑞(𝑡)d𝑡 + 𝐶

=⇒ 𝑦(𝑡) = 1
𝜇(𝑡)

∫
𝜇(𝑡)𝑞(𝑡)d𝑡 + 𝐶

𝜇(𝑡)

Now, what is 𝜇(𝑡)? We required that

𝜇′(𝑡) = 𝑝(𝑡)𝜇
d𝜇
d𝑡 = 𝑝(𝑡)𝜇

=⇒
∫ d𝜇

𝜇
=

∫
𝑝(𝑡)d𝑡 =⇒ ln |𝜇| =

∫
𝑝(𝑡)d𝑡

=⇒ 𝜇(𝑡) = 𝐾𝑒
∫
𝑝(𝑡)d𝑡

However, note in our whole process earlier, we need only one𝜇; hence, for convenience, we can disregard
any constants of integration and simply take

Integrating Factor: 𝜇(𝑡) := 𝑒
∫
𝑝(𝑡)d𝑡

Then, our original linear ODE has general solution

𝑦(𝑡) = 𝐶𝑒−
∫
𝑝(𝑡)d𝑡 + 𝑒−

∫
𝑝(𝑡)d𝑡

∫
𝑒
∫
𝑝(𝑡)d𝑡𝑞(𝑡)d𝑡 .

2.2 First Order ODEs: Linear First Order ODEs 9



⊛ Example 2.3

𝑡𝑦′ + 3𝑦 − 𝑡2 = 0

𝑦′ + 3
𝑡
𝑦 = 𝑡

=⇒ 𝜇(𝑡) = 𝑒
∫

3
𝑡 d𝑡 = 𝑒3 ln|𝑡 | = 𝑡3

=⇒ 𝑡3𝑦′ + 3𝑡2𝑦 = 𝑡4

=⇒ d
d𝑡

(
𝑦𝑡3

)
= 𝑡4

=⇒ 𝑦𝑡3 =

∫
𝑡4 d𝑡

=⇒ 𝑦 =
1
𝑡3

· 𝑡
5

5 + 𝐶

𝑡3
=
𝑡2

5 + 𝐶

𝑡3

Note the division by zero issue when 𝑡 = 0; this is not an issue with the solution method, but indeed
with the ODE itself. The ODE breaks down when 𝑡 = 0 for the same reason.

Thus, this solution is valid for 𝑡 ∈ (−∞, 0) ∪ (0,∞) =: 𝐼1 ∪ 𝐼2; if we are given an IVP 𝑦(𝑡0) = 𝑦0, if
𝑡0 < 0, then the interval of validity is 𝐼1, and if 𝑡0 > 0, the interval of validity is 𝐼2.

2.3 Exact Equations

2.3 First Order ODEs: Exact Equations 10



↩→ Definition 2.3: Exact Equations

A first order ODE of the form

𝑀(𝑥, 𝑦)d𝑥 + 𝑁(𝑥, 𝑦)d𝑦 = 0 ⇐⇒ d𝑦
d𝑥 = −𝑀(𝑥, 𝑦)

𝑁(𝑥, 𝑦)

is said to be exact if
𝜕

𝜕𝑦
𝑀(𝑥, 𝑦) = 𝜕

𝜕𝑥
𝑁(𝑥, 𝑦) ⇐⇒ 𝑀𝑦(𝑥, 𝑦) = 𝑁𝑥(𝑥, 𝑦).

Suppose we have a solution 𝑓 (𝑥, 𝑦(𝑥)) = 𝐶. Then,

d
d𝑥 ( 𝑓 (𝑥, 𝑦(𝑥))) = 0

=⇒
𝜕 𝑓

𝜕𝑥
+

𝜕 𝑓

𝜕𝑦

d𝑦
d𝑥 = 0

=⇒ 𝑓𝑥

𝑓𝑦
= −d𝑦

d𝑥

Now, with 𝑓𝑥(𝑥, 𝑦) = 𝑀(𝑥, 𝑦) and 𝑓𝑦 = 𝑁(𝑥, 𝑦), then 𝑀𝑦(𝑥, 𝑦) = 𝑓𝑥𝑦(𝑥, 𝑦) and 𝑁𝑥 = 𝑓𝑦𝑥(𝑥, 𝑦). Assuming
𝑓 continuous with existing, continuous partial derivatives, then 𝑓𝑥𝑦 = 𝑓𝑦𝑥 and hence𝑀𝑦(𝑥, 𝑦) = 𝑁𝑥(𝑥, 𝑦).
Thus, a function 𝑓 such that 𝑓𝑥 = 𝑀 and 𝑓𝑦 = 𝑁 yields a solution to the ODE.

⊛ Example 2.4

2𝑥𝑦2 d𝑥 + 2𝑥2𝑦 d𝑦 = 0 ≡ 𝑀 d𝑥 + 𝑁 d𝑦 = 0

=⇒ 𝑀𝑦 = 4𝑥𝑦, =⇒ 𝑁𝑥 = 4𝑥𝑦

𝑓𝑥 = 𝑀 = 2𝑥𝑦2 =⇒ 𝑓 (𝑥, 𝑦) = 𝑥2𝑦2 + 𝐶 + 𝐹(𝑦)
𝑓𝑦 = 𝑁 = 2𝑥2𝑦 =⇒ 𝑓 (𝑥, 𝑦) = 𝑥2𝑦2 + 𝐶 + 𝐹(𝑥)

=⇒ 𝑓 (𝑥, 𝑦) = 𝑥2𝑦2 + 𝐶 = 𝐾

We can rearrange this as an explicit solution

𝑦 =
𝑘

𝑥

for some constant 𝑘.

↩→ Lecture 03; Last Updated: Tue Jan 16 10:10:00 EST 2024

↩→ Theorem 2.1

This technique works generally.
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Proof. Given an exact ODE of the form𝑀(𝑥, 𝑦)d𝑥+𝑁(𝑥, 𝑦)d𝑦 = 0, we need to show that∃ 𝑓 (𝑥, 𝑦) s.t. 𝑓 (𝑥, 𝑦) =
𝑐 solves the ODE. Let

𝑓 (𝑥, 𝑦) =
∫ 𝑥

𝑥0

𝑀(𝑠, 𝑦)d𝑠 + 𝑔(𝑦)

for some function 𝑔(𝑦) to be chosen such that 𝑓𝑦 = 𝑁 . But we have

𝑁(𝑥, 𝑦) = 𝑓𝑦(𝑥, 𝑦) =
𝜕

𝜕𝑦

[∫ 𝑥

𝑥0

𝑀(𝑠, 𝑦)d𝑠 + 𝑔(𝑦)
]

= 𝑔′(𝑦) + 𝜕

𝜕𝑦

∫ 𝑥

𝑥0

𝑀(𝑠, 𝑦)d𝑠

=⇒ 𝑔′(𝑦) = 𝑁(𝑥, 𝑦) − 𝜕

𝜕𝑦

∫ 𝑥

𝑥0

𝑀(𝑠, 𝑦)d𝑠 .

But the LHS is a function of 𝑦 only, while the RHS depends explicitly on 𝑥; hence, this technique will only
work if the entire expression is actually independent of 𝑥. To show this, we take the partial of the RHS with
respect to 𝑥:

𝜕

𝜕𝑥

[
𝑁(𝑥, 𝑦) − 𝜕

𝜕𝑦

∫ 𝑥

𝑥0

𝑀(𝑠, 𝑦)d𝑠
]
= 𝑁𝑥(𝑥, 𝑦) −

𝜕

𝜕𝑥

𝜕

𝜕𝑦

∫ 𝑥

𝑥0

𝑀(𝑠, 𝑦)d𝑠

= 𝑁𝑥(𝑥, 𝑦) −
𝜕

𝜕𝑦

[
𝜕

𝜕𝑥

∫ 𝑥

𝑥0

𝑀(𝑠, 𝑦)d𝑠
]

= 𝑁𝑥(𝑥, 𝑦) −
𝜕

𝜕𝑦
[𝑀(𝑥, 𝑦)]

= 𝑁𝑥 −𝑀𝑦 = 0,

as the ODE is exact. Hence, the RHS is indeed a function of 𝑦 alone. So, integrating both sides with respect
to 𝑦:

𝑔(𝑦) =
∫ [

𝑁(𝑥, 𝑦) − 𝜕

𝜕𝑦

∫ 𝑥

𝑥0

𝑀(𝑠, 𝑦)d𝑠
]

d𝑦 ,

which gives us a 𝑓 (𝑥, 𝑦) of

𝑓 (𝑥, 𝑦) =
∫ 𝑥

𝑥0

𝑀(𝑠, 𝑦)d𝑠 +
∫ [

𝑁(𝑥, 𝑦) − 𝜕

𝜕𝑦

∫ 𝑥

𝑥0

𝑀(𝑠, 𝑦)d𝑠
]

d𝑦 ,

=⇒ 𝑓 (𝑥, 𝑦) =
∫ 𝑥

𝑥0

𝑀(𝑠, 𝑦)d𝑠 +
∫ 𝑦

𝑦0

𝑁(𝑥, 𝑡)d𝑡 −
∫ 𝑦

𝑦0

∫ 𝑥

𝑥0

𝑀𝑦(𝑠, 𝑡)d𝑠 d𝑡 ★

which satisfies 𝑓𝑥 = 𝑀 and 𝑓𝑦 = 𝑁 . Then, for 𝑓 (𝑥, 𝑦) = 𝐶, we have

𝜕 𝑓

𝜕𝑥
+ d𝑦

d𝑥
𝜕 𝑓

𝜕𝑦
= 𝑀 + d𝑦

d𝑥𝑁 = 0 =⇒ 𝑀 d𝑥 + 𝑁 d𝑦 = 0,

as desired.
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Note that ★ is evaluated over a rectangle [𝑥0, 𝑥] × [𝑦0, 𝑦], but holds for any connected domain containing
(𝑥0, 𝑦0) and (𝑥, 𝑦).

Also note that, as described, 𝑔(𝑦) is not a function of 𝑥; hence, we can pick 𝑥 arbitrarily. Suppose we take
𝑥 = 𝑥0, then

𝑓 (𝑥, 𝑦) =
∫ 𝑥

𝑥0

𝑀(𝑠, 𝑦)d𝑠 +
∫ 𝑦

𝑦0

𝑁(𝑥0, 𝑡)d𝑡 .

■

Remark 2.2. We could have taken 𝑔(𝑥) and started from 𝑓𝑦 = 𝑁 . Then, we would have had the formula

𝑓 (𝑥, 𝑦) =
∫ 𝑦

𝑦0

𝑁(𝑥, 𝑡)d𝑡 +
∫ 𝑥

𝑥0

𝑀(𝑠, 𝑦0)d𝑦 .

⊛ Example 2.5

2𝑥𝑦 d𝑥 + (𝑥2 − 1)d𝑦 = 0.

We have 𝑀(𝑥, 𝑦) = 2𝑥𝑦 and 𝑁(𝑥, 𝑦) = 𝑥2 − 1, so 𝑀𝑦 = 2𝑥 = 𝑁𝑦 and the ODE is exact; hence, a
solution exists of the form 𝑓 (𝑥, 𝑦) = 𝑐 where 𝑓𝑥 = 𝑀, 𝑓𝑦 = 𝑁 .

𝑓 (𝑥, 𝑦) =
∫

𝑀(𝑥, 𝑦)d𝑥 =

∫
2𝑥𝑦 d𝑥 = 𝑥2𝑦 + 𝑘1(𝑦)

𝑓 (𝑥, 𝑦) =
∫

𝑁(𝑥, 𝑦)d𝑦 =

∫
(𝑥2 − 1)d𝑦 = 𝑥2𝑦 − 𝑦 + 𝑘2(𝑥)

Hence 𝑘1(𝑦) = −𝑦 and 𝑘2(𝑥) = 0, so

𝑓 (𝑥, 𝑦) = 𝑥2𝑦 − 𝑦 = 𝑦(𝑥2 − 1),

so solutions to the original ODE are

𝑦(𝑥2 − 1) = 𝐶 =⇒ 𝑦 =
𝐶

𝑥2 − 1
.

2.4 Exact ODEs Via Integrating Factors

Suppose
𝑀(𝑥, 𝑦)d𝑥 + 𝑁(𝑥, 𝑦)d𝑦 = 0

but 𝑀𝑦 ≠ 𝑁𝑥 , that is, the ODE is not exact. Can we find an integrating factor 𝜇(𝑥, 𝑦) s.t.

[𝜇(𝑥, 𝑦)𝑀(𝑥, 𝑦)]d𝑥 + [𝜇(𝑥, 𝑦)𝑁(𝑥, 𝑦)]d𝑦 = 0
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is exact? If so, such a 𝜇 must satisfy

𝜕

𝜕𝑦
[𝜇(𝑥, 𝑦)𝑀(𝑥, 𝑦)] = 𝜕

𝜕𝑥
[𝜇(𝑥, 𝑦)𝑁(𝑥, 𝑦)]

=⇒ 𝜇𝑦𝑀 + 𝜇𝑀𝑦 = 𝜇𝑥𝑁 + 𝜇𝑁𝑥

=⇒ 𝑁𝜇𝑥 −𝑀𝜇𝑦 =
(
𝑀𝑦 − 𝑁𝑥

)
𝜇 ⊛

This is not a generally easily soluble PDE; we will consider cases where 𝜇 is a function of only one
independent variable, which greatly simplifies the expression; this could be simply 𝜇(𝑥), 𝜇(𝑦), or even 𝜇(𝑥 · 𝑦).

Suppose 𝜇 = 𝜇(𝑥) =⇒ 𝜇𝑦 = 0. Then, ⊛ becomes

𝑁𝜇′ = (𝑀𝑦 − 𝑁𝑥)𝜇 =⇒ 𝜇′ =

(
𝑀𝑦 − 𝑁𝑥

𝑁

)
𝜇.

This is valid, provided the expression
(
𝑀𝑦−𝑁𝑥

𝑁

)
is a function solely of 𝑥. In this case, this becomes a linear first

order ODE, with solution
𝜇(𝑥) = 𝑒

∫ 𝑀𝑦−𝑁𝑥
𝑁 d𝑥 .

OTOH, if 𝜇 = 𝜇(𝑦), we can similarly derive

𝜇(𝑦) = 𝑒
∫ 𝑁𝑥−𝑀𝑦

𝑀 d𝑦 ,

with a similar stipulation on the expression
(
𝑁𝑥−𝑀𝑦

𝑀

)
being a function of 𝑦 solely.

⊛ Example 2.6

𝑥𝑦 d𝑥 + (2𝑥2 + 3𝑦2 − 20)d𝑦 = 0,

with 𝑀(𝑥, 𝑦) = 𝑥𝑦 =⇒ 𝑀𝑦 = 𝑥 and 𝑁(𝑥, 𝑦) = 2𝑥2 + 3𝑦2 − 20 =⇒ 𝑁𝑥 = 4𝑥. We have
𝑀𝑦 − 𝑁𝑥 = 𝑥 − 4𝑥 = −3𝑥 (so the ODE is not exact). We write

𝑀𝑦 − 𝑁𝑥

𝑀
=

−3𝑥
𝑥𝑦

=
−3
𝑦
,

which is a function solely of 𝑦; hence, can find a 𝜇(𝑦):

𝜇(𝑦) = 𝑒−
∫ 𝑀𝑦−𝑁𝑥

𝑀 d𝑦 = 𝑒
−

∫
− 3
𝑦d𝑦

= 𝑒3 ln 𝑦 = 𝑦3,

noting that we, as before, do not care about any integrating factors; we are seeking a single function
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that works. Multiplying this into our original ODE:

𝑥𝑦4︸︷︷︸
:=𝑀̃

d𝑥 + (2𝑥2 + 3𝑦2 − 20)𝑦3︸                 ︷︷                 ︸
:=𝑁̃

d𝑦 = 0.

And indeed, we have

𝑀̃𝑦 = 4𝑥𝑦3; 𝑁̃𝑥 = 4𝑥𝑦3 =⇒ 𝑀̃𝑦 = 𝑁̃𝑥 ,

as desired.

↩→ Lecture 04; Last Updated: Tue Jan 23 10:02:55 EST 2024

2.5 Substitutions

↩→ Definition 2.4: Homogeneous

A function 𝑓 (𝑥, 𝑦) is said to be homogeneous of degree 𝑑 if 𝑓 (𝑡𝑥, 𝑡𝑦) = 𝑡𝑑 𝑓 (𝑥, 𝑦).

Many ODEs can benefit from appropriate substitutions to make the proceeding solution method for clear.
We present by example the following three types of substitutions, though naturally many other exist:

1. Homogeneous Equations, 𝑀(𝑥, 𝑦)d𝑥 + 𝑁(𝑥, 𝑦)d𝑦 = 0 where 𝑀, 𝑁 homogeneous to the same degree.

2. Bernoulli Equations, 𝑦′ + 𝑓 (𝑥)𝑦 + 𝑔(𝑥)𝑦𝑛 .

3. 𝑦′ = 𝑓 (𝐴𝑥 + 𝐵𝑦 + 𝐶).

⊛ Example 2.7: 1. Homogeneous Equations

Consider
(𝑥2 + 𝑦2)d𝑥 + (𝑥2 − 𝑥𝑦)d𝑦 = 0, 𝑥 ≠ 0

Dividing both sides by 𝑥2, the correct substitution becomes obvious:

(𝑥 + ( 𝑦
𝑥
)2)d𝑥 + (1 − 𝑦

𝑥
)d𝑦 = 0

𝑢 :=
𝑦

𝑥
=⇒ 𝑦′ = 𝑥𝑢′ + 𝑢

=⇒ (1 + 𝑢2) = (𝑢 − 1)𝑦′ = (𝑢 − 1)(𝑢 + 𝑥𝑢′)

=⇒ 𝑥𝑢′ =
1 + 𝑢2

𝑢 − 1 − 𝑢 =
𝑢 + 1
𝑢 − 1 ,

which is just linear in 𝑢.
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⊛ Example 2.8: 2. Bernoulli Equations

Generally, let 𝑣(𝑥) = 𝑦1−𝑛 to make the equation linear and solve. For instance, consider

𝑥𝑦′ + 𝑦 = 𝑥2𝑦2.

⊛ Example 2.9: 3. 𝑓 (𝐴𝑥 + 𝐵𝑦 + 𝐶)
Let 𝑢 = 𝐴𝑥 + 𝐵𝑦 + 𝐶.

↩→ Lecture 05; Last Updated: Mon Feb 26 16:42:35 EST 2024

2.6 Qualitative Methods and Theory

Remark 2.3. Read the first few chapters of Strogatz’s Nonlinear Dynamics and Chaos book and you should be all good.

⊛ Example 2.10

Show that 𝑦′ = 𝑦
1
3 with 𝑦(0) = 0 has infinite solutions.

↩→ Lecture 06; Last Updated: Wed Feb 14 15:27:47 EST 2024

2.7 Existence and Uniqueness

↩→ Definition 2.5: Lipschitz Continuity

A function 𝑓 (𝑥, 𝑦) : R2 → R is said to be Lipschitz continuous in 𝑦 on the rectangle 𝑅 = {(𝑥, 𝑦) : 𝑥 ∈
[𝑎, 𝑏], 𝑦 ∈ [𝑐, 𝑑]} = [𝑎, 𝑏] × [𝑐, 𝑑] if there exists a constant 𝐿 > 0 s.t.

| 𝑓 (𝑥, 𝑦1) − 𝑓 (𝑥, 𝑦2)| ⩽ 𝐿 |𝑦1 − 𝑦2 | , ∀ (𝑥, 𝑦1), (𝑥, 𝑦2) ∈ 𝑅.

𝐿 is called the Lipschitz constant.

Remark 2.4. Note that we define in terms on continuity in 𝑦; the 𝑥 variable in each coordinate is kept constant.

↩→ Lemma 2.1

If 𝑓 : R2 → R is such that 𝑓 (𝑥, 𝑦) and 𝜕 𝑓
𝜕𝑦 are both continuous in 𝑥, 𝑦 in the rectangle 𝑅, then 𝑓 is Lipschitz

in 𝑦 on 𝑅.

Remark 2.5. This result gives Differentiable =⇒ Lipschitz Continuous =⇒ Continuous.
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Proof. Using FTC, we have

𝑓 (𝑥, 𝑦2) = 𝑓 (𝑥, 𝑦1) +
∫ 𝑦2

𝑦1

𝑓𝑦(𝑥, 𝑦)d𝑦

=⇒ | 𝑓 (𝑥, 𝑦2) − 𝑓 (𝑥, 𝑦1)| =
�����∫ 𝑦2

𝑦1

𝑓𝑦(𝑥, 𝑦)
����� ⩽ ∫ 𝑦2

𝑦1

�� 𝑓𝑦(𝑥, 𝑦)��d𝑦
⩽ |𝑦2 − 𝑦1 | · max

(𝑥,𝑦)∈𝑅

�� 𝑓𝑦(𝑥, 𝑦)�� ,
noting that this maximum exists, and is attained, because 𝑓𝑦 is continuous on a compact set. This gives, then,
that 𝑓 is Lipschitz in 𝑦 with 𝐿 = max(𝑥,𝑦)∈R

�� 𝑓𝑦(𝑥, 𝑦)��. ■

↩→ Theorem 2.2: Existence and Uniqueness for Scalar First Order IVPs

If 𝑓 (𝑡 , 𝑦), 𝑓𝑦(𝑡 , 𝑦) are continuous in 𝑡 and 𝑦 on a rectangle 𝑅 = {(𝑡 , 𝑦) : 𝑡 ∈ [𝑡0 − 𝑎, 𝑡0 + 𝑎], 𝑦 ∈ [𝑦0 − 𝑏, 𝑦0 +
𝑏]} = [𝑡0 − 𝑎, 𝑡0 + 𝑎] × [𝑦0 − 𝑏, 𝑦0 + 𝑏], then ∃ℎ ∈ (0, 𝑎] s.t. the IVP

𝑦′ = 𝑓 (𝑡 , 𝑦), 𝑦(𝑡0) = 𝑦0

has a unique solution, defined for 𝑡 ∈ [𝑡0 − ℎ, 𝑡0 + ℎ]. Moreover, this solution satisfies 𝑦(𝑡) ∈ [𝑦0 − 𝑏, 𝑦0 +
𝑏] ∀ 𝑡 ∈ [𝑡0 − ℎ, 𝑡0 + ℎ].

Remark 2.6. A stronger theorem also holds with a weakened condition on 𝑓 that requires only 𝑓 Lipschitz. Clearly, 𝑓𝑦
continuous =⇒ 𝑓 Lipschitz, so we will use this fact to prove the statement, but won’t prove it for the only Lipschitz
case for sake of conciseness.

Proof. Rewrite the IVP as

𝑦(𝑡) = 𝑦(𝑡0) +
∫ 𝑡

𝑡0

𝑓 (𝑠, 𝑦(𝑠))d𝑠 .

We will show this form has a unique solution, using an iteration method (namely, Picard Iteration).

We will begin by guessing a solution of the IVP, 𝑦0(𝑡) = 𝑦0, ∀ 𝑡 ∈ [𝑡0 − 𝑎, 𝑡0 + 𝑎]. This clearly satisfies the
initial condition, but not the ODE itself.

Now, given 𝑦𝑛(𝑡), we define

𝑦𝑛+1(𝑡) = 𝑦(𝑡0) +
∫ 𝑡

𝑡0

𝑓 (𝑠, 𝑦𝑛(𝑠))d𝑠 .

If this terminates, that is, 𝑦𝑛+1(𝑡) = 𝑦𝑛(𝑡) ∀ 𝑡 ∈ [𝑡0 − 𝑎, 𝑡0 + 𝑎], then 𝑦𝑛(𝑡) solves the IVP.

We now show that this iteration is both well-defined, and converges to unique solution.

By construction, 𝑦0 : [𝑡0 − 𝑎, 𝑡0 + 𝑎] → [𝑦0 − 𝑏, 𝑦0 + 𝑏], and is continuous. As a bounded function on a
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bounded interval, it is integrable, and the first step of our step is well-defined.

Now suppose 𝑦𝑛(𝑡) : [𝑡0 − 𝑎, 𝑡0 + 𝑎] → [𝑦0 − 𝑏, 𝑦0 + 𝑏] is continuous and integrable. Then,

𝑦𝑛+1(𝑡) = 𝑦(𝑡0) +
∫ 𝑡

𝑡0

𝑓 (𝑠, 𝑦𝑛(𝑠))d𝑠

is continuous as well, as 𝑓 is continuous and 𝑦𝑛(𝑠) is as well. It is not guaranteed to be restricted to [𝑦0−𝑏, 𝑦0+𝑏],
however.

Since 𝑓 continuous and attains its maximum on 𝑅, let

𝑀 := max
(𝑡 ,𝑦)∈𝑅

| 𝑓 (𝑡 , 𝑦)| < ∞.

We have, then, that

𝑦𝑛+1(𝑡) − 𝑦(𝑡0) =
∫ 𝑡

𝑡0

𝑓 (𝑠, 𝑦𝑛(𝑠))d𝑠

=⇒ |𝑦𝑛+1(𝑡) − 𝑦(𝑡0)| ⩽ |𝑡 − 𝑡0 |𝑀

Hence, if we choose ℎ : 𝑀ℎ ⩽ 𝑏, and then 𝑦𝑛+1(𝑡) : [𝑡0 − ℎ, 𝑡0 + ℎ] → [𝑦0 − 𝑏, 𝑦0 + 𝑏] and we can iterative
inductively, 𝑦𝑛(𝑡) : [𝑡0 − ℎ, 𝑡0 + ℎ] → [𝑦0 − 𝑏, 𝑦0 + 𝑏] ∀𝑛. Here, we take ℎ = min{ 𝑏

𝑀 , 𝑎}.

Now, let 𝐼 = [𝑡0− ℎ, 𝑡0+ ℎ], then 𝑦𝑛(𝑡) : 𝐼 → [𝑦0−𝑏, 𝑦0+𝑏] for all 𝑛. Each iterate satisfies 𝑦𝑛(𝑡0) = 𝑦(𝑡0) = 𝑦0;
it remains to show that the iteration converges.

Let 𝐶(𝐼 , [𝑦0 − 𝑏, 𝑦0 + 𝑏]) be the space of continuous functions 𝑓 : 𝐼 → [𝑦0 − 𝑏, 𝑦0 + 𝑏], noting that 𝑦𝑛 ∈ 𝐶 ∀𝑛.
We define a mapping on 𝐶, 𝑇 : 𝐶 → 𝐶 by

𝑣 = 𝑇𝑢, 𝑣(𝑡) = 𝑦0(𝑡0) +
∫ 𝑡

𝑡0

𝑓 (𝑠, 𝑢(𝑠))d𝑠 .

Then, 𝑦𝑛+1 = 𝑇𝑦𝑛 . We aim to show that this iteration converges uniquely; we will do this by showing 𝑇 is a
contraction mapping.

For 𝑦 ∈ 𝐶 define the norm | |𝑦 | |∞ by | |𝑦 | |∞ := max𝑡∈𝐼 |𝑦(𝑡)|. This is a norm;

1. ∀ 𝑘 ∈ R, | |𝑘𝑦 | |∞ = |𝑘 | | |𝑦 | |∞.

2. | |𝑦 | |∞ = 0 ⇐⇒ max𝑡∈𝐼 |𝑦(𝑡)| = 0 ⇐⇒ 𝑦(𝑡) = 0∀ 𝑡 ∈ 𝐼.

3. | |𝑦1 + 𝑦2 | |∞ = max𝑡∈𝐼 |𝑦1 + 𝑦2 | ⩽ max𝑡∈𝐼(|𝑦1 | + |𝑦2 |) ⩽ max𝑡∈𝐼 |𝑦1 | + max𝑡∈𝐼 |𝑦2 | = | |𝑦1 | |∞ + ||𝑦2 | |∞.
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Now let 𝑢, 𝑣 ∈ 𝐶. Then,

| |𝑇𝑢 − 𝑇𝑣 | |∞ = max
𝑡∈𝐼

|𝑇𝑢(𝑡) − 𝑇𝑣(𝑡)|

= max
𝑡∈𝐼

����𝑦(𝑡0) + ∫ 𝑡

𝑡0

𝑓 (𝑠, 𝑢(𝑠)d𝑠) − 𝑦0 +
∫ 𝑡

𝑡0

𝑓 (𝑠, 𝑣(𝑠))d𝑠
����

= max
𝑡∈𝐼

����∫ 𝑡

𝑡0

𝑓 (𝑠, 𝑢(𝑠)) − 𝑓 (𝑠, 𝑣(𝑠))d𝑠
����

⩽ max
𝑡∈𝐼

∫ 𝑡

𝑡0

| 𝑓 (𝑠, 𝑢(𝑠)) − 𝑓 (𝑠, 𝑣(𝑠))| d𝑠

⩽ max
𝑡∈𝐼

|𝑡 − 𝑡0 | · max
𝑠∈𝐼

| 𝑓 (𝑠, 𝑢(𝑠)) − 𝑓 (𝑠, 𝑣(𝑠))|

⩽ ℎ𝐿 · max
𝑠∈𝐼

|𝑢(𝑠) − 𝑣(𝑠)|

= ℎ𝐿 · | |𝑢 − 𝑣 | |∞,

hence, we have a contraction mapping if ℎ𝐿 < 1; if ℎ𝐿 ⩾ 1, let ℎ < min{𝑎, 𝑏𝑚 , 1
𝐿 } > 0. With such an ℎ,

∃𝜇 ∈ (0, 1) : ℎ𝐿 ⩽ 𝜇 < 1, and | |𝑇𝑢 − 𝑇𝑣 | |∞ ⩽ 𝜇| |𝑢 − 𝑣 | |∞, hence, a contraction mapping.

The contractive mapping theorem, which will not be proven, states that any contraction mapping has a
unique fixed point 𝑦 = 𝑇𝑦; moreover, for any 𝑦0 ∈ 𝐶, the iteration 𝑦𝑛+1 = 𝑇𝑦𝑛 converges to 𝑦.

To see this, suppose 𝑢 = 𝑇𝑛, 𝑣 = 𝑇𝑣 are two solutions of our IVP. Then, by the contraction quality,

| |𝑢 − 𝑣 | |∞ = | |𝑇𝑢 − 𝑇𝑣 | |∞ ⩽ 𝜇| |𝑢 − 𝑣 | |∞,

a contradiction unless | |𝑢 − 𝑣 | |∞ = 0 ⇐⇒ 𝑢 = 𝑣, hence, we have uniqueness of our solution; that is, our IVP
has at most one solution. It remains to show that this solution exists.

Consider a sequence 𝑦𝑛 , with 𝑦𝑛+1 = 𝑇𝑦𝑛 . Then,

𝑁∑
𝑖=0

| |𝑦𝑖+1 − 𝑦𝑖 | |∞ ⩽ 𝜇𝑁 | |𝑦1 − 𝑦0 | |∞,

by the contractive property, thus,

∞∑
𝑖=0

| |𝑦𝑖+1 − 𝑦𝑖 | | ⩽ (
∞∑
𝑖=0

𝜇𝑗)| |𝑦1 − 𝑦0 | |∞ =
1

1 − 𝜇
| |𝑦1 − 𝑦0 | |∞ = 𝑅0,

for some radius (real number) 𝑅0. Similarly, looking only at the tail of the series,

∞∑
𝑗=𝑛

| |𝑦 𝑗+1 − 𝑦 𝑗 | |∞ ⩽
𝜇𝑛

1 − 𝜇
| |𝑦1 − 𝑦0 | |∞ = 𝜇𝑛𝑅0,

that is, a “smaller” radius. We could, but won’t, show that this sequence is Cauchy, and space 𝐶 we are
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working in is complete and hence this sequence converges to some limit in the space; moreover, the limit of
this sequence satisfies the IVP by construction. This is beyond the scope of this course. ■

↩→ Lecture 07; Last Updated: Thu Mar 28 20:55:03 EDT 2024

⊛ Example 2.11: Using Picard Iteration

𝑦′ = 2𝑡(1 + 𝑦) =: 𝑓 (𝑡 , 𝑦), 𝑦(0) = 0.

This ODE is linear and separable, and has solution 𝑦(𝑡) = 𝑒 𝑡
2 − 1 (solving whichever way you like).

We can alternatively solve this using Picard Iteration.

Let 𝑦0(𝑡) = 0∀ 𝑡, noting that the IC is satisfied. We define

𝑦𝑛+1(𝑡) =���*
0

𝑦(0) +
∫ 𝑡

��7
0

𝑡0

𝑓 (𝑠, 𝑦𝑛(𝑠))d𝑠 ,

where 𝑓 (𝑠, 𝑦𝑛(𝑠)) = 2𝑠(1 + 𝑦(𝑠)). This gives

𝑦𝑛+1(𝑡) =
∫ 𝑡

0
2𝑠(1 + 𝑦𝑛(𝑠))d𝑠 .

=⇒ 𝑦1(𝑡) =
∫ 𝑡

0
2𝑠(1 + 𝑦0(𝑠))d𝑠 =

∫ 𝑡

0
2𝑠 d𝑠 = 𝑡2

=⇒ 𝑦2(𝑡) =
∫ 𝑡

0
2𝑠(1 + 𝑠2)d𝑠 = 𝑡2 + 1

2 𝑡
4

=⇒ 𝑦3(𝑡) = · · · = 𝑡2 + 1
2! 𝑡

4 + 1
3! 𝑡

6

· · · =⇒ 𝑦𝑛(𝑡) =
𝑛∑
𝑘=1

𝑡2𝑘

𝑘!

=⇒ lim
𝑛→∞

𝑦𝑛(𝑡) =
∞∑
𝑘=1

(𝑡2)𝑘
𝑘! = 𝑒 𝑡

2 − 1,

the same solution as previously shown.

Remark 2.7. The previous example worked nicely due to 𝑦𝑛(𝑡) always being a simple polynomial with a familiar
convergence. This is not always (nor often) the case.

Remark 2.8. Recall the example 𝑦′ = 𝑦
1
3 with multiple solutions. In the language of the theorem, 𝑓 (𝑡 , 𝑦) = 𝑦

1
3 is

continuous, but 𝑓1(𝑡 , 𝑦) = 1
3 𝑦

− 2
3 becomes unbounded as 𝑦 → 0, and the function is thus not Lipschitz in a neighborhood

of 𝑦 = 0.

Remark 2.9. Recall that this theorem guarantees solutions in a closed rectangular region; it is possible, under certain
conditions, to extend the solution beyond the bounds. But how far?
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⊛ Example 2.12

𝑦′ = 𝑦2, 𝑦(0) = 1.

This has a solution 𝑦(𝑡) = 1
𝑐−𝑡 =

1
1−𝑡 (with IC). Notice that 𝑦(𝑡) → +∞ as 𝑡 → 1. By this observation,

we have that, if we were to repeat Picard iteration for increasing time 𝑡, the rectangular domains of
our validity of each piecewise solution would be bounded by 1.

↩→ Corollary 2.1

If 𝑓 (𝑡 , 𝑦) and 𝑓𝑦(𝑡 , 𝑦) are continuous for all 𝑡 , 𝑦 ∈ R, then ∃𝑡− < 𝑡0 < 𝑡+ such that the IVP

𝑦′ = 𝑓 (𝑡 , 𝑦), 𝑦(𝑡0) = 𝑦0

has a unique solution 𝑦(𝑡) ∀ 𝑡 ∈ (𝑡−, 𝑡+), and moreover, either 𝑡+ = +∞ or lim𝑡→𝑡+ |𝑦(𝑡)| = ∞, and either
𝑡− = −∞ or lim𝑡→𝑡− |𝑦(𝑡)| = ∞.

Remark 2.10. Finding 𝑡−, 𝑡+ requires the solution. In example 2.12, 𝑡− = −∞, 𝑡+ = 1. Changing the IC will naturally
change these values.

↩→ Theorem 2.3

If 𝑝(𝑡), 𝑔(𝑡) continuous on an open interval 𝐼 = (𝛼, 𝛽) and 𝑡0 ∈ 𝐼, then the IVP

𝑦′(𝑡) + 𝑝(𝑡)𝑦 = 𝑔(𝑡), 𝑦(𝑡0) = 𝑦0

has a unique solution 𝑦(𝑡) : 𝐼 → R.

Remark 2.11. In other words, this is a special case of the corollary above for linear ODEs; any “misbehavior” of the
solutions would be solely due to discontinuities in the defining ODE.

3 Second Order ODEs

3.1 Introduction

Second Order ODEs are of the form
𝑦′′ = 𝑓 (𝑡 , 𝑦, 𝑦′).

There is no general technique to solving these; we will be looking at special classes throughout.

Specifically in the case of nonlinear odes, there are two special cases we can solve,
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1. 𝑓 does not depend on 𝑦; ie 𝑦′′ = 𝑓 (𝑡 , 𝑦′). A substitution 𝑢 = 𝑦′ yields 𝑢′ = 𝑓 (𝑡 , 𝑢), hence this is just a
first order ODE, with corresponding 𝑦(𝑡) = 𝑘1 +

∫
𝑢(𝑡)d𝑡.

2. 𝑓 does not depend on 𝑡; ie 𝑦′′ = 𝑓 (𝑦, 𝑦′). Let 𝑢 = 𝑦′, so 𝑢′ = 𝑦′′ = 𝑓 (𝑦, 𝑢). Consider 𝑢 = 𝑢(𝑦(𝑡)), then,

d𝑢
d𝑡 =

d𝑢
d𝑦

d𝑦
d𝑡 = 𝑢

d𝑢
d𝑦 ,

and so
𝑢

d𝑢
d𝑦 =

d𝑢
d𝑡 = 𝑓 (𝑦, 𝑢) =⇒ d𝑢

d𝑦 =
1
𝑦
𝑓 (𝑦, 𝑢),

which again yields a first order ODE, in 𝑢 = 𝑢(𝑦).

⊛ Example 3.1: Of Case 2.

𝑦′′ + 𝜔2𝑦 = 0a

Rewrite this as 𝑦′′ = −𝜔2𝑦 = 𝑓 (𝑦, 𝑦′), and let 𝑢 = 𝑦′, then d𝑢
d𝑦 = 1

𝑢 𝑓 (𝑦, 𝑢) = 1
𝑢 [−𝜔2𝑦]. This is a

separable equation:

𝑢 d𝑢 = −𝜔2𝑦 d𝑦
1
2𝑢

2 = −1
2𝜔

2𝑦2 + 𝑐

=⇒ 𝑢2 = −𝜔2𝑦2 + 𝑐′

=⇒ 𝑢 = ±
√
𝑘2 − 𝜔2𝑦2 =⇒ d𝑦

d𝑡 = ±
√
𝑘2 − 𝜔2𝑦2

Which is just another separable equationb:

±
∫

d𝑡 = 1
𝜔

∫ d𝑦√
𝑘2

𝜔2 − 𝑦2

=⇒ 1
𝜔

arcsin
(𝜔𝑦
𝑘

)
= ±𝑡 + 𝐶

=⇒
𝜔𝑦

𝑘
= sin

(
±𝜔𝑡 ± 𝜔𝐶̃

)
= ± sin

(
𝜔𝑡 + 𝜔𝐶̃

)
=⇒ 𝑦(𝑡) = ± 𝑘

𝜔
sin

(
𝜔𝑡 + 𝜔𝐶̃

)
=⇒ 𝑦(𝑡) = 𝐾 sin(𝜔𝑡 + 𝐶),

which can be rewritten 𝑦(𝑡) = 𝑘1 sin(𝜔𝑡) + 𝑘2 cos(𝜔𝑡) with the appropriate substitutions.
aThis is the equation for a simple harmonic oscillator.
bPlease excuse the sloppy use of constants, it doesn’t really matter.

Remark 3.1. This is not the easiest way to solve this equation. More generally, this technique can lead to intractable
integrals.
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⊛ Example 3.2: Nonlinear Pendulum

𝑦′′ + 𝜔2 sin 𝑦 = 0.

Making the same substitution as before, 𝑢 = 𝑦′, we have

d𝑢
d𝑦 = − 1

𝑢
𝜔2 sin 𝑦∫

𝑢 d𝑢 =

∫
−𝜔2 sin 𝑦 d𝑦

1
2𝑢

2 = 𝜔2 cos 𝑦 + 𝑐1

1
2(𝑦

′)2 = 𝜔2 cos 𝑦 + 𝑐1

𝑦′ = ±
√

2𝑐1 + 2𝜔2 cos 𝑦

±
∫

d𝑡 =
∫ d𝑦√

2𝑐 + 2𝜔2 cos 𝑦
,

where the integral on the RHS is some type of elliptic integral.

3.2 Linear, Homogeneous

We will solve a general form
𝑎(𝑡)𝑦′′ + 𝑏(𝑡)𝑦′ + 𝑐(𝑡)𝑦 = 0 ⊛ .

3.2.1 Principle of Superposition

↩→ Theorem 3.1: Superposition of Solutions to Linear Second Order ODEs

If 𝑦1(𝑡), 𝑦2(𝑡) solve ⊛ for 𝑡 ∈ 𝐼-interval, then 𝑦(𝑡) = 𝑘1𝑦1(𝑡) + 𝑘2𝑦2(𝑡), for constants 𝑘1, 𝑘2 solves ⊛ on 𝐼 as
well. In other words, linear combinations of solutions are themselves solutions.

Remark 3.2. This can be extended quite naturally to any linear order of ODE.

Proof. This is clear by just plugging into the problem; let 𝑦(𝑡) = 𝑘1𝑦1(𝑡) + 𝑘2𝑦2(𝑡). Then:

𝑎(𝑡)𝑦′′(𝑡) + 𝑏(𝑡)𝑦′(𝑡) + 𝑐(𝑡)𝑦(𝑡) = 𝑎(𝑡)(𝑘1𝑦
′′
1 + 𝑘2𝑦

′′
2 ) + 𝑏(𝑡)(𝑘1𝑦

′
1 + 𝑘2𝑦

′
2) + 𝑐(𝑡)(𝑘1𝑦1 + 𝑘2𝑦2)

= 𝑘1(𝑎𝑦′′1 + 𝑏𝑦′1 + 𝑐𝑦1) + 𝑘2(𝑎𝑦′′2 + 𝑏𝑦′2 + 𝑐𝑦2)
= 𝑘1 · 0 + 𝑘2 · 0 = 0,

as desired. ■

↩→ Lecture 08; Last Updated: Thu Feb 15 10:05:56 EST 2024
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↩→ Definition 3.1: Linear Independence of Functions

If 𝑦1(𝑡), 𝑦2(𝑡) are defined ∀ 𝑡 ∈ 𝐼 for some interval 𝐼 ⊆ R, then 𝑦1(𝑡), 𝑦2(𝑡) are linearly dependent on I if
∃𝑘1, 𝑘2 constants (not both zero) so that 𝑘1 · 𝑦1(𝑡) + 𝑘2 · 𝑦2(𝑡) = 0∀ 𝑡 ∈ 𝐼.

If the only constants which solve this are 𝑘1 = 𝑘2 = 0, then 𝑦1(𝑡), 𝑦2(𝑡) are linearly independent on 𝐼.

Remark 3.3. If 𝑦 𝑗(𝑡) is the zero function, then take 𝑘 𝑗 = 1 and the other constant zero; ie, the zero function is always
linearly dependent.

3.3 Reduction of Order

Suppose 𝑦1(𝑡) solves the homogeneous ODE 0 = 𝑎(𝑡)𝑦′′+𝑏(𝑡)𝑦′+𝑐(𝑡)𝑦. Let 𝑦(𝑡) = 𝑢(𝑡)𝑦1(𝑡) for some unknown
𝑢(𝑡), and assume it solves the ODE. Then:

𝑦 = 𝑢𝑦1 =⇒ 𝑦′ = 𝑢′𝑦1 + 𝑢𝑦′1 =⇒ 𝑦′′ = 𝑢′′𝑦1 + 𝑢′𝑦′1 + 𝑢
′𝑦′1 + 𝑢𝑦

′′
1 = 𝑢𝑦′′1 + 2𝑢′𝑦′1 + 𝑢

′′𝑦1.

Substituting this into the original ODE:

0 =𝑎(𝑢′′𝑦1 + 2𝑢′𝑦′1 + 𝑢𝑦
′′
1 ) + 𝑏(𝑢

′𝑦1 + 𝑢𝑦′1) + 𝑐(𝑢𝑦
′
1)

= [𝑎𝑦1]𝑢′′ + [2𝑎𝑦′1 + 𝑏𝑦1]𝑢′ + [𝑎𝑦′′1 + 𝑏𝑦′1 + 𝑐𝑦1]︸                ︷︷                ︸
=0

𝑢

Let 𝑣 = 𝑢′ =⇒ 𝑣′ = 𝑢′′, and we have reduced to a first-order ODE

0 = [𝑎𝑦1]𝑣′ + [2𝑎𝑦′1 + 𝑏𝑦1]𝑣

which we can solve for 𝑣, then conclude by integrating 𝑣 to solve for 𝑢.

3.4 Constant Coefficient Linear Homogeneous Second Order ODEs

We consider the case
𝑎𝑦′′ + 𝑏𝑦′ + 𝑐𝑦 = 0,
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where 𝑎, 𝑏, 𝑐 are constants. If 𝑎 = 0, this is simply first order with an exponential solution; so, suppose (guess)
that this ODE has solution 𝑦 = 𝑒𝑟𝑡 for 𝑎 ≠ 0. This gives

𝑎(𝑒𝑟𝑡)′′ + 𝑏(𝑒𝑟𝑡)′ + 𝑐(𝑒𝑟𝑡) = 0

=⇒ 𝑎𝑟2𝑒𝑟𝑡 + 𝑏𝑟𝑒𝑟𝑡 + 𝑐𝑒𝑟𝑡 = 0

=⇒ 𝑎𝑟2 + 𝑏𝑟 + 𝑐 = 0 =⇒ 𝑟 =
−𝑏 ±

√
𝑏2 − 4𝑎𝑐
2𝑎

and we thus have just to solve a quadratic equation. We call this the auxiliary equation or characteristic equation
for the ODE.

We thus have three cases to consider:

1. 𝑏2 > 4𝑎𝑐: 𝑟 has two real roots, giving two real solutions to the original ODE of the form

𝑦1(𝑡) = 𝑒𝑟+𝑡 , 𝑦2(𝑡) = 𝑒𝑟−𝑡 ,

where 𝑟± := 𝑟 = −𝑏±
√
𝑏2−4𝑎𝑐
2𝑎 . Note that 𝑦2

𝑦2
= 𝑒(𝑟−−𝑟+)𝑡 is non-constant hence these solutions are indepen-

dent. It follows that we have a general solution

𝑦(𝑡) = 𝑘1𝑒
𝑟+𝑡 + 𝑘2𝑒

𝑟−𝑡

for arbitrary constants 𝑘1, 𝑘2.

2. 𝑏2 = 4𝑎𝑐: 𝑟 has one real (repeated) solution, 𝑟 = −𝑏
2𝑎 . This gives only one solution 𝑦1 = 𝑒𝑟1𝑡 : we find

another by reduction of order. Let 𝑦 = 𝑢𝑦1 = 𝑢𝑒𝑟1𝑡 = 𝑢𝑒
−𝑏𝑡
2𝑎 . We have:

0 = 𝑎𝑦′′ + 𝑏𝑦′ + 𝑐𝑦
0 = 𝑎(𝑢′′𝑦1 + 2𝑢′𝑦′1 + 𝑢𝑦

′′
1 ) + 𝑏(𝑢

′𝑦1 + 𝑢𝑦′1) + 𝑐𝑢𝑦
′

0 = 𝑎𝑦1𝑢
′′ + (2𝑎𝑦′1 + 𝑏𝑦1)𝑢′ + (

���������:0
𝑎𝑦′′1 + 𝑏𝑦′1 + 𝑐𝑦1)𝑢

0 = 𝑎𝑒𝑟𝑡𝑢′′ + (2𝑎𝑟𝑒𝑟𝑡 + 𝑏𝑒𝑟𝑡)𝑢′

0 = 𝑎𝑢′′ + (2𝑎𝑟 + 𝑏)𝑢′

0 = 𝑎𝑢′′ + (−2𝑎𝑏
2𝑎 + 𝑏)𝑢′

0 = 𝑎𝑢′′

0 = 𝑢′′ =⇒ 𝑢′ = 𝑘1 =⇒ 𝑢 = 𝑘1𝑡 + 𝑘2,

and so we have another solution 𝑦 = 𝑢𝑦1 = (𝑘1𝑡 + 𝑘2)𝑒𝑟𝑡 ; these constants 𝑘1, 𝑘2 are arbitrary (as long as
𝑘1 ≠ 0, which would just give a linearly dependent solution to the original), so take 𝑘1 = 1, 𝑘2 = 0. This
gives a general solution

𝑦(𝑡) = 𝑐1𝑒
𝑟𝑡 + 𝑐2𝑡𝑒

𝑟𝑡 = (𝑐1 + 𝑐2𝑡)𝑒𝑟𝑡 ,
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which is actually just the “second” solution we found before (and thus this one was indeed the general
solution by itself).

3. 𝑏2 < 4𝑎𝑐: 𝑟 has two complex conjugate roots 𝑟± = − 𝑏
2𝑎 ±

√
4𝑎𝑐−𝑏2

2𝑎 𝑖 := 𝛼 ± 𝑖𝛽. This gives solutions

𝑦+ = 𝑒(𝛼+𝑖𝛽)𝑡 , 𝑦− = 𝑒(𝛼−𝑖𝛽)𝑡 .

While valid, these complex solutions are not necessarily useful in this form; we can rewrite them using
Euler’s formula to take only the real parts.

𝑦+ = 𝑒(𝛼+𝑖𝛽)𝑡 = 𝑒𝛼𝑡𝑒 𝑖𝛽𝑡 = 𝑒𝛼𝑡[cos(𝛽𝑡) + 𝑖 sin(𝛽𝑡)]
𝑦− = 𝑒(𝛼−𝑖𝛽)𝑡 = 𝑒𝛼𝑡𝑒−𝑖𝛽𝑡 = 𝑒𝛼𝑡[cos(−𝛽𝑡) + 𝑖 sin(−𝛽𝑡)] = 𝑒𝛼𝑡[cos(𝛽𝑡) − 𝑖 sin(𝛽𝑡)]

Let 𝑦1 = 1
2(𝑦+ + 𝑦−) = 𝑒𝛼𝑡 cos(𝛽𝑡); this is a first, purely real solution to our ODE. To find a second, we

could use reduction of order, or just take another linear combination of 𝑦+, 𝑦−

𝑦2 =
1
2𝑖 [𝑦+ − 𝑦−] = 𝑒𝛼𝑡 sin(𝛽𝑡).

𝑦1, 𝑦2 are linearly independent, since 𝑦2
𝑦1

= tan(𝛽𝑡) = 0∀ 𝑡 ⇐⇒ 𝛽 = 0, which we assumed was not the
case (otherwise, we’d be in case 2.). Together, we have a general, purely real solution

𝑦(𝑡) = 𝑒𝛼𝑡(𝑘1 sin(𝛽𝑡) + 𝑘2 cos(𝛽𝑡)),

where 𝑘1, 𝑘2 arbitrary and 𝑟 = 𝛼 ± 𝑖𝛽.

Harding once said: that “there is no permanent place in the world for ugly mathematics”; that means
that there is a temporary place in the world for ugly mathematics. Make it pretty later.

⊛ Example 3.3

1. 𝑦′′ − 3𝑦′ + 2𝑦 = 0

This gives an auxiliary equation 𝑟2 − 3𝑟 + 2 = 0 with solution 𝑟 = 3±
√

9−8
2 = 2, 1. These are both

positive and real, and we thus have a general solution

𝑦(𝑡) = 𝑘1𝑒
𝑡 + 𝑘2𝑒

2𝑡 .
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2. 𝑦′′ − 2𝑦′ + 𝑦 = 0

𝑟2 − 2𝑟 + 1 = 0 =⇒ (𝑟 − 1)(𝑟 − 1) = 0 =⇒ 𝑟 = 1

=⇒ 𝑦(𝑡) = (𝑘1𝑡 + 𝑘2)𝑒 𝑡

3. 𝑦′′ + 4𝑦′ + 7𝑦 = 0

𝑟2 + 4𝑟 + 7 = 0 =⇒ 𝑟 =
−4 ±

√
16 − 28
2 = −2 ± 𝑖 12

√
12 = −2 ± 𝑖

√
3

=⇒ 𝑦(𝑡) = 𝑒−2𝑡(𝑘1 sin
(√

3𝑡
)
+ 𝑘2 cos

(√
3𝑡

)
)

↩→ Lecture 09; Last Updated: Tue Feb 6 10:07:06 EST 2024

3.5 Nonhomogeneous Second Order ODEs

We consider equations of the form
𝑎(𝑡)𝑦′′ + 𝑏(𝑡)𝑦′ + 𝑐𝑦 = 𝑔(𝑡).

Let’s look for solutions of the form

𝑦(𝑡) = 𝑐1𝑦1(𝑡) + 𝑐2𝑦2(𝑡) + 𝑦𝑝(𝑡),

where 𝑦1, 𝑦2 are linearly independent solutions of the homogenous equation (𝑔 = 0) and 𝑦𝑝 is a particular
solution to the ODE. Plugging this into the original equation:

𝑎𝑦′′ + 𝑏𝑦′ + 𝑐𝑦 = 𝑎(𝑐1𝑦
′′
1 + 𝑐2𝑦

′′
2 + 𝑦′′𝑝 ) + 𝑏(𝑐1𝑦

′
1 + 𝑐2𝑦

′
2 + 𝑦′𝑝) + 𝑐(𝑐1𝑦1 + 𝑐2𝑦2 + 𝑦𝑝)

= 𝑐1(
���������:0
𝑎𝑦′′1 + 𝑏𝑦′1 + 𝑐𝑦1) + 𝑐2(

���������:0
𝑎𝑦′′2 + 𝑏𝑦′2 + 𝑐𝑦2) +

���������: 𝑔

𝑎𝑦′′𝑝 + 𝑏𝑦′𝑝 + 𝑐𝑦𝑝
= 𝑔,

as desired. Indeed, all solutions are of this form; we will show this later.

Remark 3.4. Note that 𝑐1, 𝑐2 are arbitrary constants; 𝑦𝑝 is not multiplied by a constant, and should not be.

Remark 3.5. 𝑦1, 𝑦2 are called a fundamental set of solutions; 𝑦𝑐 = 𝑐1𝑦1+ 𝑐2𝑦2, the general solution to the homogeneous
equation, is called the complementary solution of the nonhomogeneous equation. 𝑦 = 𝑦𝑐 + 𝑦𝑝 is the general solution of
the nonhomogeneous equation.

3.5.1 Linear Operator Notation

We denote 𝐶(R) to be the space of continuous functions on R. Let 𝐶𝑝(R) be the space of 𝑝-times differentiable
functions on R; ie, 𝑦 ∈ 𝐶𝑝(R) =⇒ 𝑦(𝑗) ∈ 𝐶(R), 𝑗 = 0, 1, . . . , 𝑝. Notice that 𝐶𝑝+1(R) ⊊ 𝐶𝑝(R). It follows that
𝐶∞(R) ⊊ · · · ⊊ 𝐶𝑛(R) ⊊ · · · ⊊ 𝐶(R).
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Let 𝐷 : 𝐶𝑛(R) → 𝐶(𝑛−1)(R) be the differentiation operator, ie 𝐷𝑦 = 𝑦′, noting that 𝐷𝑦 less differentiable
than 𝑦 unless 𝑦 ∈ 𝐶∞(R). Its clear that 𝐷 is a linear operator.

Now, define the operator 𝐿 = 𝑎(𝑥)𝐷2 + 𝑏(𝑥)𝐷 + 𝑐(𝑥). Then, 𝐿[𝑦] = 𝑎(𝑥)𝑦′′ + 𝑏(𝑥)𝑦′ + 𝑐(𝑥)𝑦; hence, 𝐿[𝑦] = 0
and 𝐿[𝑦] = 𝑔 are equivalent to our homogeneous and nonhomogeneous equations. It is clearly linear.

We explore two methods for finding the particular solution.

3.5.2 Finding 𝑦𝑝 : Method of Undetermined Coefficients

This method only applies to ODEs with constant coefficients, and only for certain functions 𝑔.

⊛ Example 3.4

Consider 𝑔(𝑡) = 𝐿[𝑦](𝑡). Suppose 𝑔(𝑡) = 𝜇𝑒𝛾𝑡 . Let’s guess that 𝑦𝑝 = 𝐴𝑒𝛾𝑡 . Then:

𝐿[𝑦𝑝] = 𝑎𝐴𝛾2𝑒𝛾𝑡 + 𝑏𝐴𝛾𝑒𝛾𝑡 + 𝑐𝐴𝑒𝛾𝑡 = (𝑎𝛾2 + 𝑏𝛾 + 𝑐)𝐴𝑒𝛾𝑡 ,

hence, for 𝐿[𝑦𝑝] = 𝑔 = 𝜇𝑒𝛾𝑡 , we need 𝜇 = 𝐴(𝑎𝛾2 + 𝑏𝛾 + 𝑐) =⇒ 𝐴 =
𝜇

𝑎𝛾2+𝑏𝛾+𝑐 . Provided
𝑎𝛾2 + 𝑏𝛾 + 𝑐 ≠ 0 ⇐⇒ 𝛾 does not solve auxiliary equation, this 𝐴 as defined will provide 𝑦𝑝 .

Remark 3.6. This example worked* because differentiating the exponential yields another exponential, which cancel
nicely. The same idea can be applied for polynomials and trig functions.

⊛ Example 3.5: With trig

Suppose 𝐿[𝑦] = 𝑦′′− 𝑦′+ 𝑦 = 𝑔(𝑡) = 2 sin(3𝑡), with auxiliary equation 𝑟2 − 𝑟+1 = 0 =⇒ 𝑟 = 1
2 ± 𝑖

√
3

2 .
This gives complementary solution

𝑦𝑐 = 𝑒
𝑡
2

(
𝑘1 sin

(√
3

2 𝑡

)
+ 𝑘2 cos

(√
3

2 𝑡

))
.

Suppose 𝑦𝑝 = 𝐴 sin(3𝑡); this would give

−9𝐴 sin(3𝑡) − 3𝐴 cos(3𝑡) + 𝐴 sin(3𝑡) = 2 sin(3𝑡),

which implies 2 = −8𝐴 and 0 = −3𝐴, which has no solution. This does not necessarily mean that
no 𝑦𝑝 exists; at least in this case, we made a wrong guess at the beginning.
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Suppose instead that 𝑦𝑝 = 𝐴 sin(3𝑡) + 𝐵 cos(3𝑡). This gives

−9𝐴 sin(3𝑡) − 9𝐵 cos(3𝑡) − 3𝐴 cos(3𝑡) + 3𝐵 sin(3𝑡) + 𝐴 sin(3𝑡) + 𝐵 cos(3𝑡) = 2 sin(3𝑡)
2 sin(3𝑡) = (−3𝐵 − 8𝐴) sin(3𝑡) + (−8𝐵 − 3𝐴) cos(3𝑡)

=⇒ 2 = −3𝐵 − 8𝐴, 0 = −8𝐵 − 3𝐴

Solving this equation gives 𝐴 = −16
73 and 𝐵 = 6

73 . This gives 𝑦𝑝 = −16
73 sin(3𝑡) + 6

73 cos(3𝑡).

⊛ Example 3.6: With polynomials

Consider 𝐿[𝑦] = 𝑦′′ + 2𝑦′ + 𝑦 = 𝑡3 = 𝑔. Suppose 𝑦𝑝 = 𝐴𝑡3 + 𝐵𝑡2 + 𝐶𝑡 + 𝐷. Then:

𝐿[𝑦𝑝] = 6𝐴𝑡 + 2𝐵 + 2(3𝐴𝑡2 + 2𝐵𝑡 + 𝐶) + 𝐴𝑡3 + 𝐵𝑡2 + 𝐶𝑡 + 𝐷 = 𝑡3

𝐴𝑡3 + (6𝐴 + 𝐵)𝑡2 + (6𝐴 + 𝐵)𝑡2 + (6𝐴 + 4𝐵 + 𝐶)𝑡 + (2𝐵 + 𝐶 + 𝐷) = 𝑡3

=⇒

1 = 𝐴

0 = 6𝐴 + 𝐵
0 = 6𝐴 + 4𝐵 + 𝐶
0 = 2𝐵 + 𝐶 + 𝐷

=⇒

𝐴 = 1
𝐵 = −6
𝐶 = 18
𝐷 = −24

,

so 𝑦𝑝 = 𝑡3 − 6𝑡2 + 18𝑡 − 24.

⊛ Example 3.7: Exponential

Take 𝐿[𝑦] = 𝑦′′ − 2𝑦′ + 𝑦 = 4𝑒𝑥 with homogeneous auxiliary 𝑟2 − 2𝑟 + 1 = 0 =⇒ (𝑟 − 1)2 = 0 so

𝑦1 = 𝑒𝑥 , 𝑦2 = 𝑥𝑒𝑥 .

If we guessed, 𝑦𝑝 = 𝐴𝑒𝑥 then we’d have 𝐿[𝐴𝑒𝑥] = 𝐴𝐿[𝑒𝑥] = 0, so it will not work. The same happens
with guessing 𝐴𝑥𝑒𝑥 . Suppose, then, that 𝐴𝑥2𝑒𝑥 . Then:

𝐿[𝐴𝑥2𝑒𝑥] = 𝐴(𝑥2 + 4𝑥 + 2)𝑒𝑥 − 2𝐴(𝑥2 + 2𝑥)𝑒𝑥 + 𝐴𝑥2𝑒𝑥 = 4𝑒𝑥

4𝑒𝑥 = 2𝐴𝑒𝑥 =⇒ 𝐴 = 2.

𝑦𝑝 = 2𝑥2𝑒𝑥 , with general solution 𝑦 = (𝑘1 + 𝑘2 + 2𝑥2)𝑒𝑥 .

We now generalize the method:

Let 𝑝(𝑥) = ∑𝑛
𝑗=0 𝑎 𝑗𝑥

𝑗 and 𝑞(𝑥) = ∑𝑛
𝑗=0 𝑏 𝑗𝑥

𝑗 be given polynomials. To solve 𝐿[𝑦](𝑥) = 𝑔(𝑥) for a constant
coefficient ODE, we have the following cases:

• 𝑠 = 0 if 𝛼 + 𝑖𝛽 is not a root of the auxiliary equation.
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𝑔(𝑥) (given) 𝑦𝑝(𝑥) (guess)
𝑝(𝑥) 𝑥𝑠(𝐴𝑛𝑥𝑛 + · · · + 𝐴1𝑥 + 𝐴0)
𝑒𝛼𝑥 𝑥𝑠𝐴𝑒𝛼𝑥

𝑝(𝑥)𝑒𝛼𝑥 𝑥𝑠(𝐴𝑛𝑥𝑛 + · · · + 𝐴1𝑥 + 𝐴0)𝑒𝛼𝑥
𝑝(𝑥)𝑒𝛼𝑥 cos 𝛽𝑥 + 𝑞(𝑥)𝑒𝛼𝑥 sin 𝛽𝑥 𝑥𝑠𝑒𝛼𝑥 cos(𝛽𝑥)∑𝑛

𝑖=0 𝐴𝑖𝑥
𝑖 + 𝑥𝑠𝑒𝛼𝑥 sin(𝛽𝑥)∑𝑛

𝑗=0 𝐵 𝑗𝑥
𝑗 .

• 𝑠 = multiplicity of the root of 𝛼 + 𝑖𝛽 if it is a root of the equation.

Remark 3.7. First two cases are just special cases of the third; they are all just special cases of the last one.

↩→ Lecture 10; Last Updated: Mon Feb 19 21:16:13 EST 2024

Remark 3.8. Linear combinations of the 𝑔’s above can also be solved, ie if 𝐿[𝑦] = 𝑔1 + 𝑔2, take 𝑦𝑝 = 𝑦𝑝1 + 𝑦𝑝2 where
𝑦𝑝𝑖 matches the “proper guess” for 𝑔𝑖 .

Remark 3.9. The method fails if 𝑎, 𝑏, 𝑐 not constants, or if 𝑔 not of the required form.

⊛ Example 3.8

1. Consider 𝑦′′ + 𝑦′ − 2𝑦 = 3𝑒2𝑥 . We have

𝑟2 + 𝑟 − 2 = 0 =⇒ (𝑟 − 1)(𝑟 + 2) = 0 =⇒ 𝑦1 = 𝑒𝑥 , 𝑦2 = 𝑒−2𝑥

for the homogeneous equations. Let 𝑦𝑝 = 𝐴𝑒2𝑥 , since 𝑒2𝑥 does solve the equation.

2. 𝑦′′ = 1 − 𝑥2. 𝑟2 = 0 =⇒ 𝑦1 = 1, 𝑦2 = 𝑥. Guess 𝑔(𝑥) = 𝑝(𝑥)𝑒𝛼𝑥 cos(𝛽𝑥) for 𝛼 = 0, 𝛽 = 0,
𝑝(𝑥) = 1 − 𝑥2. Guessing 𝑦𝑝 = 𝐴𝑥2 + 𝐵𝑥 + 𝐶 won’t work; instead, guess 𝑥2(𝐴𝑥2 + 𝐵𝑥 + 𝐶).
Forgetting the 𝑥2 would yield an unsolvable equation.

3. 𝑦′′ + 4𝑦 = 3 cos 𝑥. 𝑟2 + 4 = 0 =⇒ 𝑟 = ±2𝑖 so 𝑦1 = cos 2𝑥, 𝑦2 = sin 2𝑥. Guess 𝑦𝑝 =

𝐴 cos 𝑥 + 𝐵 sin 𝑥. We don’t need the sin, since it won’t appear in the ODE; this isn’t a problem
anyways, as this way we’ll just find that 𝐵 = 0.

3.6 Variation of Parameters

This method works for non-constant coefficient ODEs, and (in principle) any 𝑔. To use it, we need first to
know a fundamental set of solutions 𝑦1, 𝑦2 of the homogeneous equation.

Consider the nonhomogeneous equation

𝐿[𝑦](𝑥) = 𝑔(𝑥) = 𝑎(𝑥)𝑦′′ + 𝑏(𝑥)𝑦′ + 𝑐(𝑥)𝑦. ⊛

Suppose 𝐿[𝑦1] = 𝐿[𝑦2] = 0, so 𝑦𝑐 = 𝑘1𝑦1+ 𝑘2𝑦2 solves the homogeneous equation (constants 𝑘𝑖). Replace these
𝑘𝑖’s with unknown functions, 𝑢𝑖(𝑥), and assume that 𝑦𝑝(𝑥) = 𝑢1(𝑥)𝑦1(𝑥) + 𝑢2(𝑥)𝑦2(𝑥) solves the ODE.
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We have

𝑦′𝑝 = [𝑢′1𝑦1 + 𝑢′2𝑦2] + [𝑦1𝑢
′
1 + 𝑦2𝑢

′
2]

𝑦′′𝑝 = [𝑢′1𝑦1 + 𝑢′2𝑦2]′ + [𝑢′1𝑦
′
1 + 𝑢

′
2𝑦

′
2 + 𝑢1𝑦

′′
1 + 𝑢2𝑦

′′
2 ]

Substituting this into ⊛, we have that

𝑔 = 𝐿[𝑦𝑝] = 𝑎(𝑥)([𝑢′1𝑦1 + 𝑢′2𝑦2]′) + 𝑎(𝑥)[𝑢′1𝑦
′
1 + 𝑢

′
2𝑦

′
2 + 𝑢1𝑦

′′
1 + 𝑢2𝑦

′′
2 ]

+ 𝑏(𝑥)[𝑢′1𝑦1 + 𝑢′2𝑦2] + 𝑏(𝑥)[𝑢1𝑦
′
1 + 𝑢2𝑦

′
2]

+ 𝑐(𝑥)[𝑢1𝑦1 + 𝑢2𝑦2]

=
�����������:0
𝑢1[𝑎𝑦′′1 + 𝑏𝑦′1 + 𝑐𝑦1] +

�����������:0
𝑢2[𝑎𝑦′′2 + 𝑏𝑦′2 + 𝑐𝑦2] (solve ODE by assumption)

+ 𝑎[𝑢′1𝑦1 + 𝑢′2𝑦2]′ + 𝑎[𝑢′1𝑦
′
1 + 𝑢

′
2𝑦

′
2] + 𝑏[𝑢′1𝑦1 + 𝑢′2𝑦2].

But this is a single equation “trying” to define two unknown functions 𝑢1, 𝑢2; it is undetermined. We introduce
an extra constraint to make it solvable. Let us state, for convenience, 𝑢′1(𝑥)𝑦1(𝑥) + 𝑢′2(𝑥)𝑦2(𝑥) = 0∀ 𝑥, implying
[𝑢′1𝑦1 + 𝑢′2𝑦2]′ = 0∀ 𝑥.1 This assumption yields 𝑔 = 𝑎[𝑢′1𝑦

′
1 + 𝑢

′
2𝑦

′
2], so we write

𝑓 (𝑥) :=
𝑔

𝑎
= 𝑢′1𝑦

′
1 + 𝑢

′
2𝑦

′
2. 0 = 𝑢′1𝑦1 + 𝑢′2𝑦2,

a system of two differential equations for 𝑢1, 𝑢2. We can solve these:(
𝑦1 𝑦2

𝑦′1 𝑦′2

) (
𝑢′1
𝑢′2

)
=

(
0
𝑓 (𝑥)

)
=⇒

(
𝑢′1
𝑢′2

)
=

(
𝑦1 𝑦2

𝑦′1 𝑦′2

)−1 (
0
𝑓 (𝑥)

)
=

1
𝑦1𝑦

′
2 − 𝑦′1𝑦2

(
𝑦′2 −𝑦2

−𝑦′1 𝑦1

) (
0
𝑓

)
.

This can be problematic if 𝑦1𝑦
′
2−𝑦′1𝑦2 = 0; define𝑊(𝑦1, 𝑦2)(𝑥) := 𝑦1𝑦

′
2−𝑦′1𝑦2. Then, assuming𝑊(𝑦1, 𝑦2)(𝑥) ≠ 0,

we have

𝑢′1(𝑥) =
−𝑦2(𝑥) 𝑓 (𝑥)
𝑊(𝑦1, 𝑦2)(𝑥)

𝑢′2(𝑥) =
𝑦1(𝑥) 𝑓 (𝑥)

𝑊(𝑦1, 𝑦2)(𝑥)
,

which we can then integrate to find 𝑢1, 𝑢2 appropriately. We call𝑊(𝑦1, 𝑦2)(𝑥) the Wronskian of 𝑦1, 𝑦2 wrt 𝑥.

Note that, if 𝑦1, 𝑦2 are linearly dependent with 𝑦2 = 𝑐𝑦1, then𝑊(𝑦1, 𝑦2)(𝑥) = 𝑦1(𝑐𝑦′1)− 𝑦
′
1(𝑐𝑦1) = 0; that is, a

necessary condition for𝑊(𝑦1, 𝑦2) ≠ 0 is for 𝑦1, 𝑦2 to be linearly independent; it is not sufficient. However, we’ll

1This is a “trust me for now” instance.
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only use𝑊 when 𝑦1, 𝑦2 both solve the same ODE; in this case, it can be shown that𝑊(𝑦1, 𝑦2)(𝑥) ≠ 0 ⇐⇒ 𝑦1, 𝑦2

are linearly independent2.

⊛ Example 3.9

4𝑦′′ + 36𝑦 = 1
sin(3𝑥) =⇒ 𝑦′′ + 9𝑦 = 1

4 sin(3𝑥) =
1
4 csc(3𝑥).

Solving the homogeneous equation: 𝑟2 + 9 = 0 =⇒ 𝑟 = ±3𝑖. This gives us 𝑦1 = cos(3𝑥), 𝑦2 =

sin(3𝑥). Let 𝑦𝑝 = 𝑢1 cos(3𝑥)+𝑢2 sin(3𝑥). We have𝑊(𝑦1, 𝑦2) = (cos 3𝑥)3 cos(3𝑥)+(3 sin(3𝑥))(sin(3𝑥)) =
3, yielding

𝑢′1 =
−𝑦2 𝑓

𝑊(𝑦1, 𝑦2)(𝑥)
=

− sin(3𝑥) 1
4 sin(3𝑥)

3 = − 1
12 =⇒ 𝑢1 = − 𝑥

12

𝑢′2 =
cos(3𝑥) 1

4 sin(3𝑥)
3 =

1
36

(
3 cos(3𝑥)
sin(3𝑥)

)
=

1
36
ℎ′

ℎ
=⇒ 𝑢1 =

1
36 ln(|sin 3𝑥 |)

We have

𝑦𝑝 = − 𝑥

12 cos(3𝑥) + 1
36 (ln | sin 3𝑥 |) sin(3𝑥),

with a general solution

𝑦(𝑥) =
(
𝑘1 −

𝑥

12

)
cos(3𝑥) + sin(3𝑥)

(
𝑘2 +

1
36 ln |sin(3𝑥)|

)
.

4 𝑁th Order ODEs

4.1 A Little Theory

Consider a nonlinear 𝑛th order IVP,

𝑦(𝑛)(𝑥) = 𝑓 (𝑥, 𝑦(𝑥), 𝑦′(𝑥), . . . , 𝑦(𝑛−1)(𝑥)) (𝑖)
𝑦(𝑥0) = 𝛼1, . . . , 𝑦

(𝑛−1)(𝑥0) = 𝛼𝑛 (𝑖𝑖),

noting that this is sufficient to specify a unique solution.

↩→ Theorem 4.1

If 𝑓 (𝑥, 𝑦1, 𝑦2, . . . , 𝑦𝑛) and 𝜕 𝑓
𝜕𝑦 𝑗

are continuous on the box 𝑅 = {(𝑥, 𝑦1, . . . , 𝑦𝑛) : |𝑥 − 𝑥0 | ⩽ 𝑎, |𝑦𝑖 − 𝛼𝑖 | ⩽
𝑏, 𝑖 = 1, . . . , 𝑛}, then the initial value problem (𝑖), (𝑖𝑖) has a unique solution 𝑦(𝑥) for 𝑥 ∈ [𝑥0− ℎ, 𝑥+0+ ℎ]
for some ℎ ∈ (0, 𝑎], with solution satisfying |𝑦(𝑥) − 𝛼1 | ⩽ 𝑏 ∀ 𝑥 ∈ [𝑥0 − ℎ, 𝑥0 + ℎ].

2Abel’s Identity

4.1 𝑁th Order ODEs: A Little Theory 32



Remark 4.1. The proof is very similar to the case 𝑛 = 1; the key step is to rewrite the 𝑛th order ODE as a system of first
order ODEs.

Let 𝑢1 = 𝑦, 𝑢2 = 𝑦′, . . . , 𝑢𝑛 = 𝑦(𝑛−1), and define 𝑢(𝑡) =
©­­­«
𝑢1(𝑡)
...

𝑢𝑛(𝑡)

ª®®®¬. The ODE, then, can be written

𝑢′(𝑡) =
©­­­«
𝑢′1(𝑡)
...

𝑢′𝑛(𝑡)

ª®®®¬ =

©­­­«
𝑦′

...

𝑦(𝑛)

ª®®®¬ =

©­­­«
𝑢2
...

𝑢𝑛

ª®®®¬ =: 𝐹(𝑥, 𝑢),

“vectorally”.

4.2 Linear 𝑛th Order ODEs

We consider

𝑦(𝑛) +
𝑛∑
𝑖=1

𝑝𝑖(𝑥)𝑦(𝑛−1) = 𝑔(𝑥) =: 𝐿[𝑦],

with ICs
𝑦(𝑥0) = 𝛼1, . . . , 𝑦

(𝑛−1)(𝑥0)𝛼𝑛 .

We would like to show that the general solution is as before with second order ODEs, ie

𝑦(𝑥) =
𝑛∑
𝑗=1

𝑘 𝑗𝑦 𝑗 + 𝑦𝑝 ,

where 𝑦𝑝 is a particular solution of 𝐿[𝑦] = 𝑔, and 𝑦1, . . . , 𝑦𝑛 a fundamental set of solutions (of 𝐿[𝑦] = 0, eg).
We want to show “both directions” of this equality; this form defines solutions, and any solution is of this
form. This implies, then, that the solution space has exactly dimension 𝑛.

↩→ Lemma 4.1

Let 𝜑(𝑥) be any solution of the homogeneous ODE 𝐿[𝑦](𝑥) = 0 on 𝐼. Let 𝑢(𝑥) ⩾ 0 be defined by
(𝑢(𝑥))2 = 𝜑(𝑥)2 + 𝜑′(𝑥)2 + · · · + 𝜑(𝑛−1)(𝑥)2. Then, ∀ 𝑥 ∈ 𝐼,

𝑢(𝑥0)𝑒−𝑘 |𝑥−𝑥0 | ⩽ 𝑢(𝑥) ⩽ 𝑢(𝑥0)𝑒 𝑘 |𝑥−𝑥0 | ,

where 𝑘 = 1 +∑𝑛
𝑖=1 𝛽𝑖 , 𝛽 = max𝑥∈𝐼 |𝑝𝑖(𝑥)|.

↩→ Lecture 11; Last Updated: Tue Feb 27 13:01:32 EST 2024
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↩→ Proposition 4.1

Let 𝐼 ⊆ R, 𝑥0 ∈ 𝐼 and let 𝑝𝑖(𝑥), 𝑖 = 1, . . . , 𝑛 and 𝑔(𝑥) be continuous on 𝐼. Then, the IVP

𝐿[𝑦](𝑥) = 𝑔(𝑥) 𝑦(𝑗)(𝑥0) = 𝛼 𝑗+1, 𝑗 = 0, . . . , 𝑛 − 1

has at most one solution 𝑦(𝑥) defined on 𝐼.

Proof. Let 𝑦1, 𝑦2 be two such solutions and let 𝜑(𝑥) = 𝑦1(𝑥) − 𝑦2(𝑥). Then,

𝐿[𝜑] = 𝐿[𝑦1 − 𝑦2] = 𝐿[𝑦1] − 𝐿[𝑦2] = 𝑔(𝑥) − 𝑔(𝑥) = 0∀ 𝑥 ∈ 𝐼 ,

so 𝐿[𝜑] = 0∀ 𝑥 ∈ 𝐼. Moreover, 𝜑(𝑥0) = 𝑦1(𝑥0) − 𝑦2(𝑥0) = 𝛼1 − 𝛼1 = 0 (with similar computations for the other
ICs wrt derivatives of 𝜑). Let 𝑢(𝑥) = 𝜑(𝑥)2 + 𝜑′(𝑥)2 + · · · + (𝜑(𝑛−1)(𝑥))2. Then, 𝜑(𝑥0) = 0, so by the previous
lemma 𝑢(𝑥) = 0∀ 𝑥 ∈ 𝐼, and thus 𝑦1(𝑥) = 𝑦2(𝑥) ∀ 𝑥 ∈ 𝐼, and thus there is at most one solution of the IVP. ■

4.3 Linear Homogeneous 𝑁th Order ODES

Consider 𝐿[𝑦] = 𝑦(𝑛) + ∑𝑛
𝑗=1 𝑝 𝑗(𝑥)𝑦(𝑛𝑗) = 0; in this section, we aim to find the exact dimension of the solution

space of 𝐿.

↩→ Theorem 4.2: Principle of Superposition

If 𝑦1, . . . , 𝑦𝑚 are solutions of 𝐿[𝑦] = 0 for some 𝐼 ⊆ R then 𝑦(𝑡) = ∑𝑚
𝑗 𝑘 𝑗𝑦 𝑗(𝑡) is also a solution for arbitrary

constants 𝑘 𝑗 .

↩→ Definition 4.1: Fundamental Set of Solutions

A set of 𝑛 functions {𝑦𝑖(𝑥) : 𝐿[𝑦𝑖] = 0, 𝑖 = 1, . . . , 𝑛} on an interval 𝐼 ⊆ R is called a fundamental set of
solutionsif 𝑦1, . . . , 𝑦𝑛 are linearly independent on 𝐼.

This necessitates the need to test for linear independence of solutions, which is far harder in R𝑛 , 𝑛 ⩾ 3
than 𝑛 = 2.

↩→ Definition 4.2: Wronskian

We define

𝑊(𝑦1, . . . , 𝑦𝑛)(𝑥) :=

����������
𝑦1(𝑥) · · · 𝑦𝑛(𝑥)
𝑦′1(𝑥) · · · 𝑦′𝑛(𝑥)
... · · · ...

𝑦
(𝑛−1)
1 (𝑥) · · · 𝑦

(𝑛−1)
𝑛 (𝑥)

���������� .
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↩→ Theorem 4.3

Let 𝑦1, . . . , 𝑦𝑛 ∈ 𝐶𝑛−1(𝐼). If𝑊(𝑦1, . . . , 𝑦𝑛)(𝑥0) ≠ 0 for some 𝑥0 ∈ 𝐼, then 𝑦1, . . . , 𝑦𝑛 are linearly independent
on 𝐼. Consequently, if 𝑦1, . . . , 𝑦𝑛 are linearly dependent on 𝐼, then𝑊(𝑦1, . . . , 𝑦𝑛)(𝑥) = 0∀ 𝑥 ∈ 𝐼.

Remark 4.2. This does not mean that 𝑊(𝑦1, . . . , 𝑦𝑛)(𝑥) = 0 implies the functions are linearly dependent; it does not
hold iff.

Proof. We show the contrapositive. Assume 𝑦1, . . . , 𝑦𝑛 are linearly dependent on 𝐼. Then, ∃𝑘𝑖 , 𝑖 = 1, . . . , 𝑛,
not all zero, such that

∑𝑛
𝑗=1 𝑘 𝑗𝑦 𝑗(𝑥)0∀ 𝑥 ∈ 𝐼, assuming wlog that 𝑘𝑛 ≠ 0. Then

𝑦𝑛(𝑥) = − 𝑘1
𝑘𝑛
𝑦1(𝑥) −

𝑘2
𝑘𝑛
𝑦2(𝑥) − · · · − 𝑘𝑛−1

𝑘𝑛
𝑦𝑛−1(𝑥)

=⇒ 𝑦′𝑛(𝑥) = − 𝑘1
𝑘𝑛
𝑦′1(𝑥) − · · · 𝑘𝑛−1

𝑘𝑛
𝑦′𝑛−1(𝑥)

...

=⇒ 𝑦
(𝑛−1)
𝑛 (𝑥) = − 𝑘1

𝑘𝑛
𝑦
(𝑛−1)
1 (𝑥) − · · · − 𝑘𝑛−1

𝑘𝑛
𝑦
(𝑛−1)
𝑛−1 (𝑥)

=⇒
©­­­«
𝑦𝑛(𝑥)
...

𝑦
(𝑛−1)
𝑛 (𝑥)

ª®®®¬ = − 𝑘1
𝑘𝑛

©­­­«
𝑦1(𝑥)
...

𝑦
(𝑛−1)
1 (𝑥)

ª®®®¬ − · · · − 𝑘𝑛−1
𝑘𝑛

©­­­«
𝑦𝑛−1(𝑥)

...

𝑦
(𝑛−1)
𝑛−1 (𝑥)

ª®®®¬ ,
but each of these column vectors are just rows of the Wronskian (times constants), and we thus have that the
Wronskian has linearly dependent columns, ie is singular, ie has zero determinant, as we aimed to show. ■

⊛ Example 4.1

Let 𝑦1(𝑥) = 𝑥2 and 𝑦2(𝑥) =

𝑥2 𝑥 ⩾ 0

−𝑥2 𝑥 < 0
, where both are continuously differentiable on R, but 𝑦′′2 (𝑥)

is discontinuous at 𝑥 = 0.

𝑊(𝑦1, 𝑦2)(𝑥) =



������𝑥2 𝑥2

2𝑥 2𝑥

������ = 0 ∀ 𝑥 ⩾ 0������𝑥2 −𝑥2

2𝑥 −2𝑥

������ = 0 ∀ 𝑥 < 0

= 0∀ 𝑥.

Notice too that for 𝐼 = [0,∞), 𝑦1 = 𝑦2 and are thus linearly dependent. However, 𝑦1, 𝑦2 are linearly
independent on R. Clearly, our choice of interval changes the dependence/independence of our
functions, and moreover, this is an example of functions with Wronskian 0 but are not linearly
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dependent.

This example seems to show that the use of the Wronksian to determine independence of solutions is not
reliable; however, we are not particularly interested in this in general, rather, we are concerned with solutions
to an 𝑛th order ODE. In the previous example, 𝑦2 was not twice continuously differentiable, and so wouldn’t
even solve a second order ODE.

↩→ Theorem 4.4: Abel’s

Let 𝑦1, . . . , 𝑦𝑛 be solutions of the 𝑛th order homogeneous ODE 𝐿[𝑦] = 0 on 𝐼 with continuous 𝑝 𝑗(𝑥) on
𝐼. Then,

𝑊(𝑥) :=𝑊(𝑦1, . . . , 𝑦𝑛)(𝑥)

satisfies the ODE
𝑊 ′(𝑥) + 𝑝1(𝑥)𝑊(𝑥) = 0 ∀ 𝑥 ∈ 𝐼 ,

and hence
𝑊(𝑥) = 𝐶𝑒−

∫
𝑝1(𝑥)d𝑥 .

Moreover, either

1. 𝑐 = 0, and𝑊(𝑦1, . . . , 𝑦𝑛)(𝑥) = 0∀ 𝑥 ∈ 𝐼 and 𝑦1, . . . , 𝑦𝑛 are linearly dependent on 𝐼.

2. c ≠ 0, and 𝑊(𝑦1, . . . , 𝑦𝑛)(𝑥) ≠ 0∀ 𝑥 ∈ 𝐼 and 𝑦1, . . . , 𝑦𝑛 are linearly independent on 𝐼, forming a
fundamental set of solutions.

↩→ Lecture 12; Last Updated: Tue Feb 13 11:23:20 EST 2024

Proof. We show first that𝑊 satisfies the required ODE.

Consider first the 𝑛 = 2 case. We have, ∀ 𝑥 ∈ 𝐼

0 = 𝐿[𝑦1] = 𝑦′′1 + 𝑝1(𝑥)𝑦′1 + 𝑝2(𝑥)𝑦1

0 = 𝐿[𝑦2] = 𝑦′′2 + 𝑝1(𝑥)𝑦′2 + 𝑝2(𝑥)𝑦2

Consider:

𝑦2(𝑦′′1 + 𝑝1𝑦
′
1 + 𝑝2𝑦1) − 𝑦1(𝑦′′2 + 𝑝1𝑦

′
2 + 𝑝2𝑦2) = 0

=⇒ 𝑦1𝑦
′′
2 − 𝑦2𝑦

′′
1 + 𝑝1(𝑦1𝑦

′
2 − 𝑦2𝑦

′
1) = 0 ∗1

But recall that𝑊 =

�����𝑦1 𝑦2

𝑦′1 𝑦′2

����� = 𝑦1𝑦
′
2 − 𝑦′1𝑦2, hence

𝑊 ′(𝑥) = 𝑦1𝑦
′′
2 + 𝑦′1𝑦

′
2 − 𝑦′1𝑦

′
2 − 𝑦′′1 𝑦2 = 𝑦1𝑦

′′
2 − 𝑦′′1 𝑦2,
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and thus, as this matches the left-hand terms of ∗1,𝑊 ′(𝑥) + 𝑝1𝑊(𝑥) = 0 as desired.

For general 𝑛,

𝑊(𝑦1, . . . , 𝑦𝑛)(𝑥) =

��������
𝑦1(𝑥) · · · 𝑦𝑛(𝑥)
...

. . .
...

𝑦
(𝑛−1)
1 (𝑥) · · · 𝑦

(𝑛−1)
𝑛 (𝑥)

��������
𝑊 ′(𝑥) =

�������������

𝑦′1 · · · 𝑦′𝑛
𝑦′1 · · · 𝑦′𝑛
𝑦′′1 · · · 𝑦′′𝑛
...

. . .
...

𝑦
(𝑛−1)
1 · · · 𝑦

(𝑛−1)
𝑛

�������������
+

�������������

𝑦1 · · · 𝑦𝑛

𝑦′′1 · · · 𝑦′′𝑛
𝑦′′1 · · · 𝑦′′𝑛
...

. . .
...

𝑦
(𝑛−1)
1 · · · 𝑦

(𝑛−1)
𝑛

�������������
+ · · · +

�������������

𝑦1 · · · 𝑦𝑛

𝑦′1 · · · 𝑦′𝑛
...

. . .
...

𝑦
(𝑛−1)
1 · · · 𝑦

(𝑛−1)
𝑛

𝑦
(𝑛−1)
1 · · · 𝑦

(𝑛−1)
𝑛

�������������︸                                                                                      ︷︷                                                                                      ︸
=0; have a repeated row

+

�������������

𝑦1 · · · 𝑦𝑛

𝑦′1 · · · 𝑦′𝑛
...

. . .
...

𝑦
(𝑛−1)
1 · · · 𝑦𝑛−1

𝑛

𝑦
(𝑛)
1 · · · 𝑦

(𝑛)
𝑛

�������������
∗2

But we have that 𝑦(𝑛)
𝑗

= −𝑝1𝑦
(𝑛−1)
𝑗

− 𝑝2𝑦
(𝑛−2)
𝑗

− · · · − 𝑝𝑛𝑦 𝑗 , 𝑗 = 1, . . . , 𝑛, so we can substitute this into ∗2. This
will simplify:

𝑊 ′ = −𝑝1

����������
𝑦1 · · · 𝑦𝑛
...

. . .
...

𝑦
(𝑛−2)
1 · · · 𝑦

(𝑛−2)
𝑛

𝑦
(𝑛−1)
1 · · · 𝑦

(𝑛−1)
𝑛

����������−𝑝2

����������
𝑦1 · · · 𝑦𝑛
...

. . .
...

𝑦
(𝑛−2)
1 · · · 𝑦

(𝑛−2)
𝑛

𝑦
(𝑛−2)
1 · · · 𝑦

(𝑛−2)
𝑛

���������� − · · · − 𝑝𝑛

����������
𝑦1 · · · 𝑦𝑛
...

. . .
...

𝑦
(𝑛−2)
1 · · · 𝑦

(𝑛−2)
𝑛

𝑦1 · · · 𝑦𝑛

����������︸                                                                  ︷︷                                                                  ︸
=0

= −𝑝1𝑊,

as required.

In the case 𝑐 ≠ 0, case 2., then 𝑊(𝑥) ≠ 0∀ 𝑥 ∈ 𝐼, and we’ve already shown that 𝑦1, . . . , 𝑦𝑛 are linearly
independent on 𝐼.

If 𝑐 = 0, case 2., and𝑊(𝑥) = 0∀ 𝑥 ∈ 𝐼, then it remains to show that 𝑦1, . . . , 𝑦𝑛 are linearly dependent.

Let 𝜑(𝑥) = ∑𝑛
𝑗=1 𝑐 𝑗𝑦 𝑗(𝑥), with 𝑐 𝑗 such that 𝜑 solves the IVP; ie

𝐿[𝜑] = 0; 𝜑(𝑥0) = · · · = 𝜑(𝑛−1)(𝑥0) = 0.

We must have:

©­­­«
0
...

0

ª®®®¬ =

©­­­«
𝜑(𝑥0)
...

𝜑(𝑛−1)(𝑥0)

ª®®®¬ =

©­­­«
𝑦1(𝑥0) 𝑦2(𝑥0) · · · 𝑦𝑛(𝑥0)
...

. . .
. . .

...

𝑦
(𝑛−1)
1 (𝑥0) · · · · · · 𝑦

(𝑛−1)
𝑛 (𝑥0)

ª®®®¬︸                                          ︷︷                                          ︸
:=𝐴

©­­­«
𝑐1
...

𝑐𝑛

ª®®®¬
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Since𝑊(𝑥) = 0∀ 𝑥 ∈ 𝐼,𝑊(𝑥0) = 0 and thus this matrix 𝐴 has determinant 0, is singular, and has a non-trivial
kernel.

Let (𝑐1, . . . , 𝑐𝑛)𝑇 ∈ Ker(𝐴), not equal to the zero vector; then, these 𝑐 𝑗 make 𝜑 satisfy the IVP as desired:

𝐿[𝜑] =
𝑛∑
𝑗=1

𝑐 𝑗𝐿[𝑦 𝑗] = 0,

as 𝑦 𝑗 solutions and 𝑐 𝑗 chosen appropriately to satisfy IVP.

We clearly have, as well, that 𝑦(𝑥) = 0 will solve the IVP; but by uniqueness, it must be that

0 = 𝑦(𝑥) = 𝜑(𝑥) ∀ 𝑥 ∈ 𝐼

=⇒ 0 =

𝑛∑
𝑗=1

𝑐 𝑗𝑦 𝑗(𝑥),

but by construction the 𝑐 𝑗s are not all zero, hence, 𝑦1, . . . , 𝑦𝑛 must be linearly dependent. ■

↩→ Corollary 4.1

If 𝐿[𝑦 𝑗] = 0∀ 𝑥 ∈ 𝐼 , 𝑗 = 1, . . . , 𝑛, where 𝑝 𝑗 are continuous for all 𝑥 ∈ 𝐼, and let𝑌 := {𝑦 𝑗 : 1 ⩽ 𝑗 ⩽ 1}. TFAE:

1. 𝑌 form a fundamental set of solutions on 𝐼;

2. 𝑌 are linearly independent on 𝐼;

3. 𝑊(𝑌)(𝑥0) ≠ 0 for some 𝑥0 ∈ 𝐼;

4. 𝑊(𝑌)(𝑥) ≠ 0∀ 𝑥 ∈ 𝐼.
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↩→ Theorem 4.5

Let 𝑦1, . . . , 𝑦𝑛 be a fundamental set of solutions for 𝐿[𝑦] = 0 on 𝐼, where 𝑝 𝑗(𝑥)-continuous on 𝐼.

1. The IVP
𝐿[𝑦] = 0, 𝑦(𝑥0) = 𝛼1, . . . , 𝑦

(𝑛−1)(𝑥0) = 𝛼𝑛

has a unique solution 𝑦(𝑥) for 𝑥 ∈ 𝐼, which can be written as

𝑦(𝑥) =
𝑛∑
𝑗=1

𝑐 𝑗𝑦 𝑗(𝑥), †

for a unique choice of the constants 𝑐1, . . . , 𝑐𝑛 .

2. Every solution 𝑦(𝑥) of the ODE 𝐿[𝑦] = 0 defined on 𝐼 can be written in the form † for some choice
of the parameters 𝑐1, . . . , 𝑐𝑛 .

Remark 4.3. This theorem does not guarantee existence of the fundamental set of solutions for an arbitrary 𝐿[𝑦] = 0.

Part 2. shows that the fundamental set of solutions span the whole solution space: the space of solutions is exactly
𝑛-dimensional.

Proof. To prove 1., let 𝑦(𝑥) as defined by †. Then, 𝐿[𝑦] = 0 trivially satisfies the ODE, by superposition, so it
remains to show that there is a unique choice of (𝑐 𝑗) such that the IVP is satisfied. We need:

©­­­«
𝛼1
...

𝛼𝑛

ª®®®¬ =

©­­­«
𝑦(𝑥0)
...

𝑦(𝑛−1)(𝑥0)

ª®®®¬ =

©­­­«
𝑦1(𝑥0) 𝑦2(𝑥0) · · · 𝑦𝑛(𝑥0)
...

. . .
. . .

...

𝑦
(𝑛−1)
1 (𝑥0) 𝑦

(𝑛−1)
2 (𝑥0) · · · 𝑦

(𝑛−1)
𝑛 (𝑥0)

ª®®®¬︸                                              ︷︷                                              ︸
:=𝐴

©­­­«
𝑐1
...

𝑐𝑛

ª®®®¬
But now, det{𝐴} =𝑊(𝑦1, . . . , 𝑦𝑛)(𝑥0) ≠ 0, hence 𝐴 invertible, and we have

©­­­«
𝑐1
...

𝑐𝑛

ª®®®¬ = 𝐴−1
©­­­«
𝛼1
...

𝛼𝑛

ª®®®¬ .
Since 𝐴−1 is unique, then so are the (𝑐 𝑗)’s.

To prove 2., note that any 𝑦(𝑥) defined by † satisfies 𝐿[𝑦] = 0∀ 𝑥 ∈ 𝐼 for any choice of 𝑐 𝑗 by superposition.
To show that there are no other forms of solutions, suppose 𝜑(𝑥) is a solution that cannot be written as such.

Suppose 𝐿[𝜑](𝑥) = 0∀ 𝑥 ∈ 𝐼. For 𝜑, let 𝑥0 ∈ 𝐼 and find 𝑦(𝑥) that satisfies the IVP

𝐿[𝑦] = 0, 𝑦(𝑥0) = 𝜑(𝑥0), · · · , 𝑦(𝑛−1)(𝑥0) = 𝜑(𝑛−1)(𝑥0).
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By 1. this IVP has a unique solution of the form †, and with the same IC as 𝜑, we have thus that 𝜑 = 𝑦, a
contradiction. ■

4.4 Nonhomogeneous 𝑁th Order Linear ODEs

Consider 𝐿[𝑦] = 𝑔. If 𝑦1, . . . , 𝑦𝑛 a fundamental set of solutions of 𝐿[𝑦] = 0 and 𝐿[𝑦𝑝] = 𝑔, then

𝑦(𝑥) = 𝑦𝑝(𝑥) +
𝑛∑
𝑗=1

𝑐 𝑗𝑦 𝑗(𝑥)

will satisfy the original 𝐿[𝑦] = 𝑔. We need to show that we can construct such an 𝑦𝑝 .

We will use variation of parameters to find 𝑦𝑝 . Suppose 𝑦𝑝(𝑥) =
∑𝑛
𝑗=1 𝑢𝑗(𝑥)𝑦 𝑗(𝑥) for TBD 𝑢𝑗(𝑥), and suppose

𝐿[𝑦𝑝] = 𝑔. This gives

𝑦′𝑝(𝑥) =
∑
𝑗

𝑢𝑗(𝑥)𝑦′𝑗(𝑥) +
∑
𝑗

𝑢′𝑗(𝑥)𝑦 𝑗(𝑥).

To simplify, we’ll assume that
∑
𝑗 𝑢

′
𝑗
𝑦 𝑗 = 0∀ 𝑥 ∈ 𝐼, so

𝑦′′𝑝 (𝑥) =
∑
𝑗

𝑢𝑗𝑦
′′
𝑗 +

∑
𝑗

𝑢′𝑗𝑦
′
𝑗 ,

and assume, similarly,
∑
𝑗 𝑢

′
𝑗
𝑦′
𝑗
= 0∀ 𝑥, remarking that at each of these steps we introduce a new constraint,

and as such we will eventually have 𝑛 − 1 constraints to solve for.

↩→ Lecture 13; Last Updated: Thu Apr 4 17:53:29 EDT 2024

↩→ Theorem 4.6

Let 𝑦1, . . . , 𝑦𝑛 be a fundamental set of solutions of 𝐿[𝑦] = 0 for 𝑥 ∈ 𝐼 where 𝑝 𝑗 continuous on 𝐼. Suppose
𝑔(𝑥) continuous on 𝐼. Then

1. The IVP 𝐿[𝑦] = 𝑔, 𝑦(𝑥0) = 𝛼1, . . . , 𝑦
(𝑛−1)(𝑥0) = 𝛼𝑛 has a unique solution 𝑦(𝑥) for 𝑥 ∈ 𝐼.

2. Every solution of the ODE 𝐿[𝑦] = 𝑔 can be written in the form

𝑦(𝑥) = 𝑦𝑝(𝑥) +
𝑛∑
𝑗=1

𝑐 𝑗𝑦 𝑗(𝑥) ‡

where 𝑦𝑝 a particular solution satisfying 𝐿[𝑦𝑝] = 𝑔.
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Proof. We show 2. first. Suppose 𝑦𝑝1 solves 𝐿[𝑦𝑝1] = 𝑔 (which exists by 1.). Then, 𝑦𝑝1(𝑥) is of the form ‡ with
𝑐 𝑗 = 0 and 𝑦𝑝 = 𝑦𝑝1 . Let 𝑦𝑝2 be a different solution of 𝐿[𝑦𝑝2] = 𝑔. Let 𝑌 = 𝑦𝑝2 − 𝑦𝑝1 . Then,

𝐿[𝑌] = 𝐿[𝑦𝑝2] − 𝐿[𝑦𝑝1] = 𝑔 − 𝑔 = 0∀ 𝑥 ∈ 𝐼 ,

hence 𝑌(𝑥) solves the corresponding homogeneous problem 𝐿[𝑌] = 0, and so by the previous theorem, can
be written in the form 𝑌 =

∑𝑛
𝑗=1 𝑐 𝑗𝑦 𝑗(𝑥) for appropriate choice of 𝑐 𝑗’s. Thus,

𝑦𝑝2(𝑥) = 𝑌(𝑥) + 𝑦𝑝1(𝑥) =
𝑛∑
𝑗=1

𝑐 𝑗𝑦 𝑗(𝑥) + 𝑦𝑝1(𝑥),

as required.

We proceed to 1. We’ve already shown that this IVP has at most one solutions, so it suffices to find that
there is exactly one. We will do so by variation of parameters. Suppose 𝑦𝑝 =

∑𝑛
𝑗=1 𝑢𝑗(𝑥)𝑦 𝑗(𝑥) where 𝑦𝑝 solves

𝐿[𝑦𝑝] = 𝑔. Then,

𝑦′𝑝 =
𝑛∑
𝑗=1

𝑢𝑗𝑦
′
𝑗 +

𝑛∑
𝑗=1

𝑢′𝑗𝑦 𝑗 ,

and assume that
∑𝑛
𝑗=1 𝑢

′
𝑗
𝑦 𝑗 = 0∀ 𝑥 ∈ 𝐼, hence

𝑦′′𝑝 =
∑

𝑢′𝑗𝑦
′
𝑗 +

∑
𝑢𝑗𝑦

′′
𝑗 .

Let us assume too that
∑
𝑢′
𝑗
𝑦′
𝑗
= 0∀ 𝑥 ∈ 𝐼. We can continue in this manner, differentiating 𝑛−1 times, yielding

𝑦
(𝑗)
𝑝 =

𝑛∑
𝑖=1

𝑢𝑖𝑦
(𝑗)
𝑖
, 𝑗 = 0, . . . , 𝑛 − 1,

and assuming appropriately
∑
𝑢′
𝑖
𝑦
(𝑗−1)
𝑖

= 0, for 𝑗 = 1, . . . , 𝑛 − 1. Finally, differentiating once more, we have

𝑦
(𝑛)
𝑝 =

∑
𝑢𝑖𝑦

(𝑛)
𝑖

+
∑

𝑢′𝑖𝑦
(𝑛−1)
𝑖

,
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this time, not assuming that the last term vanishes. Plugging into 𝐿, then we have

𝑔 = 𝐿[𝑦𝑝] = 𝑦
(𝑛)
𝑝 +

𝑛∑
𝑗=1

𝑝 𝑗𝑦
(𝑛−𝑗)
𝑝

=
∑

𝑢𝑖𝑦
(𝑛)
𝑖

+
∑

𝑢′𝑖𝑦
(𝑛−1)
𝑖

+
𝑛∑
𝑗=1

𝑝 𝑗(𝑥)
𝑛∑
𝑖=1

𝑢𝑖𝑦
(𝑛−𝑗)
𝑖

=
∑

𝑢′𝑖𝑦
(𝑛−1)
𝑖

+
∑
𝑖

𝑢𝑖

𝑦(𝑛)𝑖
+

∑
𝑗

𝑝 𝑗𝑦
(𝑛−𝑗)
𝑖

︸                   ︷︷                   ︸
=0, for each 𝑖 , solving 𝐿[𝑦𝑖]=0

=⇒ 𝑔 =
∑
𝑖

𝑢′𝑖𝑦
(𝑛−1)
𝑖

.

This, along with our 𝑛 − 1 constraints, gives us 𝑛 equations defining the 𝑢′
𝑖
(𝑥), giving us the linear system:

©­­­­­­­­«

𝑦1 𝑦2 · · · 𝑦𝑛

𝑦′1 𝑦′2 · · · 𝑦′𝑛
...

. . .
. . .

...

𝑦
(𝑛−2)
1 𝑦

(𝑛−2)
2 · · · 𝑦

(𝑛−2)
𝑛

𝑦
(𝑛−1)
1 𝑦

(𝑛−1)
2 · · · 𝑦

(𝑛−1)
𝑛

ª®®®®®®®®¬
·
©­­­­­«
𝑢′1
𝑢′2
...

𝑢′𝑛

ª®®®®®¬
=

©­­­­­«
0
...

0
𝑔(𝑥)

ª®®®®®¬
,

where the first 𝑛 − 1 rows of the matrix follow from the constrains we imposed on 𝑢′
𝑖
, the last follows from

the previous line when we plugged in our 𝑦𝑝 into 𝐿[𝑦𝑝] = 𝑔. But this is just the Wronskian matrix, and
𝑊(𝑦1, . . . , 𝑦𝑛)(𝑥) ≠ 0∀ 𝑥 ∈ 𝐼 by Abel’s since 𝑦𝑖’s form a fundamental set of solutions by assumption, thus, the
matrix is invertible and we can therefore solve for 𝑢′

𝑖
s:

©­­­­­«
𝑢′1
𝑢′2
...

𝑢′𝑛

ª®®®®®¬
=

©­­­­­­­­«

𝑦1 𝑦2 · · · 𝑦𝑛

𝑦′1 𝑦′2 · · · 𝑦′𝑛
...

. . .
. . .

...

𝑦
(𝑛−2)
1 𝑦

(𝑛−2)
2 · · · 𝑦

(𝑛−2)
𝑛

𝑦
(𝑛−1)
1 𝑦

(𝑛−1)
2 · · · 𝑦

(𝑛−1)
𝑛

ª®®®®®®®®¬

−1 ©­­­­­«
0
...

0
𝑔(𝑥)

ª®®®®®¬
=:

©­­­«
𝑓1(𝑥)
...

𝑓𝑛(𝑥)

ª®®®¬ ,

hence, 𝑢′
𝑗
(𝑥) = 𝑓𝑗(𝑥) for some 𝑓𝑗 as defined, and thus

𝑢𝑗(𝑥) =
∫ 𝑥

𝑥0

𝑓𝑗(𝑠)d𝑠 ,

and so our particular solution is

𝑦𝑝(𝑥) =
∑
𝑖

𝑦𝑖

∫ 𝑥

𝑥0

𝑓𝑖(𝑠)d𝑠 .
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This is a solution to the ODE; it remains to show that the IVP can be solved by a unique choice of the 𝑐 𝑗’s.
This is similar to the homogeneous case; left as a (homework) exercise. ■

↩→ Theorem 4.7: Cramer’s Rule

Let 𝐴 ∈ 𝑀𝑛(R) be invertible and 𝑥, 𝑏 𝑛 × 1 column vectors. Then for any 𝑏 ∈ R𝑛 , 𝐴𝑥 = 𝑏 has a unique
solution 𝑥 ∈ R𝑛 given by

𝑥𝑖 =
det𝐴𝑖
det𝐴 , 𝑖 = 1, . . . , 𝑛,

where 𝐴𝑖 is the matrix obtained by replacing the 𝑖th column of 𝐴 by the vector 𝑏.

↩→ Theorem 4.8: Variation of Parameters

Let 𝑦1, . . . , 𝑦𝑛 be a fundamental set of solutions of 𝐿[𝑦] = 0, let𝑊(𝑥) =𝑊(𝑦1, . . . , 𝑦𝑛)(𝑥), let𝑊𝑖(𝑥) be the

determinant of the matrix obtained by replacing the 𝑖th column of 𝑊 by
©­­­«
0
...

𝑔

ª®®®¬, and let 𝑢𝑖 =
∫ 𝑥

𝑥0

𝑊𝑖(𝑠)
𝑊(𝑠) d𝑠,

then

𝑦𝑝 =

𝑛∑
𝑖=1

𝑢𝑖(𝑥)𝑦𝑖(𝑥).

Proof. This follows from the work we showed in the proof of theorem 4.6 part 2. and Cramer’s Rule. ■

⊛ Example 4.2

Find the general solution of 𝑦′′′ + 𝑦′ = tan 𝑥. We first find a fundamental set of solutions to

𝑦′′′ + 𝑦′ = 0.

Suppose 𝑦 = 𝑒𝑟𝑥 , giving

0 = 𝑟3 + 𝑟 = 𝑟(𝑟2 + 1) =⇒ 𝑟 = 0,±𝑖 ,

giving us solutions
𝑦1(𝑥) = 1, 𝑦2(𝑥) = cos 𝑥, 𝑦3(𝑥) = sin 𝑥.

To verify linear independence:

𝑊(𝑥) =

������
1 cos 𝑥 sin 𝑥
0 − sin 𝑥 cos 𝑥
0 − cos 𝑥 − sin 𝑥

������ = sin2(𝑥) + cos2(𝑥) = 1.
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To solve 𝐿[𝑦] = tan 𝑥, we have

𝑊1(𝑥) =

������
0 cos 𝑥 sin 𝑥
0 − sin 𝑥 cos 𝑥

tan 𝑥 − cos 𝑥 − sin 𝑥

������ = cos2 𝑥 tan 𝑥 + sin2 𝑥 tan 𝑥 = tan 𝑥

𝑊2(𝑥) =

������
1 0 sin 𝑥
0 0 cos 𝑥
0 tan 𝑥 − sin 𝑥

������ = − cos 𝑥 tan 𝑥 = − sin 𝑥

𝑊3(𝑥) =

������
1 cos 𝑥 0
0 − sin 𝑥 0
0 − cos 𝑥 tan 𝑥

������ = − sin 𝑥 tan 𝑥 =
− sin2 𝑥

cos 𝑥

Then, this gives

𝑢1 =

∫
𝑊1
𝑊

d𝑥 =

∫
tan 𝑥 d𝑥 = − ln |cos 𝑥 |

𝑢2 =

∫
𝑊2
𝑊

d𝑥 =

∫
− sin 𝑥 d𝑥 = cos 𝑥

𝑢3 =

∫
𝑊3
𝑊

d𝑥 =

∫ − sin2 𝑥
cos 𝑥 d𝑥 =

∫
cos2 𝑥 − 1

cos 𝑥 = sin 𝑥 − ln |tan 𝑥 + sec 𝑥 |

and so

𝑦𝑝 =

3∑
𝑗=1

𝑢𝑗 𝑦𝑗 = − ln |cos 𝑥 | + cos 𝑥 · cos 𝑥 + (sin 𝑥 − ln |tan 𝑥 + sec 𝑥 |) · sin 𝑥

= 1 − ln |cos 𝑥 | − (ln |tan 𝑥 + sec 𝑥 |) sin 𝑥,

giving us a general solution
𝑦 = 𝑦𝑐 + 𝑦𝑝 = 𝑐1 + 𝑐2 cos 𝑥 + 𝑐3 sin 𝑥 + 1 − ln |cos 𝑥 | − sin 𝑥 ln |tan 𝑥 + sec 𝑥 | ,

which can be simplified by absorbing the 1 into the constant 𝑐1 , and simplifying appropriately:

𝑦 = 𝑐1 + 𝑐2 cos 𝑥 + sin 𝑥(𝑐3 − ln |tan 𝑥 + sec 𝑥 |) − ln |cos 𝑥 |

4.5 Fundamental Set of Solutions

↩→ Lecture 14; Last Updated: Mon Mar 11 15:30:06 EDT 2024

↩→ Theorem 4.9

Let 𝐿[𝑦] :=
∑𝑛
𝑗=0 𝑎 𝑗𝑦

(𝑗) where 𝑎 𝑗 are real constants with 𝑎𝑛 ≠ 0. Let

𝑛∑
𝑗=0

𝑎 𝑗𝑟
𝑗 = 0 (A)

be the corresponding auxiliary equation, supposing it has roots 𝑟 𝑗 of multiplicity 𝑠 𝑗 . Then, the linear
homogeneous 𝐿[𝑦] = 0 has a fundamental set of solutions defined on R composed of

𝑥𝑘𝑒𝑟𝑗𝑥 , 𝑘 = 0, . . . , 𝑠 𝑗 − 1, 𝑟𝑗 ∈ R of mult. 𝑠 𝑗

and

𝑥𝑘𝑒𝛼 𝑗𝑥 cos
(
𝛽 𝑗𝑥

)
, 𝑥𝑘𝑒𝛼 𝑗𝑥 sin

(
𝛽 𝑗𝑥

)
, 𝑘 = 0, 1, . . . , 𝑠 𝑗 − 1, where 𝑟 𝑗 = 𝛼 𝑗 ± 𝛽 𝑗 of mult. 𝑠 𝑗 .
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Proof. We won’t prove this, but is just a generalization of the same idea for second-order equations. Difficulties
in the proof arise when proving linear independence. ■

Remark 4.4. Combined with the previous theorem, we thus have that all solutions of 𝐿[𝑦] = 0 can be written in the
form 𝑦 =

∑𝑛
𝑗=1 𝑐 𝑗𝑦 𝑗(𝑥).

4.6 Non-Constant Coefficient Linear ODEs

↩→ Theorem 4.10

Let 𝐿[𝑦] = 𝑦(𝑛) + ∑𝑛
𝑗=1 𝑝 𝑗(𝑥)𝑦(𝑛−𝑗)(𝑥), where each 𝑝 𝑗(𝑥) continuous on some 𝐼 ⊆ R, and let 𝑥0 ∈ 𝐼. Let

𝑦𝑖(𝑥) solve the IVP

𝐿[𝑦𝑖](𝑥) = 0 𝑦
(𝑖−1)
𝑖

(𝑥0) = 1, 𝑦(𝑗)
𝑖
(𝑥0), 𝑗 = 0, . . . , 𝑛 − 1, 𝑗 ≠ 𝑖 − 1.

Then, {𝑦𝑖 : 𝑖 = 1, . . . , 𝑛} form a fundamental set of solutions for 𝐿[𝑦] = 0 on 𝐼.

Proof. Each of these IVPs has a unique solution 𝑦𝑖(𝑥) on 𝐼 by Picard’s Theorem. Now,

𝑊(𝑦1, . . . , 𝑦𝑛)(𝑥0) =

����������
1 0 . . . 0

0 1 . . .
...

...
...
. . .

...

0 0 0 1

���������� = 1

so 𝑦𝑖 are indeed linearly independent, by Abel’s Theorem, on 𝐼. ■

⊛ Example 4.3

Consider the IVP

𝐿[𝑦] := 𝑦(4) + 𝑦′′ − 2𝑦 = cos 𝑥, 𝑦(0) = 1, 𝑦(𝑖)(0) = 0, 𝑖 = 1, 2, 3.

We first find 𝐿[𝑦𝑐] = 0. We have auxiliary

𝑟4 + 𝑟2 − 2 = 0 =⇒ (𝑟2 − 1)(𝑟2 + 2) = 0 =⇒ 𝑟 = ±1,±𝑖
√

2

and thus

𝑦1 = 𝑒𝑥 , 𝑦2 = 𝑒−𝑥 , 𝑦3 = cos
√

2𝑥, 𝑦4 = sin
√

2𝑥.

4.6 𝑁th Order ODEs: Non-Constant Coefficient Linear ODEs 45



We seek now a particular solution, guessing

𝑦𝑝 = 𝐴 cos 𝑥 =⇒ 𝐿[𝑦𝑝] = 𝐴 cos 𝑥 − 𝐴 cos 𝑥 − 2𝐴 cos 𝑥 = cos 𝑥 =⇒ 𝐴 = −1
2

and thus 𝑦𝑝 = −1
2 cos 𝑥, giving general solution

𝑦(𝑥) = 𝑘1𝑒
𝑥 + 𝑘2𝑒

−𝑥 + 𝑘3 cos
(√

2𝑥
)
+ 𝑘4 sin

(√
2𝑥

)
− 1

2 cos(𝑥).

Solving the IVP, we find

1 = 𝑦(0) = 𝑘1 + 𝑘2 + 𝑘3 −
1
2 (i)

𝑦′(𝑥) = 𝑘1𝑒
𝑥 − 𝑘2𝑒

−𝑥 −
√

2𝑘3 sin
(√

2𝑥
)
+
√

2𝑘4 cos
(√

2𝑥
)
+ 1

2 sin(𝑥)

=⇒ 𝑦′(0) = 0 = 𝑘1 − 𝑘2 +
√

2𝑘4 (ii)

𝑦′′(𝑥) = 𝑘1𝑒
𝑥 + 𝑘2𝑒

−𝑥 − 2𝑘3 cos
(√

2𝑥
)
− 2𝑘4 sin

(√
2𝑥

)
+ 1

2 cos(𝑥)

=⇒ 𝑦′′(0) = 0 = 𝑘1 + 𝑘2 − 2𝑘3 +
1
2 (iii)

𝑦′′′(𝑥) = 𝑘1𝑒
𝑥 − 𝑘2𝑒

−𝑥 + 2
√

2𝑘3 sin
(√

2𝑥
)
− 2

√
2𝑘4 cos

(√
2𝑥

)
− 1

2 sin(𝑥)

=⇒ 𝑦′′′(0) = 0 = 𝑘1 − 𝑘2 − 2
√

2𝑘4 (iv)

(i) − (iii) =⇒ 1 = 3𝑘3 − 1 =⇒ 𝑘3 =
2
3

(ii) − (iv) =⇒ 0 = (
√

2 + 2
√

2)𝑘4 =⇒ 𝑘4 = 0

(iii) + (iv) =⇒ 0 = 2𝑘1 − 2𝑘3 +
1
2 − 2

√
2𝑘4 =⇒ 𝑘1 =

5
12

(i) =⇒ 1 =
5
12 + 𝑘2 +

2
3 − 1

2 =⇒ 𝑘2 =
5
12

So our IVP solution is
𝑦(𝑥) = 5

12(𝑒
𝑥 + 𝑒−𝑥) + 2

3 cos
(√

2𝑥
)
− 1

2 cos(𝑥).

5 Series Solutions

5.1 Review of Power Series
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↩→ Definition 5.1: Convergence

A power series
∑∞
𝑛=0 𝑎𝑛(𝑥 − 𝑥0)𝑛 converges at a point 𝑥0 if lim𝑚→∞

∑𝑚
𝑛=0 𝑎𝑛(𝑥 − 𝑥0)𝑛 exists for that 𝑥. The

series is absolutely convergent at 𝑥0 if
∑𝑚
𝑛=0 |𝑎𝑛 | |𝑥 − 𝑥0 |𝑛 exists as 𝑚 → ∞.

The radius of convergence of a series is the minimal 𝜌 ⩾ 0 such that the series is absolutely convergent
for 𝑥 such that |𝑥 − 𝑥0 | < 𝜌 and divergent for |𝑥 − 𝑥0 | > 𝜌.

Remark 5.1. Absolutely convergent =⇒ convergent.

↩→ Definition 5.2: Real Analytic

A function 𝑓 : 𝐼 → R is (real) analytic at 𝑥0 ∈ 𝐼 if ∃𝜌 > 0 s.t. ∀ 𝑥 ∈ 𝐼 : |𝑥 − 𝑥0 | < 𝜌 we have

𝑓 (𝑥) =
∞∑
𝑛=0

𝑎𝑛(𝑥 − 𝑥0)𝑛

with power series having radius of convergence (at least) 𝜌.

Remark 5.2. When 𝑓 real analytic, it is continuous and has derivatives of all orders for |𝑥 − 𝑥0 | < 𝜌, and these
derivatives can be found by differentiating the power series. Indeed, we have

𝑓 (𝑚)(𝑥) =
∞∑
𝑛=0

𝑛(𝑛 − 1) · · · (𝑛 − 𝑚 + 1)𝑎𝑛(𝑥 − 𝑥0)𝑛−𝑚 =

∞∑
𝑛=𝑚

𝑛(𝑛 − 1) · · · (𝑛 − 𝑚 + 1)𝑎𝑛(𝑥 − 𝑥0)𝑛−𝑚 .

↩→ Lecture 15; Last Updated: Tue Feb 27 10:08:23 EST 2024

↩→ Proposition 5.1

Let 𝑓 (𝑥) = ∑∞
𝑛=0 𝑎𝑛(𝑥 − 𝑥0)𝑛 and 𝑔(𝑥) = ∑∞

𝑛=0 𝑏𝑛(𝑥 − 𝑥0)𝑛 .

1. 𝑓 (𝑥) = 𝑔(𝑥) ∀ 𝑥 s.t. |𝑥 − 𝑥0 | < 𝜌 iff 𝑎𝑛 = 𝑏𝑛 ∀𝑛.

2. 𝑓 (𝑥) ± 𝑔(𝑥) = ∑∞
𝑛=0(𝑎𝑛 ± 𝑏𝑛)(𝑥 − 𝑥0)𝑛 . The resulting power series has radius of convergence at least

as large as the minimum of the radii of convergence of 𝑓 , 𝑔.

3. 𝑓 (𝑥)𝑔(𝑥) = [∑∞
𝑖=0 𝑎𝑖(𝑥 − 𝑥0)𝑖][

∑∞
𝑗=0 𝑏 𝑗(𝑥 − 𝑥0)𝑗] =

∑
𝑛=0 𝑐𝑛(𝑥 − 𝑥0)𝑛 where 𝑐𝑛 =

∑𝑛
𝑗=0 𝑎 𝑗𝑏𝑛−𝑗 . This

power series also has radius of convergence as least as large of the minimum of 𝑓 , 𝑔.

4. We can divide power series (essentially long division of polynomials, but with infinite degrees)
and can result in smaller radius of convergence, but won’t.

↩→ Proposition 5.2

If lim𝑛→∞
��� 𝑎𝑛𝑎𝑛+1

��� exists then 𝜌 = lim𝑛→∞
��� 𝑎𝑛𝑎𝑛+1

���.
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Proof. We have by the ratio test that
∑∞
𝑛=0 𝑎𝑛(𝑥 − 𝑥0)𝑛 converges if

lim
𝑛→∞

���� 𝑎𝑛+1(𝑥 − 𝑥0)𝑛+1

𝑎𝑛(𝑥 − 𝑥0)𝑛

���� < 1 ⇐⇒ lim
𝑛→∞

���� 𝑎𝑛+1(𝑥 − 𝑥0)
𝑎𝑛

����
⇐⇒ |𝑥 − 𝑥0 | lim

𝑛→∞

���� 𝑎𝑛+1
𝑎𝑛

���� < 1

⇐⇒ |𝑥 − 𝑥0 | <
1

lim𝑛→∞
��� 𝑎𝑛+1
𝑎𝑛

��� = lim
𝑛→∞

���� 𝑎𝑛𝑎𝑛+1

����
■

⊛ Example 5.1

𝑒𝑥 =

∞∑
𝑛=0

𝑥𝑛

𝑛! =⇒ 𝑒𝑥−𝑥0 =

∞∑
𝑛=0

(𝑥 − 𝑥0)𝑛
𝑛!

cos(𝑥) =
∞∑
𝑛=0

(−1)𝑛𝑥2𝑛

(2𝑛)!

sin(𝑥) =
∞∑
𝑛=0

(−1)𝑛𝑥2𝑛+1

(2𝑛 + 1)!

These all have 𝜌 = +∞.

1
1 − 𝑥 =

∞∑
𝑛=0

𝑥𝑛

This series converges for 𝜌 < 1 since

lim
𝑛→∞

���� 𝑎𝑛𝑎𝑛+1

���� = 1.

Remark 5.3. In the case that lim𝑛→∞
��� 𝑎𝑛𝑎𝑛+1

��� does not exist, then the root test gives that

𝜌 =
1

lim sup𝑛→∞ |𝑎𝑛 |1/𝑛
.

↩→ Proposition 5.3

If 𝑃(𝑥), 𝑄(𝑥) are polynomials, then 𝑄(𝑥)
𝑃(𝑥) is analytic at 𝑥0 if 𝑃(𝑥0) ≠ 0. When analytic, the radius of

convergence from 𝑥0 is the distance from 𝑥0 to the nearest zero of 𝑃(𝑥) in the complex plane.
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⊛ Example 5.2

𝑄(𝑥)
𝑃(𝑥) =

1
1+𝑥2 . In the complex plane, 𝑃(𝑥) has roots at 𝑥 = ±𝑖, and so 𝜌 =

√
1 + 𝑥2

0.

5.2 Series Solutions near Ordinary Points

↩→ Definition 5.3: Ordinary Point

Let 𝐿[𝑦] = 𝑃(𝑥)𝑦′′ +𝑄(𝑥)𝑦′ + 𝑅(𝑥)𝑦 and 𝑝(𝑥) = 𝑄(𝑥)
𝑃(𝑥) , 𝑞(𝑥) =

𝑅(𝑥)
𝑃(𝑥) . 𝑥0 is an ordinary point of 𝐿[𝑦] = 0 if 𝑝, 𝑞

are both analytic at 𝑥0; otherwise, 𝑥0 is a singular point.

↩→ Theorem 5.1

If 𝑥0 an ordinary point for 𝐿[𝑦] = 0 then the general solution can be written as

𝑦(𝑥) =
∞∑
𝑛=0

𝑎𝑛(𝑥 − 𝑥0)𝑛 = 𝑎0𝑦1(𝑥) + 𝑎1𝑦2(𝑥),

where 𝑎0, 𝑎1 arbitrary and the other 𝑎𝑖’s are uniquely determined by choice of 𝑎0, 𝑎1. The functions 𝑦1, 𝑦2

will be two power series, analytic at 𝑥0, and form a fundamental set of solutions with𝑊(𝑦1, 𝑦2)(𝑥0) = 1.
The radius of convergence of 𝑦1, 𝑦2 and 𝑦 is at least as large as the smaller of the radii of 𝑝, 𝑞.

⊛ Example 5.3

Consider (1 + 𝑥2)𝑦′′ − 4𝑥𝑦′ + 6𝑦 = 0, with 𝑝(𝑥) = −4𝑥
1+𝑥2 , 𝑞(𝑥) = 6

1+𝑥2 ; these are analytic ∀ 𝑥 ∈ R, so
we can expand about any 𝑥0 ∈ R. For convenience, take 𝑥0 = 0. The radius of convergence of
𝑦(𝑥) = ∑∞

𝑛=0 𝑎𝑛(𝑥 − 𝑥0)𝑛 will then be 𝜌 = 1. Then:

𝑦(𝑥) =
∞∑
𝑛=0

𝑎𝑛𝑥
𝑛

𝑦′(𝑥) =
∞∑
𝑛=0

(𝑛 + 1)𝑎𝑛+1𝑥
𝑛 =

∞∑
𝑛=0

𝑛𝑎𝑛𝑥
𝑛−1

𝑦′′(𝑥) =
∞∑
𝑛=0

(𝑛 + 2)(𝑛 + 1)𝑎𝑛+2𝑥
𝑛 =

∞∑
𝑛=0

𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛−2
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So

0 = (1 + 𝑥2)𝑦′′ − 4𝑥𝑦′ + 6𝑦 = 𝑦′′ + 𝑥2𝑦′′ − 4𝑥𝑦′ + 6𝑦

=

∞∑
𝑛=0

(𝑛 + 2)(𝑛 + 1)𝑎𝑛+2𝑥
𝑛 + 𝑥2

∞∑
𝑛=0

𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛−2 − 4𝑥
∞∑
𝑛=0

𝑛𝑎𝑛𝑥
𝑛−1 + 6

∞∑
𝑛=0

𝑎𝑛𝑥
𝑛

=

∞∑
𝑛=0

[(𝑛 + 2)(𝑛 + 1)𝑎𝑛+2 + 𝑛(𝑛 − 1)𝑎𝑛 − 4𝑛𝑎𝑛 + 6𝑎𝑛] 𝑥𝑛 ,

so, ∀𝑛 ⩾ 0, we need

(𝑛 + 2)(𝑛 + 1)𝑎𝑛+2 + 𝑛(𝑛 − 1)𝑎𝑛 − 4𝑛𝑎𝑛 + 6𝑎𝑛 = 0

(𝑛 + 2)(𝑛 + 1)𝑎𝑛+2 + (𝑛 − 2)(𝑛 − 3)𝑎𝑛 = 0

=⇒ 𝑎𝑛+2 =
−(𝑛 − 2)(𝑛 − 3)
(𝑛 + 2)(𝑛 + 1) 𝑎𝑛

𝑛 = 0 =⇒ 𝑎2 = 𝑎2 = −3𝑎0

𝑛 = 1 =⇒ 𝑎3 = − 𝑎1
3

𝑛 = 2 =⇒ 𝑎4 = 0

𝑛 = 3 =⇒ 𝑎5 = 0

=⇒ 𝑎𝑛 = 0∀𝑛 ⩾ 4,

so

𝑦(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + 𝑎3𝑥

3 = 𝑎0 + 𝑎1𝑥 − 3𝑎0𝑥
2 − 𝑎1

3 𝑥
3 = 𝑎0(1 − 3𝑥2) + 𝑎1(𝑥 −

𝑥3

3 ) =: 𝑎0𝑦1 + 𝑎1𝑦2.

Remark that

𝑊(𝑦1, 𝑦2)(0) =
�����1 0
0 1

����� = 1.

⊛ Example 5.4
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Consider 𝑦′′ − 𝑥𝑦′ − 𝑥2𝑦 = 0, 𝑝(𝑥) = −𝑥, 𝑞(𝑥) = −𝑥2 which are both analytic on all R. Let 𝑥0 = 0, so

𝑦 =

∞∑
𝑛=0

𝑎𝑛𝑥
𝑛 =⇒ 𝑥2𝑦 =

∞∑
𝑛=0

𝑎𝑛𝑥
𝑛+2 =

∞∑
𝑛=2

𝑎𝑛−2𝑥
𝑛

𝑦′ =
∞∑
𝑛=0

𝑛𝑎𝑛𝑥
𝑛−1 =⇒ 𝑥𝑦′ =

∞∑
𝑛=0

𝑛𝑎𝑛𝑥
𝑛

𝑦′′ =
∞∑
𝑛=0

𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛−2 =

∞∑
𝑛=0

(𝑛 + 2)(𝑛 + 1)𝑎𝑛+2𝑥
𝑛

0 = 𝑦′′ − 𝑥𝑦′ − 𝑥2𝑦 =

∞∑
𝑛=0

(𝑛 + 2)(𝑛 + 1)𝑎𝑛+2𝑥
𝑛 −

∞∑
𝑛=0

𝑛𝑎𝑛𝑥
𝑛 −

∞∑
𝑛=2

𝑎𝑛+2𝑥
𝑛

0 = 2𝑎2 + 3 · 2 · 𝑎3 · 𝑥 − 𝑎1𝑥 +
∞∑
𝑛=2

[(𝑛 + 2)(𝑛 + 1)𝑎𝑛+2 − 𝑛𝑎𝑛 − 𝑎𝑛−2]𝑥𝑛

Matching powers of 𝑥𝑛 yields

𝑛 = 0] 𝑎2 = 0

𝑛 = 1] 𝑎3 =
𝑎1
6

𝑛 ⩾ 2] (𝑛 + 2)(𝑛 + 1)𝑎𝑛+2𝑛𝑎𝑛 − 𝑎𝑛−2 = 0 =⇒ 𝑎𝑛+2 =
𝑛𝑎𝑛 + 𝑎𝑛−2

(𝑛 + 2)(𝑛 + 1)

From here, you can find as many terms of 𝑎𝑛 as you really want. The important thing to notice is
that if 𝑛 odd, 𝑎𝑛 will only depend on 𝑎1, and if 𝑛 even, 𝑎𝑛 will only depend on 𝑎0. This gives a final
form

𝑦(𝑥) = 𝑎0𝑦1(𝑥) + 𝑎1𝑦2(𝑥),

where 𝑦1, 𝑦2 power series involving only event, odd terms resp. Remark too that 𝑊(𝑦1, 𝑦2)(0) = 1
(why?).

↩→ Lecture 16; Last Updated: Tue Apr 9 13:26:39 EDT 2024

Remark 5.4. No lecture, in-class midterm.

↩→ Lecture 17; Last Updated: Tue Apr 9 13:52:49 EDT 2024

5.3 Analytic Coefficients

We consider now series solutions to

𝐿[𝑦] = 𝑃(𝑥)𝑦′′ +𝑄(𝑥)𝑦′ + 𝑅(𝑥)𝑦 = 𝑦′′ + 𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 = 0
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where 𝑃, 𝑄, 𝑅 analytic but not necessarily polynomials. Similar theory holds; a power series solution 𝑦(𝑥)
will have radius of convergence at least as large as that of 𝑝 and 𝑞. We proceed by instructive example.

⊛ Example 5.5

𝑥0 = 0, 𝐿[𝑦] = 𝑦′′ − 𝑒𝑥𝑦. Here, 𝑞(𝑥) = −𝑒𝑥 =
∑∞
𝑛=0

𝑥𝑛

𝑛! with infinite radius of convergence. 𝑝(𝑥) = 0
also has infinite radius of convergence, hence we should find that our solution will as well. Letting
𝑦(𝑥) = ∑∞

𝑛=0 𝑎𝑛𝑥
𝑛 , we compute as before.

𝐿[𝑦] =
∞∑
𝑛=0

(𝑛 + 2)(𝑛 + 1)𝑎𝑛+2𝑥
𝑛 −

∞∑
𝑛=0


∞∑
𝑗=0

[
𝑎𝑛−𝑗
𝑗! ]𝑥𝑛


Computation of the corresponding 𝑎𝑛 follows very similarly to previous examples; the only difficulty
is the fact that now 𝑎𝑛 will rely on all 𝑎𝑛’s less than it. Namely, one should find

𝑎𝑛+2 =
1

(𝑛 + 2)(𝑛 + 1)

𝑛∑
𝑗=0

𝑎𝑛−𝑗
𝑗!

5.4 Nonhomogeneous Series Solutions

We consider the case

𝐿[𝑦] ..= 𝑦′′ + 𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 = 𝑔(𝑥).

Writing 𝐿[𝑦] = ∑∞
𝑛=0 𝑐𝑛(𝑥 − 𝑥0)𝑛 where 𝑐𝑛 dependent on 𝑎𝑚 for 𝑚 ⩽ 𝑛 and 𝑔(𝑥) = ∑∞

𝑛=0 𝑔𝑛(𝑥 − 𝑥0)𝑛 , we have
that

𝐿[𝑦] = 𝑔(𝑥) ⇐⇒ 𝑐𝑛 = 𝑔𝑛 ∀𝑛 ⩾ 0.

So, we generally have a very similar method, only now we have to deal with a non-zero equivalence on the
RHS.

⊛ Example 5.6

𝑦′′− 𝑥𝑦 = 1
6𝑥

3; remark that any series solution will have infinite radius of convergence about 𝑥0 = 0.
We have

∞∑
𝑛=0

(𝑛 + 2)(𝑛 + 1)𝑎𝑛+2𝑥
𝑛 −

∞∑
𝑛=1

𝑎𝑛−1𝑥
𝑛 =

1
6𝑥

3

=⇒ 2𝑎2 +
∞∑
𝑛=1

[(𝑛 + 2)(𝑛 + 1)𝑎𝑛+2 − 𝑎𝑛−1]𝑥𝑛 =
1
6𝑥

3.
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We proceed by matching powers of 𝑥 on the left, right hand sides.

𝑥0] 2𝑎2 = 0 =⇒ 𝑎2 = 0

𝑥1] 3 · 2 · 𝑎3 − 𝑎0 = 0 =⇒ 𝑎3 =
𝑎0

3 · 2
𝑥2] 4 · 3 · 𝑎4 − 𝑎1 = 0 =⇒ 𝑎4 =

𝑎1
4 · 3

𝑥3] 5 · 4 · 𝑎5 − 𝑎2 =
1
6 =⇒ 𝑎5 =

1
5!

𝑛 ⩾ 4] 𝑎𝑛+2(𝑛 + 2)(𝑛 + 1) − 𝑎𝑛−1 = 0 =⇒ 𝑎𝑛+2 =
𝑎𝑛−1

(𝑛 + 1)(𝑛 + 1)

One can show that for 𝑛 ⩾ 0,

𝑎3𝑛 =
(3𝑛 − 1)(3𝑛 − 4)(· · · )(7)(4)𝑎0

(3𝑛)!

𝑎3𝑛+1 =
(3𝑛 − 1)(3𝑛 − 4)(· · · )(8)(5)(2)𝑎1

(3𝑛 + 1)!

𝑎3𝑛+2 =
3𝑛−1𝑛!
(3𝑛 + 2)! ,

remarking in particular that 𝑎3𝑛+2 has no reliance on 𝑎0 or 𝑎1, and indeed serve as the coefficients of
our particular solution. We find

𝑦(𝑥) =
∞∑
𝑛=0

𝑎3𝑛𝑥
3𝑛 +

∞∑
𝑛=0

𝑎3𝑛+1𝑥
3𝑛+1 +

∞∑
𝑛=0

𝑎3𝑛+2𝑥
3𝑛+2

= 𝑎0𝑦1(𝑥) + 𝑎1𝑦2(𝑥) + 𝑦𝑝(𝑥).

5.5 Singular Points

What about finding solutions about non-ordinary points? We now need to be more careful.

↩→ Definition 5.4: Regular Singular Point

A “not too singular point”. If 𝐿[𝑦] = 𝑃(𝑥)𝑦′′ + 𝑄(𝑥)𝑦′ + 𝑅(𝑥)𝑦, then 𝑥0 a regular singular point if it is a
singular point of 𝐿[𝑦] = 0, and also

(𝑥 − 𝑥0)
𝑄(𝑥)
𝑃(𝑥) (𝑥 − 𝑥0)2

𝑅(𝑥)
𝑃(𝑥)

are both analytic at 𝑥0. In particular, if 𝑃, 𝑄, 𝑅 polynomials, 𝑥0 a singular point iff 𝑃(𝑥0) = 0, and regular
iff lim𝑥→𝑥0(𝑥 − 𝑥0)𝑄(𝑥)

𝑃(𝑥) , lim𝑥→𝑥0(𝑥 − 𝑥0)2 𝑅(𝑥)𝑃(𝑥) are both finite.

↩→ Lecture 18; Last Updated: Thu Mar 28 14:17:59 EDT 2024
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5.6 Frobenius’s Method

We consider 𝐿[𝑦] = 𝑃(𝑥)𝑦′′ +𝑄(𝑥)𝑦′ + 𝑅(𝑥)𝑦 = 0. Let 𝑥0 be a regular singular point, and multiply both sides
by (𝑥−𝑥0)2

𝑃(𝑥) :

(𝑥 − 𝑥0)2𝑦′′ + (𝑥 − 𝑥0)
[
(𝑥 − 𝑥0)

𝑄(𝑥)
𝑃(𝑥)

]
︸             ︷︷             ︸

..=𝑝(𝑥)

𝑦 +
[
(𝑥 − 𝑥0)2

]︸       ︷︷       ︸
..=𝑞(𝑥)

𝑦 = 0

Recall that, by definition of a regular singular point, we have that 𝑝, 𝑞 analytic at 𝑥0 and so can be
represented as a local power series. We will seek a solution of the form

𝑦(𝑥) = |𝑥 − 𝑥0 |𝑟
∞∑
𝑛=0

𝑎𝑛(𝑥 − 𝑥0)𝑛 ,

for some 𝑟 ∈ 𝑅 with 𝑎0 ≠ 0. For convenience, and wlog (by linearity, scaling appropriately) we take 𝑎0 = 1
by convention. Also for simplicity, we often assume that 𝑥 > 0 so we do not have to work with the absolute
value.

After tedious computation, one can find that an appropriate such 𝑟 must satisfy the indicial equation

𝐹(𝑟) = 𝑟(𝑟 − 1) + 𝑟𝑝0 + 𝑞0 = 0

where 𝑝0, 𝑞0 the 𝑥0 coefficients of 𝑝(𝑥), 𝑞(𝑥) resp.

From here, we can either 1) solve to find 𝑟 (for which we need to do no more work than stare at 𝑝, 𝑞), plug
in 𝑦(𝑥) = ∑∞

𝑛=0 𝑎𝑛(𝑥 − 𝑥0)𝑛+𝑟 with appropriate 𝑟 into our ODE and solve for 𝑎𝑛 , or 2) derive a general formula.

We find the general formula to be

𝑎𝑛 =
−1

𝐹(𝑛 + 𝑟) ·
𝑛−1∑
𝑘=0

𝑎𝑘 [(𝑘 + 𝑟)𝑝𝑛−𝑘 + 𝑞𝑛−𝑘] , ∀𝑛 ⩾ 1.

Remark 5.5. This is a “worst case” general form, where 𝑎𝑛 depends on 𝑎𝑛−1, . . . , 𝑎1; we will generally find in examples
that much simplification occurs.

Remark 5.6. Remark that if 𝐹(𝑟) = 0 has 2 real roots 𝑟1 < 𝑟2, we’ll be dividing by 𝐹(𝑛 + 𝑟2), 𝑛 = 1, 2, . . . ; but
𝐹(𝑟2) = 0 =⇒ 𝐹(𝑛 + 𝑟2) ≠ 0∀𝑛 ⩾ 1, so there is no division by zero problem. But this does give that if
𝑟2 − 𝑟1 = 𝑁 ∈ N, then the formula will break (division by zero) at 𝑎𝑁 . Similarly, if 𝐹(𝑟) = 0 has repeated roots, 𝑟1 = 𝑟2,
we can only derive one formula this way.
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⊛ Example 5.7

0 = 𝐿[𝑦] = 4𝑥𝑦′′ + 2𝑦′ + 2𝑦.

↩→ Theorem 5.2: Frobenius

Let 𝐿[𝑦] = (𝑥 − 𝑥0)2𝑦′′ + (𝑥 − 𝑥0)𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 = 0 where 𝑥0 a regular singular point, 𝑝, 𝑞 both analytic
at 𝑥0, with 𝑝(𝑥) = ∑∞

𝑛=0 𝑝𝑛(𝑥 − 𝑥0)𝑛 , 𝑞(𝑥) =
∑∞
𝑛=0 𝑞𝑛(𝑥 − 𝑥0)𝑛 , with 𝜌 ..= min of the radii of convergence of

𝑝, 𝑞. Let 𝑟1, 𝑟2 be the roots of
0 = 𝐹(𝑟) = 𝑟(𝑟 − 1) + 𝑝0𝑟 + 𝑞0,

where 𝑟1 ⩾ 𝑟2 if both real. Then, there exists a solution of the form

𝑦1(𝑥) = |𝑥 − 𝑥0 |𝑟1
[
1 +

∞∑
𝑛=1

𝑎𝑛(𝑟1)(𝑥 − 𝑥0)𝑛
]
,

with 𝑎𝑛(𝑟1) s.t. 𝑎0 = 1, 𝑎𝑛 = − 1
𝐹(𝑛+𝑟)

∑𝑛−1
𝑘=0 𝑎𝑘(𝑟) [(𝑘 + 𝑟)𝑝𝑛−𝑘 + 𝑞𝑛−𝑘], 𝑛 ⩾ 1, with 𝑟 = 𝑟1. We define a

second solution as follows:

(i) (𝑟1 − 𝑟2 ≠ 0 and 𝑟1 − 𝑟2 ∉ Z)

𝑦2(𝑥) = |𝑥 − 𝑥0 |𝑟2
[
1 +

∞∑
𝑛=1

𝑎𝑛(𝑟2)(𝑥 − 𝑥0)𝑛
]

(ii) (𝑟1 = 𝑟2)

𝑦2(𝑥) = 𝑦1(𝑥) · ln |𝑥 − 𝑥0 | + |𝑥 − 𝑥0 |𝑟1 ·
∞∑
𝑛=1

𝑏𝑛(𝑥 − 𝑥0)𝑛 ,

where 𝑏𝑛 ..= 𝑎′𝑛(𝑟1), 𝑛 ⩾ 1.

(iii) (𝑟1 − 𝑟2 =: 𝑁 ∈ N)

𝑦2(𝑥) = 𝑎𝑦1(𝑥) ln |𝑥 − 𝑥0 | + |𝑥 − 𝑥0 |𝑟2 ·
[
1 +

∞∑
𝑛=1

𝑐𝑛(𝑥 − 𝑥0)𝑛
]
,

where 𝑎 ..= lim𝑟→𝑟2(𝑟 − 𝑟2)𝑎𝑁 (𝑟) (possible zero) and

𝑐𝑛
..=

d
d𝑟 [(𝑟 − 𝑟2)𝑎𝑛(𝑟)]|𝑟=𝑟2 =


𝑎𝑛(𝑟2) 𝑎𝑛 well-defined

something else otherwise
.

In each case, each series converges absolutely for |𝑥 − 𝑥0 | < 𝜌, and 𝑦1, 𝑦2 define a fundamental set of
solutions for 𝑥 ∈ (𝑥0 − 𝜌, 𝑥) and 𝑥 ∈ (𝑥0, 𝑥0 + 𝜌).
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Remark 5.7. In practice, for cases (ii), (iii), it may be easier to manually find 𝑏𝑛 , 𝑐𝑛 rather than that the derivative of a
recursive sequence.

↩→ Lecture 19; Last Updated: Thu Mar 28 14:50:27 EDT 2024

Remark 5.8. Lecture cancelled this day because of a power outage or something.

↩→ Lecture 20; Last Updated: Thu Mar 28 14:31:57 EDT 2024

↩→ Lecture 21; Last Updated: Thu Mar 28 14:39:31 EDT 2024

6 Laplace Transforms

6.1 Definitions

↩→ Definition 6.1: Laplace Transform

Let 𝑓 : [0,∞) → R. The Laplace transform of 𝑓 , denote 𝐹(𝑠) or ℒ{ 𝑓 (𝑡)}, is defined by

ℒ{ 𝑓 (𝑡)} ..=

∫ ∞

0
𝑒−𝑠𝑡 𝑓 (𝑡)d𝑡 .

↩→ Definition 6.2: Piecewise Continuous

A function 𝑓 is piecewise continuous (pw cont) for 𝑡 ∈ [𝛼, 𝛽] if [𝛼, 𝛽] can be partitioned by a finite number
of points

𝛼 =: 𝑡0 < 𝑡1 < · · · < 𝑡𝑛
..= 𝛽

such that

(i) 𝑓 continuous on each (𝑡 𝑗 , 𝑡 𝑗+1),

(ii) for 𝑡 ∈ (𝑡 𝑗 , 𝑡 𝑗+1), lim𝑡→𝑡 𝑗 𝑓 (𝑡) and lim𝑡→𝑡 𝑗+1 𝑓 (𝑡) both exist, are finite.

In particular, lim𝑡→𝑡+
𝑗
𝑓 (𝑡) does not necessarily have to equal lim𝑡→𝑡−

𝑗
𝑓 (𝑡).

We say 𝑓 pw cont on [𝛼,∞) if pw cont on [𝛼, 𝛽], ∀ 𝛽 ∈ (𝛼,∞).

↩→ Definition 6.3: Exponential Order

We say a function 𝑓 (𝑡) of exponential order 𝑎 (only specifying 𝑎 if relevant) if ∃ constants 𝑎, 𝐾, 𝑇 such that

| 𝑓 (𝑡)| ⩽ 𝐾𝑒 𝑎𝑡 , ∀ 𝑡 ⩾ 𝑇.
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↩→ Theorem 6.1

Suppose 𝑓 (𝑡) pw cont on [0,∞) and 𝑓 has exponential order 𝑎. Then, ℒ{ 𝑓 (𝑡)} exists for 𝑠 > 𝑎.

Proof. Remark that to show that lim𝛽→∞
∫ 𝛽

0 𝑔(𝑡)d𝑡 exists, it suffices to show that lim𝛽→∞
∫ 𝛽

0 |𝑔(𝑡)| d𝑡 exists
and is finite.

We have that, for some 𝑀 > 𝑇 in the definition of exponential order,

𝐹(𝑠) =
∫ ∞

0
𝑒−𝑠𝑡 𝑓 (𝑡)d𝑡 =

∫ 𝑀

0
𝑒−𝑠𝑡 𝑓 (𝑡)d𝑡︸              ︷︷              ︸

finite, since 𝑓 pw cont thus bounded

+
∫ ∞

𝑀

𝑒−𝑠𝑡 𝑓 (𝑡)d𝑡

So, we need to show the RHS converges. Since 𝑀 > 𝑇, we have that∫ ∞

𝑀

𝑒−𝑠𝑡 | 𝑓 (𝑡)| d𝑡 ⩽ 𝐾 ·
∫ ∞

𝑀

𝑒−𝑠𝑡𝑒−𝑎𝑡 d𝑡

= 𝐾

∫ ∞

𝑀

𝑒(𝑎−𝑠)𝑡 d𝑡

= 𝐾
𝑒(𝑎−𝑠)𝑀

𝑠 − 𝑎 < ∞,

where the final line assumes that 𝑠 > 𝑎. ■

⊛ Example 6.1

ℒ{𝑒 𝑎𝑡} =
∫ ∞

0
𝑒−𝑠𝑡𝑒 𝑎𝑡 d𝑡 =

[
𝑒(𝑎−𝑠)𝑡

𝑎 − 𝑠

]∞
0
=

1
𝑠 − 𝑎 ,

valid for 𝑠 > 𝑎. Remark that taking 𝑎 = 0 gives us that ℒ{1} = 1
𝑠 , again assuming that 𝑠 > 0.

↩→ Proposition 6.1

ℒ{· · · } linear.

Proof. Indeed, we have for 𝛼, 𝛽 ∈ 𝑅 and 𝑓 , 𝑔 pw cont functions,

ℒ{𝛼 𝑓 (𝑡) + 𝛽𝑔(𝑡)} =
∫ ∞

0
𝑒−𝑠𝑡[𝛼 𝑓 (𝑡) + 𝛽𝑔(𝑡)]d𝑡

= 𝛼

∫ ∞

0
𝑒−𝑠𝑡 𝑓 (𝑡)d𝑇 + 𝛽

∫ ∞

0
𝑒−𝑠𝑡 𝑔(𝑡)d𝑡

= 𝛼ℒ{ 𝑓 (𝑡)} + 𝛽ℒ{𝑔(𝑡)}
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■

Remark 6.1. This gives, moreover, that ℒ{𝐾} = 𝐾ℒ{1} = 𝐾
𝑠 as before.

⊛ Example 6.2

First, remark that 𝑒 𝑡2 and tan 𝑡 do not have Laplace transforms; the first is not of exponential order,
and the second is unbounded at its discontinuities and thus not pw cont (indeed, it is also, as a
result, not of exponential order).

Next, we compute some basic examples.

•
ℒ{𝑡} =

∫ ∞

0
𝑡𝑒−𝑠𝑡 d𝑡 =

[
𝑡𝑒−𝑠𝑡

−𝑠

]∞
0
−

∫ ∞

0
𝑒−𝑠𝑡−𝑠 d𝑡 = 1

𝑠

∫ ∞

0
𝑒−𝑠𝑡 d𝑡 = 1

𝑠
ℒ{1} = 1

𝑠2 .

Remark too that for any 𝜀 > 0, 𝑡 < 𝑒𝜀𝑡 for sufficiently large 𝑡; we say 𝑡 not only of exponential
order, but of “exponential order 0”.

•

ℒ{cos(𝜔𝑡)} =
∫ ∞

0
𝑒−𝑠𝑡 cos(𝜔𝑡)d𝑡 =

[
1
𝑠
𝑒−𝑠𝑡 cos(𝜔𝑡)

]∞
0
− 𝜔
𝑠

∫ ∞

0
𝑒−𝑠𝑡 sin(𝜔𝑡)d𝑡

=
1
𝑠
− 𝜔
𝑠

[ [
sin(𝜔𝑡) 𝑒

−𝑠𝑡

−𝑠

]∞
0
+ 𝜔
𝑠

∫ ∞

0
𝑒−𝑠𝑡 cos(𝜔𝑡)d𝑡

]
=⇒ ℒ{cos 𝜔𝑡} = 1

𝑠
− 𝜔2

𝑠2 ℒ{cos(𝜔𝑡)} =⇒ ℒ{cos(𝜔𝑡)} = 𝑠

𝑠2 + 𝜔2 .

A similar computation gives ℒ{sin(𝜔𝑡)} = 𝜔
𝑠2+𝜔2 .

↩→ Theorem 6.2: First Translation theorem

If ℒ{ 𝑓 (𝑡)} = 𝐹(𝑠), 𝑘 ∈ R, then
ℒ{𝑒 𝑘𝑡 𝑓 (𝑡)} = 𝐹(𝑠 − 𝑘).

Proof.

ℒ{𝑒 𝑘𝑡 𝑓 (𝑡)} =
∫ ∞

0
𝑒−𝑠𝑡𝑒 𝑘𝑡 𝑓 (𝑡)d𝑡 =

∫ ∞

0
𝑒−(𝑠−𝑘)𝑡 𝑓 (𝑡)d𝑡 = 𝐹(𝑠 − 𝑘).

■

Remark 6.2. We often denote 𝐹(𝑠 − 𝑎) = ℒ{ 𝑓 (𝑡)}𝑠→𝑠−𝑎
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⊛ Example 6.3

ℒ{𝑒 𝑎𝑡 cos(𝜔𝑡)} = ℒ{cos(𝜔𝑡)}𝑠→𝑠−𝑎 = 𝑠
𝑠2+𝜔2 |𝑠→𝑠−𝑎 = 𝑠−𝑎

(𝑠−𝑎)2+𝜔2

6.2 Solving Constant Coefficient Linear ODE IVP’s

↩→ Theorem 6.3

Suppose 𝑓 , 𝑓 ′, . . . , 𝑓 (𝑛−1) continuous on [0,∞) and 𝑓 (𝑛) pw cont on [0,∞) and all are of exponential order
𝑎. Then, ℒ{ 𝑓 (𝑛)(𝑡)} exists for 𝑠 > 𝑎, and

ℒ{ 𝑓 (𝑛)(𝑡)} = 𝑠𝑛ℒ{ 𝑓 (𝑡)} −
𝑛−1∑
𝑘=0

𝑠𝑛−1−𝑘 𝑓 (𝑘)(0).

↩→ Lecture 22; Last Updated: Tue Apr 9 09:35:29 EDT 2024

Proof. For 𝑛 = 1, suppose 𝑓 ′(𝑡) has discontinuities at 𝑡1, . . . , 𝑡𝑛−1 on [0, 𝐴] for some 𝐴 > 0; let 𝑡0 ..= 0, 𝑡𝑛 ..= 𝐴.
Then ∫ 𝐴

0
𝑒−𝑠𝑡 𝑓 ′(𝑡)d𝑡 =

𝑚−1∑
𝑗=0

∫ 𝑡 𝑗+1

𝑡 𝑗

𝑒−𝑠𝑡 · 𝑓 ′(𝑡)d𝑡

(integrate by parts) =

𝑚−1∑
𝑗=0

[ [
𝑒−𝑠𝑡 𝑓 (𝑡)

] 𝑡 𝑗+1
𝑡 𝑗

+ 𝑠
∫ 𝑡 𝑗+1

𝑡 𝑗

𝑒−𝑠𝑡 𝑓 (𝑡)d𝑡

]
=

𝑚−1∑
𝑗=0

[
𝑒−𝑠𝑡 𝑓 (𝑡)

] 𝑡 𝑗+1
𝑡 𝑗

+ 𝑠 ·
𝑚−1∑
𝑗=0

∫ 𝑡 𝑗+1

𝑡 𝑗

𝑒−𝑠𝑡 𝑓 (𝑡)d𝑡

(both terms telescope∗) = 𝑒−𝑠𝐴 𝑓 (𝐴) − 𝑓 (0) + 𝑠
∫ 𝐴

0
𝑒−𝑠𝑡 𝑓 (𝑡)d𝑡

Remark in ∗, we use that 𝑓 continuous on each (𝑡 𝑗 , 𝑡 𝑗+1), hence additivity applies.

Hence, for sufficiently large 𝐴, 𝑓 being of exponential order gives us that��𝑒−𝑠𝐴 𝑓 (𝐴)�� ⩽ 𝑒−𝑠𝐴 · 𝐾𝑒 𝑎𝐴 = 𝐾𝑒−𝐴(𝑠−𝑎),

which → 0 as 𝐴 → ∞, since 𝑠 > 𝑎. Hence, taking 𝐴 → ∞, we find that the LHS of our original equation
→ ℒ{ 𝑓 ′(𝑡)}, and thus ℒ{ 𝑓 ′(𝑡)} → 𝑓 (0) + 𝑠

∫ ∞
0 𝑒−𝑠𝑡 𝑓 (𝑡)d𝑡 = 𝑠ℒ{ 𝑓 (𝑡)} − 𝑓 (0) as 𝐴 → ∞. Hence, we have the

desired form for 𝑛 = 1.
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For 𝑛 = 2, we can simply use that 𝑓 ′′(𝑡) = d
d𝑡 ( 𝑓 ′(𝑡)), namely

ℒ{ 𝑓 ′′(𝑡)} = 𝑠ℒ{ 𝑓 ′(𝑡)} − 𝑓 ′(0) (by 𝑛 = 1 case applied to 𝑓 ′(𝑡))
= 𝑠[𝑠ℒ{ 𝑓 (𝑡)} − 𝑓 (0)] − 𝑓 ′(0) (by 𝑛 = 1 case applied to 𝑓 (𝑡))
= 𝑠2ℒ{ 𝑓 (𝑡)} − 𝑠 𝑓 ′(0) − 𝑓 (0),

the desired form for 𝑛 = 2; we explicitly computed these two cases as they are the ones we will encounter
most frequently in application.

For the general case, we proceed by induction. We already proved the base case 𝑛 = 1, so suppose the
case for some 1, 2, . . . , up to some 𝑛 ∈ N, ie ℒ{ 𝑓 (𝑛)(𝑡)} = 𝑠𝑛ℒ{ 𝑓 (𝑡)} − ∑𝑛−1

𝑘=0 𝑠
𝑛−1−𝑘 𝑓 (𝑘)(0). Then, we have that

(under appropriate assumptions of exponential order, continuity, etc of 𝑓 (𝑛+1))

ℒ{ 𝑓 (𝑛+1)(𝑡)} = 𝑠ℒ{ 𝑓 𝑛(𝑡)} − 𝑓 𝑛(0) (by assumption, base case )

= 𝑠

[
𝑠𝑛ℒ{ 𝑓 (𝑡)} −

𝑛−1∑
𝑘=0

𝑠𝑛−1−𝑘 𝑓 (𝑘)(0)
]
− 𝑓 (𝑛)(0) (by assumption, 𝑛 case)

= 𝑠𝑛+1ℒ{ 𝑓 (𝑡)} − 𝑠
𝑛−1∑
𝑘=0

𝑠𝑛−1−𝑘 𝑓 (𝑘)(0) − 𝑓 (𝑛)(0)

= 𝑠𝑛+1ℒ{ 𝑓 (𝑡)} −
(𝑛+1)−1∑
𝑘=0

𝑠(𝑛+1)−1𝑘 𝑓 (𝑘)(0)

as desired; the inductive step is complete and thus the claim holds in general. ■

This theorem, combined with the linearity of ℒ{. . . }, allows us to convert linear, constant coefficient
ODES to algebraic expressions, encoding initial values into the problem directly. To see this, consider the 𝑛th
order, constant coefficient, linear IVP

𝐿[𝑦] ..=

𝑛∑
𝑘=0

𝑎𝑘𝑦
(𝑘), 𝑦(0) = 𝛼1, 𝑦

′(0) = 𝛼2, · · · 𝑦(𝑛−1)(0) = 𝛼𝑛 ,

where 𝑎𝑘 constants with 𝑎𝑛 ≠ 0. We venture to solve 𝐿[𝑦] = 𝑓 (𝑡). Letting 𝐹(𝑠) ..= ℒ{ 𝑓 (𝑡)}, 𝑌(𝑠) ..= ℒ{𝑦(𝑡)},

6.2 Laplace Transforms: Solving Constant Coefficient Linear ODE IVP’s 60



then applying ℒ{. . . } to both sides of our ODE, we find

𝐹(𝑠) = ℒ{ 𝑓 (𝑡)} = ℒ{𝐿[𝑦](𝑡)} = ℒ{
𝑛∑
𝑘=0

𝑎𝑘𝑦
(𝑘)}

=

𝑛∑
𝑘=0

𝑎𝑘ℒ{𝑦(𝑘)} (linearity)

=

𝑛∑
𝑘=0

𝑎𝑛

𝑠𝑘𝑌(𝑠) −
𝑘−1∑
𝑗=0

𝑠𝑘−1−𝑗𝑦(𝑗)(0)
 (by theorem 6.3)

=

[
𝑛∑
𝑘=0

𝑎𝑘𝑠
𝑘

]
︸      ︷︷      ︸

..=𝑃(𝑠)

𝑌(𝑠) −
𝑛∑
𝑘=0

𝑎𝑘

𝑘−1∑
𝑗=0

𝑠𝑘−1−𝑗𝑦(𝑗)(0)︸                      ︷︷                      ︸
..=𝑄(𝑠)

=⇒ 𝐹(𝑠) = 𝑃(𝑠)𝑌(𝑠) +𝑄(𝑠)

=⇒ 𝑌(𝑠) = 𝐹(𝑠)
𝑃(𝑠) +

𝑄(𝑠)
𝑃(𝑠)

Remark that 𝑃(𝑠) is a known (based on the ODE) polynomial in 𝑠 of degree 𝑛, and moreover, is precisely
the characteristic equation that we found when solving linear ODEs previously. 𝑄(𝑠) on the other hand is a
polynomial in 𝑠 of degree 𝑛 − 1, defined by the ICs of the problem.

This gives a clear method to find 𝑌(𝑠), that is, the Laplace transform of our solution; hence, we need to
somehow invert this to find 𝑦(𝑡), ie 𝑦(𝑡) = ℒ−1{𝑌(𝑠)}.

Complex analysis gives us that the inverse Laplace is given by the Bronwich Integral formula

𝑓 (𝑡) = ℒ−1{𝐹(𝑠)} = 1
2𝜋𝑖

∫ 𝑎+𝑖∞

𝑎−𝑖∞
𝐹(𝑠)𝑒 𝑠𝑡 d𝑠 .

We won’t use this in practice, but rather make use of algebraic simplifications to bring our solution to a form
recognizable as the Laplace transform of a (linear combination) of “elementary” functions. To do so, we first
need the following proposition.

↩→ Proposition 6.2

ℒ−1{𝐹(𝑠)} is linear.

Proof. Recall that ℒ{. . . } linear, so

ℒ{𝛼 𝑓 (𝑡) + 𝛽𝑔(𝑡)} = 𝛼𝐹(𝑠) + 𝛽𝐺(𝑠)
=⇒ ℒ−1{𝛼𝐹(𝑠) + 𝛽𝐺(𝑠)} = 𝛼 𝑓 (𝑡) + 𝛽𝑔(𝑡) = 𝛼ℒ−1{𝐹(𝑠)} + 𝛽 · ℒ−1{𝐺(𝑠)}.

■
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⊛ Example 6.4: Computing ℒ−1{. . . }

Consider 𝐹(𝑠) = 2𝑠+1
𝑠2+4 = 2( 𝑠

𝑠2+4) +
1
2( 2
𝑠2+4). Then, one can observe that

ℒ−1{𝐹(𝑠)} = 2ℒ−1{ 𝑠

𝑠2 + 4
} + 1

2ℒ
−1{ 2

𝑠2 + 4
}

= 2 cos(2𝑡) + 1
2 sin(2𝑡).

In essence, computing inverse Laplace is an exercise in algebraic manipulation and purposeful
staring.

⊛ Example 6.5: Solving Second Order Linear ODE

We consider
𝑦′′ − 3𝑦′ + 2𝑦 = 𝑒−4𝑡 , 𝑦(0) = 1, 𝑦′(0) = 5.

Taking ℒ{. . . } of both sides:

ℒ{𝑦′′} − 3ℒ{𝑦′} + 2ℒ{𝑦} = ℒ{𝑒−4𝑡}

=⇒ [𝑠2𝑌(𝑠) − 𝑠𝑦(0) − 𝑦′(0)] − 3[𝑠𝑌(𝑠) − 𝑦(0)] + 2𝑌(𝑠) = 1
𝑠 + 4

=⇒ (𝑠2 − 3𝑠 + 2)𝑌(𝑠) − 𝑠 − 5 + 3 =
1

𝑠 + 4
=⇒ 𝑌(𝑠) = 1

𝑠2 − 3 + 2
[ 1
𝑠 + 4 + 𝑠 + 2]

=⇒ 𝑌(𝑠) = 1
(𝑠 − 1)(𝑠 − 2)(𝑠 + 4) +

𝑠 + 2
(𝑠 − 1)(𝑠 − 2)

After applying “classical partial fractions theory”, one finds

𝑦(𝑡) = ℒ−1{𝑌(𝑡)} = −16
5 ℒ−1{ 1

𝑠 − 1} +
25
6 ℒ−1{ 1

𝑠 − 2} +
1
30ℒ

−1{ 1
𝑠 + 4}

= −16
5 𝑒

𝑡 + 25
6 𝑒

2𝑡 + 1
30 𝑒

−4𝑡 .

Remark 6.3. Many questions such as this end up with some kind of partial fractions to work out; as such, don’t bother
simplifying excessively to find a common denominator or anything like that.

Remark 6.4. We already know how to solve these problems; but one particular advantage of this method is the encoding
of the ICs. In the typical characteristic method technique, we needed to differentiate our entire solution in order ot set
the appropriate constants. Here, we never differentiated (explicitly).

⊛ Example 6.6: First Order
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Consider 𝑦′ + 𝑦 = sin 𝑡 , 𝑦(0) = 1. Taking the Laplace of both sides, we find

𝑠𝑌(𝑠) − 𝑦(0) + 𝑌(𝑠) = 1
𝑠2 + 1

=⇒ 𝑌(𝑠) = 1
𝑠 + 1 + 1

(𝑠2 + 1)(𝑠 + 1) ,

and after partial fractioning,

𝑌(𝑠) = 1
𝑠 + 1 + 1/2

𝑠 + 1 − 1
2

(
𝑠 − 1
𝑠2 + 1

)
=

3/2
𝑠 + 1 − 1

2

( 𝑠

𝑠2 + 1

)
+ 1

2

(
1

𝑠2 + 1

)
=⇒ 𝑦(𝑡) = 3

2ℒ
−1{ 1

𝑠 + 1} −
1
2ℒ

−1{ 𝑠

𝑠2 + 1
} + 1

2ℒ
−1{ 1

𝑠2 + 1
}

=⇒ 𝑦(𝑡) = 3
2 𝑒

−𝑡 − 1
2 cos 𝑡 + 1

2 sin 𝑡

6.3 Discontinuous Functions

↩→ Definition 6.4: Unit Step Function

The function given by

𝒰(𝑡 − 𝑎) ..=


0 𝑡 < 𝑎

1 𝑡 ⩾ 𝑎

↩→ Theorem 6.4: Second Translation Theorem

If 𝐹(𝑠) = ℒ{ 𝑓 (𝑡)}, then for 𝑎 > 0,

ℒ{𝒰(𝑡 − 𝑎) 𝑓 (𝑡 − 𝑎)} = 𝑒−𝑎𝑠𝐹(𝑠).

Proof.

ℒ{𝒰(𝑡 − 𝑎) 𝑓 (𝑡 − 𝑎)} =
∫ 𝑎

0
𝑒−𝑠𝑡 𝒰(𝑡 − 𝑎)︸    ︷︷    ︸

=0

𝑓 (𝑡 − 𝑎)d𝑡 +
∫ ∞

𝑎

𝑒−𝑠𝑡

=1︷    ︸︸    ︷
𝒰(𝑡 − 𝑎) 𝑓 (𝑡 − 𝑎)d𝑡

=

∫ ∞

𝑎

𝑒−𝑠𝑡 𝑓 (𝑡 − 𝑎)d𝑡 (𝑤 ..= 𝑡 − 𝑎)

=

∫ ∞

0
𝑒−(𝑎+𝑤)𝑠 𝑓 (𝑤)d𝑤

= 𝑒−𝑎𝑠
∫ ∞

0
𝑒−𝑤𝑠 𝑓 (𝑤)d𝑤 = 𝑒−𝑎𝑠𝐹(𝑠)

■
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↩→ Corollary 6.1

ℒ{𝒰(𝑡 − 𝑎)} = 𝑒−𝑎𝑠
𝑠 .

Proof. ℒ{𝒰(𝑡 − 𝑎) · 1} ∗
= 𝑒−𝑎𝑠ℒ{1} = 𝑒−𝑎𝑠

𝑠 , where we use the previous theorem at ∗. ■

↩→ Lecture 23; Last Updated: Tue Apr 2 12:16:34 EDT 2024

⊛ Example 6.7

𝑦′ + 𝑦 = 𝑓 (𝑡) ..=


0 0 ⩽ 𝑡 < 𝜋

3 cos 𝑡 𝑡 ⩾ 𝜋
, 𝑦(0) = 2. We can rewrite 𝑓 (𝑡) = 𝒰(𝑡 − 𝜋)𝑔(𝑡 − 𝜋) = 3𝒰(𝑡 −

𝜋) cos(𝑡), remarking that 𝑔(𝑡) = 3 cos(𝑡 + 𝜋) = −3 cos(𝑡), and so using the translation theorem we
have

𝑠𝑌(𝑠) − 𝑦(0) + 𝑌(𝑠) = (𝑠 + 1)𝑌(𝑠) − 2 = 3ℒ{𝒰(𝑡 − 𝜋) cos(𝑡)} = −3 𝑠

𝑠2 + 1
𝑒−𝜋𝑠

=⇒ 𝑌(𝑠) = 2
𝑠 + 1 − 3𝑒−𝜋𝑠 𝑠

(𝑠2 + 1)(𝑠 + 1) .

Now, we proceed as normal, ignore the exponential for now. We find that

𝑠

(𝑠2 + 1)(𝑠 + 1) =
−1/2
𝑠 + 1 + 1

2
𝑠

𝑠2 + 1
+ 1

2
1

𝑠2 + 1
,

and so, applying the translation theorem in reverse,

𝑦(𝑡) = 2𝑒−𝑡 − 3ℒ−1{𝑒−𝜋𝑠
[
−1/2
𝑠 + 1 + 1

2
𝑠

𝑠2 + 1
+ 1

2
1

𝑠2 + 1

]
}

= 2𝑒−𝑡 + 3
2𝒰(𝑡 − 𝜋)

[
𝑒−(𝑡−𝜋) + cos(𝑡) + sin(𝑡)

]
.

Remark that, as the ODE was discontinuous at 𝑡 = 𝜋with a jump of |lim𝑡→𝜋+ 𝑓 (𝑡) − lim𝑡→𝜋− 𝑓 (𝑡)| = 3;
we can show (1) 𝑦(𝑡) is continuous and (2) 𝑦′(𝑡) is discontinuous at precisely 𝑡 = 𝜋 with the same
jump; this occurs generally.

6.4 Derivatives of Transforms

↩→ Proposition 6.3

ℒ{𝑡𝑛 𝑓 (𝑡)} = (−1)𝑛 d𝑛
d𝑠𝑛ℒ{ 𝑓 (𝑡)}.

Proof. Follows from easy induction. ■
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⊛ Example 6.8

Show that the Laplace transform of the Euler equation 𝑎𝑡2𝑦′′ + 𝑏𝑡𝑦′ + 𝑐𝑦 = 0 is itself an Euler
equation.

6.5 Transforms of Integrals

↩→ Definition 6.5: Convolution

( 𝑓 ∗ 𝑔)(𝑡) ..=
∫ 𝑡

0 𝑓 (𝜏)𝑔(𝑡 − 𝜏)d𝜏.

⊛ Example 6.9

𝑒 𝑡 ∗ sin 𝑡 =
∫ 𝑡

0
𝑒𝜏 sin(𝑡 − 𝜏)d𝜏

= · · · − sin 𝑡 + 𝑒 𝑡 − cos 𝑡 − 𝑒 𝑡 ∗ sin 𝑡

=⇒ 𝑒 𝑡 ∗ sin 𝑡 = 1
2[𝑒

𝑡 − sin 𝑡 − cos 𝑡].

↩→ Theorem 6.5: Convolution Theorem

If 𝑓 , 𝑔 pw-cont on [0,∞) and are of exponential order, then

ℒ{ 𝑓 ∗ 𝑔} = ℒ{ 𝑓 (𝑡)}ℒ{𝑔(𝑡)} = 𝐹(𝑠)𝐺(𝑠).

Proof. We should but won’t show that the Laplace of 𝑓 , 𝑔 existing implies that the Laplace of their convolution
exists, but won’t.

ℒ{ 𝑓 ∗ 𝑔} =
∫ ∞

0

∫ 𝑡

0
𝑓 (𝜏)𝑔(𝑡 − 𝜏)𝑒−𝑠𝑡 d𝑡

=

∫ ∞

0

∫ ∞

𝜏
𝑓 (𝜏)𝑔(𝑡 − 𝜏)𝑒−𝑠𝑡 d𝑡 d𝜏

=

∫ ∞

0
𝑓 (𝜏)𝑒−𝑠𝜏

∫ ∞

𝜏
𝑔(𝑡 − 𝜏)𝑒−𝑠(𝑡−𝜏) d𝑡 d𝜏

(𝑤 ..= 𝑡 − 𝜏) =

∫ ∞

0
𝑓 (𝜏)𝑒−𝑠𝜏 d𝜏

∫ ∞

0
𝑔(𝑤)𝑒−𝑠𝑤 d𝑤

= ℒ{ 𝑓 }ℒ{𝑔}

■
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↩→ Corollary 6.2

ℒ−1{𝐹(𝑠)𝐺(𝑠)} = 𝑓 ∗ 𝑔.

↩→ Proposition 6.4

For 𝑓 , 𝑔, ℎ functions and 𝛼, 𝛽 scalars,

(i) ( 𝑓 ∗ 𝑔)(𝑡) = (𝑔 ∗ 𝑓 )(𝑡)

(ii) ((𝛼 𝑓 ∗ 𝛽𝑔) ∗ ℎ)(𝑡) = 𝛼( 𝑓 ∗ ℎ)(𝑡) + 𝛽(𝑔 ∗ ℎ)(𝑡)

(iii) 0 ∗ 𝑔 = 0

(iv) (Id ∗ 𝑔)(𝑡) ≠ 𝑔(𝑡)

⊛ Example 6.10

Show that ℒ{
√
𝑡} =

√
𝜋

2𝑠3/2 .

⊛ Example 6.11

Show that ℒ−1{ 𝑠
(𝑠2+1)(𝑠+3)} without using partial fractions.

↩→ Lecture 24; Last Updated: Tue Apr 2 13:10:02 EDT 2024

6.6 Dirac Delta Function

↩→ Definition 6.6: Dirac Delta

Denote 𝛿(𝑡 − 𝑡0) ..=


0 𝑡 ≠ 𝑡0

unbounded 𝑡 = 𝑡0
, in such a way that for any 𝜀 > 0,

∫ 𝑡0+𝜀
𝑡0−𝜀

𝛿(𝑡 − 𝑡0) 𝑓 (𝑡)d𝑡 =∫ ∞
−∞ 𝑓 (𝑡)𝛿(𝑡 − 𝑡0)d𝑡 = 𝑓 (𝑡0). Ie, 𝛿(𝑡 − 𝑡0) “picks out” the function’s value at 𝑡0.

In particular, letting 𝑓 (𝑡) ≡ 1, we see that

∫ 𝑡

0
𝛿(𝑠 − 𝑡0)d𝑠 =


0 𝑡 < 𝑡0

1 𝑡 > 𝑡0
.

Remark 6.5. This is not a very rigorous definition. Sorry.
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↩→ Theorem 6.6

For 𝑡0 > 0, ℒ{𝛿(𝑡 − 𝑡0)} = 𝑒−𝑠𝑡0 .

Proof. ℒ{𝛿(𝑡 − 𝑡0)} =
∫ ∞

0 𝑒−𝑠𝑡𝛿(𝑡 − 𝑡0)d𝑡 = 𝑒−𝑠𝑡0 . ■

↩→ Corollary 6.3

ℒ{𝛿(𝑡)} = 1

6.7 Convolutions, Green’s Function

Recall that we can write 𝐿[𝑦] =
∑𝑛
𝑘=0 𝑎𝑘𝑦

(𝑘)(𝑡) = 𝑓 (𝑡) (with IVPs) as 𝑃(𝑠)𝑌(𝑠) − 𝑄(𝑠) = 𝐹(𝑠), where 𝑃(𝑠) =∑𝑛
𝑘=0 𝑎𝑘𝑠

𝑘 , 𝑌(𝑠) = ℒ{𝑦(𝑡)}, 𝐹(𝑠) = ℒ{ 𝑓 (𝑡)}, and 𝑄(𝑠) of degree 𝑛 − 1 and dependent on the ICs. Letting
𝐺(𝑠) ..= 1

𝑃(𝑠) , then, we can rewrite this as

𝑦(𝑡) = ℒ−1{𝐹(𝑠)𝐺(𝑠)} + ℒ−1{𝑄(𝑠)
𝑃(𝑠) }.

deg(𝑄) < deg(𝑃) so we can find the RHS of this using typical partial fractions techniques, and we can solve
the LHS using the convolution theorem, namely ℒ−1{𝐹(𝑠)𝐺(𝑠)} = ( 𝑓 ∗ 𝑔)(𝑡).

↩→ Definition 6.7: Green’s function

The function 𝑔(𝑡) that solves 𝐿[𝑔(𝑡)] = 𝛿(𝑡) with IC 𝑔(0) = 𝑔′(0) = · · · = 𝑔(𝑛−1)(0) is called the Green’s
function of 𝐿.

↩→ Theorem 6.7

Let 𝑔(𝑡) be the Green’s function of 𝐿. Then, 𝐿[𝑔(𝑡)] = 𝐺(𝑠) = 1
𝑃(𝑠) .

Proof. 𝐿[𝑔] = 𝛿(𝑡) =⇒ 𝑃(𝑠)𝐺(𝑠) −𝑄(𝑠) = 1 =⇒ 𝑃(𝑠)𝐺(𝑠) = 1. ■

⊛ Example 6.12

Find an expression for 𝑦(𝑡) with respect to a convolution integral and 𝑄(𝑠)/𝑃(𝑠) for the ODE

𝑦′′ + 𝜔2𝑦 = 𝑓 (𝑡),

for arbitrary 𝑦(0) = 𝛼0, 𝑦
′(0) = 𝛼1, and then when 𝛼0 = 𝛼1 = 0.
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6.8 Transforms of Periodic Functions

↩→ Definition 6.8: Periodic function

We say a function 𝑓 (𝑡) is periodic of period 𝑇 if 𝑓 (𝑡) = 𝑓 (𝑡 + 𝑇) for some minimal 𝑇 > 0 for all 𝑡 > 0.

Remark 6.6. This definition excludes the constant function as a periodic (why?).

↩→ Theorem 6.8

Let 𝑓 -periodic of period 𝑇 and pw-cont on [0,∞). Then,

ℒ{ 𝑓 (𝑡)} = 1
1 − 𝑒−𝑠𝑇

∫ 𝑇

0
𝑒−𝑠𝑡 𝑓 (𝑡)d𝑡 .

Proof. Straightforward computation (hint: split up the integral in ℒ{ 𝑓 (𝑡)} into two integrals with 𝑇 as the
upper, lower limits resp.). ■

⊛ Example 6.13

Find the Laplace transform of 𝑓 (𝑡) ..=
∑∞
𝑛=0(−1)𝑛𝒰(𝑡 − 𝑛) (remarking that 𝑓 periodic with 𝑇 = 2)

using the previous theorem. Then find it using the linearity of 𝑓 .

⊛ Example 6.14: Cursed

We consider 𝑦′′ + 𝑦′ + 𝑦 = 𝑓 (𝑡) = 𝛿(𝑡 − 1) + 𝒰(𝑡 − 2)𝑒−(𝑡−2) with 𝑦(0) = 0, 𝑦′(0) = 1. Taking the
Laplace of both sides

𝑠2𝑌(𝑠) − 𝑠𝑦(0) − 𝑦′(0)+𝑠𝑌(𝑠) − 𝑦(0) + 𝑌(𝑠) = 𝑒−𝑠 + 𝑒−2𝑠ℒ{𝑒−𝑡}

=⇒ 𝑌(𝑠)(𝑠2 + 𝑠 + 1) − 1 = 𝑒−𝑠 + 𝑒−2𝑠( 1
𝑠 + 1)

=⇒ 𝑌(𝑠) = 1
𝑠2 + 𝑠 + 1

+ 𝑒−𝑠 1
𝑠2 + 𝑠 + 1

+ 𝑒−2𝑠 1
(𝑠2 + 𝑠 + 1)(𝑠 + 1)

Unlike other examples, 𝑠2 + 𝑠 + 1 not reducible (over R) so we have some difficulties. Completing
the square, we find 𝑠2 + 𝑠 + 1 = (𝑠 + 1

2)2 + 3
4 , and so

1
𝑠2 + 𝑠 + 1

=
1

(𝑠 + 1
2)2 + 3

4
,

1
(𝑠2 + 𝑠 + 1)(𝑠 + 1) =

1
((𝑠 + 1

2)2 + 3
4)(𝑠 + 1)

.
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Using partial fractions on the second expression,

1
(𝑠2 + 𝑠 + 1)(𝑠 + 1) =

𝐴𝑠 + 𝐵
𝑠2 + 𝑠 + 1

+ 𝐶

𝑠 + 1
=⇒ 1 = (𝐴𝑠 + 𝐵)(𝑠 + 1) + 𝐶(𝑠2 + 𝑠 + 1)

𝑠 = −1] 1 = 𝐶

𝑠2] 0 = 𝐴 + 𝐶 =⇒ 𝐴 = −1

𝑠0] 1 = 𝐵 + 𝐶 =⇒ 𝐵 = 0

Bring all the “simplifications” together, we have

𝑌(𝑠) = 1
(𝑠 + 1

2)2 + 3
4
+ 𝑒−𝑠[ 1

(𝑠 + 1
2)2 + 3

4
] + 𝑒−2𝑠[ −𝑠

(𝑠 + 1
2)2 + 3

4
+ 1
𝑠 + 1]

For the first term, we need to use the first translation theorem, and for the other two we need to use
both the first and second theorems.

1
(𝑠 + 1/2)2 + 3/4

=
2√
3
(

√
3/2

(𝑠 + 1/2)2 + 3/4
)
ℒ−1{... }
⇝

2√
3
𝑒−1/2𝑡 sin

(√
3

2 𝑡

)
𝑒−𝑠[ 1

(𝑠 + 1/2)2 + 3/4
]
ℒ−1{... }
⇝ 𝒰(𝑡 − 1)ℒ−1{ 2√

3
(

√
3/2

(𝑠 + 1/2)2 + 3/4
)}𝑡 ↦→𝑡−1

ℒ−1{... }
⇝ 𝒰(𝑡 − 1) 2√

3
𝑒−1/2(𝑡−1) sin

(√
3

2 (𝑡 − 1)
)

↩→ Lecture 25; Last Updated: Sun Apr 7 09:28:47 EDT 2024

Remark 6.7. In-class review; final lecture. Good luck!

↩→ Lecture 26; Last Updated: Tue Apr 9 15:17:08 EDT 2024

∼
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