
MATH 235 CLASS NOTES

mcgill university

nicholas hayek

Based on lectures by Prof. Eyal Goren



contents

I Preliminaries 3

Methods of Proof 3

Function Primer 3
Measuring Infinities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

II Relations and Equivalency 7

Relations 7
Equivalence Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

III Number Systems 11

Complex Number Primer 11
Polar Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Solving Polynomials in C . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
De Moivre’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Rings 14
Subrings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Arithmetic on Integers 16
The Euclidean Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Primes 18
Sieve of Eratosthenes Detour . . . . . . . . . . . . . . . . . . . . . . . . . 19

Congruences 21

Fermat’s Little Theorem 23

IV Polynomial Arithmetic 24

Rings of Polynomials 24

Division of Polynomials 24
Euclidean Algorithm for Polynomials . . . . . . . . . . . . . . . . . . . . 25



Associates 26

Identifying Irreducible Polynomials 27

Identifying Roots of f (x) 28

V Rings 30

Ideals 30

Homomorphisms 31

Cosets 32

Isomorphisms 34

Quotient Rings 34

VI Groups 37

First Properties and Types of Groups 38
Permutations and Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Symmetries and Dihedral Groups . . . . . . . . . . . . . . . . . . . . . . 40

Cosets for Groups 41

Homomorphisms of Groups 42

Group Action on Sets 44

© Nicholas Hayek Q

https://www.nicholashayek.com
mailto:nicholas.hayek@mail.mcgill.ca


3 preliminaries

I Preliminaries
methods of proof

One may show a result directly, by establishing a contradiction, proving the
contrapositive, or employing induction:

1. Suppose P is false. Then, P =⇒ K , where K violates one of our assumptions.
Thus, P is true.

2. To show the implication A =⇒ B, we instead show ¬B =⇒ ¬A.

3. To show that Pn is true for all n ∈ N, establish that a base case, P0, is true.
Then, assuming that Pn holds, show that Pn+1 also holds.

(a) Strong induction, which assumes P1, ..., Pn to imply Pn+1, is logically
equivalent to the following fact: for all non-empty subsets N of N,
there exists a least element a ∈ N such that a ≤ ai for all ai ∈ N . You
can also prove this principle using (regular) induction.

1.1 Pigeonhole Principle
Let there be n pigeonholes and greater than n pigeons. If all pigeons must
be assigned to a pigeonhole, there exists at least one pigeon hole containing
more than one pigeon.

Exercise: show that, for any
collection C of 6 natural
numbers, there exists a com-
bination a, b ∈ C such that
a − b is divisible by 5.

function primer

We define functions in the following way:

f : A→ B

where A and B are both sets. To be a function, all items ai ∈ A must be mapped to
one item bi ∈ B. Note the following examples.

1. f : R→ R
√
x = y, where both roots are defined, is not a function.

2. f : A → B with A := {1,2,3}, B := {4} may only be a function if all of A is
mapped to B (not one a ∈ A may be excluded).

3. f : A→ N, where ∃ a ∈ A such that f (a) = n1 ∈ N and f (a) = n2 ∈ N is not
a function.

There are three basic classes of valid functions:
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1. Injective: if f (x1) = f (x2), then x1 = x2.

2. Surjective: if, ∀y ∈ Y ∃x ∈ X such that f (x) = y. In other words, all of the
co-domain (output) is assigned an input.Exercise: If f and g are both

bijective, then h = f ◦ g is
bijective. 3. Bijective: if f is both injective and surjective. In other words, there is a

“1-to-1” correspondence between the domain and co-domain.

Measuring Infinities

Cantor defined a notion of size that can be applied to sets whose size is too large
to describe with a number. This notion is called “cardinality” and is denoted by
|A| for the set A.Exercise: using the Cantor-

Bernstein theorem, prove
that the set of points C con-
tained within a circle of ra-
dius 1 has the same cardinal-
ity as the set of points S con-
tained within a square of side
length 1. What if r was arbi-
trary?

• A set A with a particular cardinality has the same cardinality as a set B if
there exists a bijective function f : A→ B (note that this is the same thing
as saying that there exists a bijective function f −1 : B→ A).

• For sets A and B, |A| ≤ |B| if there exists an injective function f : A→ B.

• |A| ≥ |B| if there exists a surjective function between A and B.

• Cardinality preserves the transitive property of equality, that if |A| = |B| and
|B| = |C|, then |A| = |C|.

With respect to the above notes, when we consider an injective function, it must
not also be surjective, and when we consider a surjective function, it must not
also be injective (otherwise, these would just be bijective, and |A| = |B|.)

Let A, B be sets. If |A| ≤ |B| then |B| ≥ |A|.Proposition 1.1

Proof. Let A = �. Then |B| ≥ |A| by definition. Now suppose that A is nonempty.
Then ∃f : A→ B which is injective. Define g : B→ A and let a0 ∈ A:

g(b) =

a0 if b < Im(A)

a if b ∈ Im(A) such that f (a) = b

Note that this is well-defined ∀b ∈ B and surjective, so we are done.

1.2 Cantor Bernstein
If |A| ≤ |B| and |A| ≥ |B|, then |A| = |B|, i.e., if there exists strictly injective and
surjective functions from A→ B, then there is a bijection between A and B.
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Examples

1. Let |N| = ℵ (not’n: the “aleph zero”). All infinite, countable sets have carnal-
ity ℵ. Notably, |Z| = |N| = ℵ.

2. |N| = |N × N| = |{(n1, n2) ∀n ∈ N}|, the Cartesian product over the natural
numbers.

3. |N| , |R|. This was shown first by Cantor using his diagonalization argument:

Proof of (3).We’ll assume |N| = |R| and then work toward a contradiction.

=⇒ R is countable, so let’s enumerate it as follows:

s1 = 8 3 4 0 2 8 3 . . .
s2 = 9 5 6 7 5 1 8 . . .
s3 = 2 9 5 6 2 1 2 . . .
s4 = 5 6 3 2 8 9 0 . . .
s5 = 9 3 5 7 6 3 7 . . .
s6 = 9 9 6 8 9 4 8 . . .
s7 = 6 5 3 7 4 9 8 . . .
...

Without loss of generality, we may think of any arbitrary collection of natural
numbers to represent a real number in this enumeration (the decimal, too,
may be anywhere or nowhere). Consider the first n real numbers in this
enumeration. We then may construct an n+1th number which is not contained
in the enumeration. For the above example, let’s consider this hypothetical
eighth number:

s8 = a1 a2 a3 a4 a5 a6 a7

where ai corresponds to the ith digit in the ith real number:

s1 = 8 3 4 0 2 8 3 . . .
s2 = 9 5 6 7 5 1 8 . . .
s3 = 2 9 5 6 2 1 2 . . .
s4 = 5 6 3 2 8 9 0 . . .
s5 = 9 3 5 7 6 3 7 . . .
s6 = 9 9 6 8 9 4 8 . . .
s7 = 6 5 3 7 4 9 8 . . .

s8 = 8 5 5 2 6 4 8. . .
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Clearly, s8 is not a member of our enumeration. Letting n be arbitrary, we
now have an algorithm to generate a real number that cannot be contained in
any enumeration of reals.  

∴ R is uncountable =⇒ |R| , |N|

Cantor also devised his Continuum hypothesis, which states that there is no set
which has a cardinality between that of the naturals and the reals. Godel and his
incompleteness theorems later showed that the Continuum hypothesis could not
be proven or disproved.
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II Relations and Equivalency
relations

Define a relation on a set A to be a subset R ⊆ A × A. As the name suggests,
relations will define various comparisons we can make between two numbers (for
example, a relation defining “greater than” on N would contain all ordered pairs
(a, b) where a > b).

At this moment, we can let R be arbitrary.

We say that an element x ∈ A is related to y if (x, y) ∈ R, and we notate this as
x ∼ y. A relation on A is called

• Reflexive if x ∼ x ∀x ∈ A

• Symmetric if x ∼ y =⇒ y ∼ x ∀x, y ∈ A

• Transitive if x ∼ y and y ∼ z =⇒ x ∼ z ∀x, y, z ∈ A

x x y

z

x y x

(y,z)∈R

(x,y)∈R

then (x,z)∈R

(x,x)∈R

(x,y)∈R =⇒ (y,x)∈R

Reflexive

Symmetric

Transitive

We also have anti-symmetry, where x ∼ y is anti-symmetric if, ∀ x, y, we have

x ∼ y and y ∼ x =⇒ x = y

Examples

• R = A × A satisfies our conditions for reflexivity, symmetry, and transitivity.

• R = � is trivially symmetric and transitive (the implication of two false
statements is itself true).

• R = (ai , ai) ∈ A × A is apparently reflexive, but also trivially symmetric and
transitive.

A relation on the set A is called a partial order if it is reflexive, symmetric, and
satisfies the condition

x ∼ y and y ∼ x =⇒ x = y
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Our notation can then adapt such that x ∼ y becomes x ≤ y, and we then have
the properties

(1) x ≤ x (2) x ≤ y and y ≤ z =⇒ x ≤ z (3) x ≤ y and y ≤ x =⇒ x = y

We call a linear order a partial order for which all elements x and y have either
x ≤ y or y ≤ x. Other names for this are total order and simple order.

Finally, an equivalence relation is one which is reflexive, symmetric, and transitive.
This is primarily useful for identifying “like” elements (intuitively: an element is
like itself, two like elements can only be so mutually, and if a member has likeness
to two other members, then those two are like as well). An obvious example is
the equivalence of elements in R. Equivalence relations, and later classes, are
extremely important to the study of algebra.

Examples

1. Define a permutation as a bijection σ : A → A. We denote the set of all
permutations of A as the set Sn, where n is the number of elements in A.
The size of Sn, that is, the number of permutations of A, is always n!. Let’s
define a relation on the set of permutations such that

∀σ, τ ∈ Sn σ ∼ τ if σ (1) = τ(1)

where σ (1) is the first element of σ . Clearly, σ (1) = σ (1); if σ shares τ’sWith respect to the para-
graph above, that we are
“identifying” members of A
which are alike in their first
element.

first element, then the converse is true; finally, if ϕ shares a first element
with both σ and τ , then so do σ and τ . Thus, our relation is an equivalence
relation.

2. Let S be the set of all sets (!). Define the following relation for all A, B ∈ S:

|A| = |B| =⇒ A ∼ B

Once again, this is an equivalence relation.

P but not L Divisibility over N: a|a always, a|b and b|c =⇒ a|c, but for a = 5 and b = 3
neither a|b nor b|a is true.

P and L Greater than or equal to in R: a ≥ a always, a ≥ b and b ≥ c =⇒ a ≥ c, and
for any a, b ∈ R, either a ≥ b or b ≥ a.

...with P being a partial order relation, and L a linear one.
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Equivalence Classes

Let S be a set and Si ∈ S are subsets indexed by I . We say S is a disjoint union of
Si ∀i ∈ I if S =

⋃
i∈I

Si and if, for i , j, we have Si ∩ Sj = �. We can also say that

{Si}i∈I partitions S.

Given an equivalence relation on A with x ∈ A, define the equivalence class of x,
denoted [x], to be the set

[x] = {y ∈ A : x ∼ y}

We then have observe the following facts:

2.1 Characterization of Equivalence Classes

1. The equivalence classes of A form a partition of A

2. Any partition of A is a set of equivalence classes for a particular equiv-
alence relation.

Proof.Lemma: Let X be an equivalence class and a ∈ X, then X = [a]

Since X is an equivalence class, X = [x] for some chosen x ∈ A. Let a ∈ X. If
b ∈ [a] then b ∼ a and a ∈ [x] also implies a ∼ x.

=⇒ b ∼ x =⇒ b ∈ [x] =⇒ [a] ⊆ [x]

As a ∼ x, we have x ∈ [a], so we also have [x] ⊆ [a] =⇒ X = [a] //

We can see immediately from the lemma that every a ∈ A is in some equiva-
lence relation (namely, [a]). What we need to show, then, is that ∀ equivalence
relations X and Y , X ∩ Y , �, X and Y must be the same.

Let a ∈ X ∩ Y . Then, from our lemma, [a] = X and [a] = Y =⇒ X = Y , and
we are done.

With this under our belt, we can refer back to some of our examples:

If σ (1) = i, then its equivalence class [i] is all permutations such that,
too, σ (1) = i. {[i]}i∈I partitions the set of all permutations. For positive
integer-valued permutations, the index set I is just numbers 1,..., 9.

Let an equivalence class of a set A be all sets with the same cardinality. For
infinite, countable sets, the corresponding equivalence class is [ℵ].

Let {Xi}i∈I be a partition of the set A. If x ∼ y for x, y ∈ A, then ∃i ∈ I such that Proposition 2.1

both x and y ∈ Xi .

Proof.
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We can check all the conditions of equivalence relations to verify this state-
ment:

1. Clearly, if x ∈ Xi , then x ∼ x

2. x ∼ y also holds trivially, since x ∧ y ∈ Xi =⇒ y ∧ x ∈ Xi

3. Let x ∼ z and y ∼ z. Then we have x, z ∈ Xi and y, z ∈ Xj . Thus,
z ∈ Xi ∩ Xj . We’ve already shown that, if Xi ∩ Xj , �, then Xi = Xj ,
which is what we have here.

∴ x, y ∈ Xi =⇒ x ∼ y

Define the complete set of representatives of a set A as all {ai , i ∈ I ⊆ A} such that
the set of equivalence classes is exactly {[ai], i ∈ I}, with no repetitions.

For example, if S is the set of students in MATH 235, and for x, y ∈ S, x ∼ y
if they share the same birthday, we can create an index set B of all birthdays
corresponding to at least one person. Then, {xb b ∈ B} is the complete set of
representatives of S.
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III Number Systems

complex number primer

Define the set of complex numbers:

C = {a + bi : a, b ∈ R} with i =
√
−1

We typically refer to a member of C as z ∈ C. The complex conjugate of z, notated
z, has b→ −b. Visually, we have z reflecting z over the real axis in the complex
plane.

z = a + bi

z = a − bi

We can also write z as a combination of its real and imaginary parts: z =ℜ(z) +
ℑ(z)i. When adding and subtracting complex numbers, we consider their real
and complex components separately, as though they were vector-valued (in many
ways, they are). For example, we have:

[a + bi] + [c + di] = [a + c] + [b + d]i

Note the following identities for z = x + yi:

1a. z + z = 2ℜ(z) 1b. z − z = 2ℑ(z)i =⇒ x = z+z
2 y = z−z

2

2. z1 + z2 = z1 + z2

We define multiplication using the identity i2 = −1 and the condition that the
distributive property be preserved:

z1 · z2 = (x1 + y1i)(x2 + y2i) = (x1x2 − y1y2) + (x1y2 + x2y1)i
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Our basic properties of multiplication and addition are then preserved:

(z1 + z2) + z3 = z1 + (z2 + z3) z1(z2z3) = z1(z2z3)

z1 + z2 = z2 + z1 z1(z2 + z3) = z1z2 + z1z3

z1z2 = z2z1

for addition for multiplication

Further, we have that z1z2 = z1 · z2, which is maybe unexpected. All of the above
identities can be verified with some computational proofs.

Define the magnitude (or absolute value) of the number z = x + yi to be

|z| =
√
x2 + y2

This implies two other identities, that

z · z = |z|2 and |z1z2| = |z1| · |z2|

To round off our construction of imaginary numbers, we have the inverse: 1
z = z

|z|2
.

yi

x z

R

ℑ

One can verify that 1
z · z = 1

Finally, we have that complex numbers satisfy the triangle inequality, i.e.

|z1 + z2| ≤ |z1| + |z2|

Polar Representations

For any point z ∈ C, we can express it’s coordinates in the real-imaginary plane
in terms of polar coordinates, where

z = r cos θ + r sin θi

Using trigonometric identities, we can then express the product of z1z2 as

z1z2 = r1r2 [cos(θ1 + θ2) + sin(θ1 + θ2)i] =⇒ z1z2 = (r1r2, θ1 + θ2)

where z1 = (r1, θ1) and z2 = (r2, θ2). We can see from this equation that products
produce a linear stretch and rotation.

Solving Polynomials in C

We can also consider the roots of polynomials in C:

• x2 + 1 = 0 =⇒ x = ±i
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• For x2 + u = 0, we have two solutions (unless u = 0). First, take u = (−r,−θ).
Then x = (

√
r, θ2 ) or x = (

√
r, θ2 + π) may be solutions. Notice that, in the

latter solution, x2 has a rotation of θ + 2π, where the 2π has no impact.

3.1 The Fundamental Theorem of Algebra
Any polynomial anxn + ... + a0 with ai ∈ C, n > 0, an , 0 has a complex root.

Example:

Let n > 0 with xn = 1. We see from above that this equation has complex roots. In
fact, for each n, there are n complex roots of one (these are called roots of unity).

We can express 1 in the complex plane as (1, 2πk) in polar coordinates for any k.
An nth root of 1 must also be of the form (1, something). For this something, we
have that 2πk

n · n equals our θ expression for 1. Thus, x = (1, 2πk
n ) solves xn = 1.

Note that k takes values k ∈ [1, n].

3.2 Factorizing Complex Polynomials
Let f (x) = anx

n + ... + a1x + a0 be a complex polynomial of degree n. Then,
we have that

f (x) = an

n∏
i=1

(x − zi)

where z1, z2, ..., zn are the complex-valued roots of f (x) such that any root of
f (x) is necessarily zi .

De Moivre’s Theorem

Let {zn}n≥1 be a sequence of complex numbers. We can define convergence the
following way

lim
n→∞

|zn − z| = 0

Define the complex exponential function

ez = 1 +
z
1

+
z2

2
+ ... +

zn

n
+ ...

We can then say the following about this function:

1. This series converges absolutely for any z ∈ C

2. ez1+z2 = ez1 · ez2

3. If θ is a real number, then
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3.3 Euler’s Identity
eiθ = cos θ + i sin θ

This last fact is particularly significant. Note that |eiθ | = 1 always.

Let z = ex+yi . Then we can write this number in polar coordinates as (ex, y), usingProposition 3.1

cos θ and i sin θ substitutions.

rings

Consider the sets Z,C,R,N, etc. For any two elements in any of these sets, their
product and their sum will remain in this set. For example, define Z[i] = {a + bi :Sometimes called “closed un-

der addition/multiplication” a, b ∈ Z}. Then a + bi + c + di = (a + c) + (b + d)i ∈ Z[i]. These are rings.

Define a ring R as a set equipped with two operations:

R × R→ R : (a, b)→ a + b and R × R→ R : (a + b)→ a · b

where the left operation is called “addition,” and the right “multiplication.” We
have that the following axioms must hold.

1. Addition is commutative: a + b = b + a ∀a, b ∈ R

2. Addition is associative: a + (b + c) = (a + b) + c

3. There exists a zero element 0 s.t. a + 0 = a

4. There exists an inverse in addition: ∀a ∈ R ∃b ∈ R s.t. a + b = 0

5. Multiplication is associative: a · (b · c) = (a · b) · c ∀a, b, c ∈ R

6. There exists an identity element 1 s.t. a · 1 = 1 · a = a

7. Addition and multiplication are distributive:

a · (b + c) = a · b + a · c and (b + c) · a = b · a + c · a

Define M2(Z) and M2(R) as follows:

M2 =
(
a b
c d

)
with a, b, c, d ∈ Z or in R, respectively.

Then, for both M2(Z) and M2(R), we have(
a b
c d

)
+

(
x y
z w

)
=

(
a + x b + y
c + z d + w

)
and

(
a b
c d

)
·
(
x y
z w

)
=

(
ax + bz ay + bw
cx + dz cy + dw

)
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from linear algebra. We can see that these relations satisfy the axioms we estab-
lished (e.g. matrix multiplication is not commutative, but addition is). Note that
we do not require an inverse for multiplication.

Define a field to be a multiplicatively commutative, non-zero ring R such that
∀ x ∈ R with x , 0, ∃ y ∈ R such that xy = yx = 1. A ring may be commutative,
but not a field.

The zero ring, {0}, is not quite a field, since it is not non-zero. However, it retains
all other qualities. For any element, we have 0 + 0 = 0 + 0 = 0 = 0 · 0 = 0 · 0, to be
pedantic. Also, we have 1 · 0 = 0 for 1 = 0. Conversely, we have that 1 = 0 implies
that we are working with the zero ring.

Examples:

Z,Q,R,C,Z[i], and Q[i] are all commutative rings.

Q,R,C,Q[i] are fields, whereas those not included from above are not.

M2(Z) and M2(R) are not commutative, and therefore not fields.

Some immediate consequences from the ring axioms:

(a) 0 is unique. In other words, if ∃x ∈ R such that x + a = a, then x must be 0.
Our proof is as follows:

0 + x = x since 0 is the zero-element, and x + 0 = 0 from above =⇒ x = 0

(b) 1, too, is unique, i.e. if there exists x ∈ R such that x · a = a · x = a, then
x = 1. Once again, our proof is simple:

1 · x = x, since 1 is the identity element, and 1 · x = 1 from above =⇒ x = 1

(c) The element b : a + b = 0 is uniquely determined by a. We denote this b as
−a. Note the following: −(−a) = a and −(x + y) = −x − y.

(d) Lastly, x · 0 = 0

Subrings

Let R be a ring. We define a subring to be a subset S ⊆ R such that:

1. 0, 1 ∈ S

2. x, y ∈ S =⇒ x + y ∈ S,−x ∈ S, x · y ∈ S

Check for yourself that these conditions satisfy the ring axioms. In other words,
any subring is itself be a ring.
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Examples:

Z ⊆ Q ⊆ R ⊆ C are subrings

Z ⊆ Z[i] ⊆ Q[i] ⊆ C are subrings

M2(Z) ⊆ M2(R) are subrings

R = {f : R→ R} is a ring, where f ∈ R, g = 0 is the zero element, and h = 1 is the
1 element. Here, R is commutative, but it is not a field (prove for yourself).

{f : R→ R} with f continuous is a subring.

{f : R→ R} with f (x) ∈ Z is a subring.

{f : R→ R} with |f (x)| ≤ 1 ∀x ∈ R is not a subring.

arithmetic on integers

Let a, b be integers with b , 0. Then, there exists unique integers q and r suchProposition 3.2

For example, if a = 17 and
b = 5, then choose q = 3 so
that a − qb = 2, which is our
residue (notice that r < |b| as
required).

that
a = qb + r with 0 ≤ r ≤ |b|

In other words, all integers may be represented as a product of two other non-zero
integers q and b, plus a residue r.

Proof. Assume that b > 0. Let S := {a − bx : x ∈ Z a − bx ≥ 0}.

Lemma: S , �. If a ≥ 0, take x = 0 =⇒ S = a. If a < 0, take x = a =⇒ S =
a(1 − b), where a < 0, 1 − b ≤ 0 =⇒ S ≥ 0. //

With S nonempty, take r to be the minimal element of S. Then r = a − bq for
some q ∈ Z =⇒ a = bq + r. It remains to show that 0 ≤ r < |b|, which is left
as an exercise.

We say that, for any a, b ∈ Z, a divides b if b = ac for some c ∈ Z. This is notated
a|b. The following are some consequences of this definition:The proofs for these are rel-

atively simple and are good
exercise. (1) 0 is divisible by any integera (4) a|b and a|c =⇒ a|(b ± c)

(2) 0 only divides 0 (5) a|b =⇒ a|bc for any c ∈ Z

(3) a|b =⇒ a| − b (6) a|b and b|a =⇒ a = ±b

Proof of (6).
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Assume that a or b = 0. Then (6) holds trivially. Assume both a and b are
nonzero. Then we have a = bc and b = ad

=⇒ a = acd =⇒ 1 = cd, since a nonzero. Thus we have that c = d = 1 ∨ c =
d = −1 =⇒ a = (1)b ∨ a = (−1)b

Let a, b be integers, with at least one nonzero. The greatest common divisor (or
gcd(a, b), or (a, b), as you like) of a and b is the greatest positive integer that
divides both a and b.

Note that, if both a and b are nonzero, then d = gcd(a, b) ≤ min{|a|, |b|}. For a proof,
take d|a =⇒ a = dc, meaning |a| = |d||c| ≥ |d| = d. d ≤ |b| is shown similarly.

3.4 Bézout’s Identity
Let a, b ∈ Z, at least one nonzero, with d = gcd(a, b). Then:

1. ∃u, v ∈ Z such that d = ua + vb

2. d is the minimum positive integer of the form ua + vb

3. Every common divisor of a and b itself divides d

Proof.Let S := {ma + nb : m, n ∈ Z, ma + nb > 0}

Note that S , � (one can choose u = a and v = b, and since a2 and b2 are
therefore positive, S contains the element a2 + b2). Choose D ∈ S to be the
minimal element of S.

Also, we have that D |a and D |b =⇒ D ≤ d. Let E be any common divisor of
both a and b. E|a =⇒ E|ua and E|b =⇒ E|vb, and thus E|ua + vb, or E|D.
Thus, any common divisor of a and b will further divide D =⇒ d|D, and we
have D = d.

Example:

Consider gcd(7611,592). As it turns out, there exists the following equation:
195 · 7611 − 2507 · 592 = 1. Once cannot minimize further, so we know 1 is the
greatest (and only) common divisor. But how does one come up with this?
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The Euclidean Algorithm

The following will determine the gcd of any two integers a, b.

To demonstrate, consider
gcd(48, 27):

48 = 27 ∗ 1 + 21
27 = 21 ∗ 1 + 6
21 = 6 ∗ 3 + 3
6 = 3 ∗ 2

Our last non-zero residue
was 3, and thus (48, 27) = 3.

1. Let a, b > 0 with a ≥ b. This assumption maintains generality, since gcd(a, b) =
gcd(−a, b) = gcd(a,−b). If b|a, then clearly gcd(a, b) = b, and vise-versa. Sup-
pose not.

2. By theorem, we have

a = bq0 + r0 with 0 < r0 < b
b = r0q1 + r1 with 0 < r1 < r0
r0 = r1q2 + r2 with 0 < r2 < r1
...
rt−2 = rt−1qt + rt with 0 < rt < rt−1
rt−1 = rtqt+1 + 0

where rt is the last non-zero residue. As it turns out, rt = gcd(a, b)

Proof. Write a = r−2 and b = r−1. We’ll prove by induction that rt divides both rt−i
and rt−i−1 for all 0 ≤ i < t + 1 (this would imply that rt divides both a and b).

Base case: for i = 0, we have rt |rt and rt |rt−1. The first statement is trivial; for
the second, note that rt−1 = rtqt+1.

i → i + 1. From above, we have

rt−i−2 = rt−i−1qt−i + rt−i

We need to show that rt |rt−i−2, or that rt |rt−i−1qt−i + rt−i

Since ∃X : rtX = rt−i−1qt−i and ∃Y : rtY = rt−1, we have rt(X+Y ) = rt−i−1qt−i+
rt−1. Thus, rt divides rt−i−2 =⇒ rt |rt−i and r |tt−i−1 for 0 ≤ i < t + 1, or rt |a and
rt |b. It remains to show that, if rt divides the “previous two” rt’s as proven, it
is the greatest common divisor of a and b.

primes

Let p ≥ 2 be a integer. We say that p is prime if its only positive divisors are p and
1. Numbers which are not prime are called composite.

Every natural number n ≥ 2 is a product of prime numbers (i.e. all numbers haveProposition 3.1

a “prime factorization”).

Proof.
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We’ll show by induction. Base case: for n = 2, n is clearly a product of primes

n→ n + 1: Let n be prime. If we take n + 1 to be prime, then we are done. If
n + 1 is not a prime, then n + 1 = rs with 1 < s ≤ n. Since r and s are less than
n + 1, we know that they are products of primes.

∴ n + 1 is a product of primes.

Thus, if n is positive, then n = εp1p2...pk with ε = 1, and if n is negative, then
n = εp1p2...pk with ε = −1.

Sieve of Eratosthenes Detour

Let n ≥ 2 be an integer. If n is not prime, then n is divisible by some prime
1 < p ≤

√
n. As proof, consider that a non-prime integer may be written as a

product of 2 or more primes. If all of these primes are greater than
√
n, then their

product is greater than n. Thus, we require at least one prime that is ≤
√
n.

From here, one can algorithmically “cancel out” all non-primes from a set of
numbers. The following theorem will strengthen the proposition above.

3.4 Fundamental Theorem of Arithmetic
Let n be a non-zero integer. Then the prime factorization

n = εp1p2...pk

is unique.

Proof of Theorem

Proposition 3.2

Proof of Proposition.

Let p ≥ 2 be an integer. Then the following are equivalent:

(a) p is prime (b) If p|ab, where a, b are non-zero integers, then p|a or p|b.

Assume (2). Suppose p = st, a product of two integers. wlog, assume s, t
are positive (else, let s = −s, t = −t). Then by (2) we have s = ωp. Then
p = st = pωt, which are all positive integers.

=⇒ ω = t = 1, and then p = s =⇒ p has no non-trivial factors, and is prime.

Assume (1). Given that p|ab, we need to show that either p|a or p|b. If p|a,
then we are done. If p ∤ a, we need to show p|b.

Since p ∤ a, we have that gcd(p, a) = 1 (note that p is prime to see why). Then
we have 1 = up+va for some u, v ∈ Z. Multiplying by b, we get b = upb+vab.
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p|ab =⇒ p|vab and p|p =⇒ p|upb =⇒ p|(vab + upb) =⇒ p|b

We’ll show the main theorem by induction. Consider the following two prime
factorizations: n = εp1p2...pk and n = µq1q2...pl

We will need to show that pi = qi , µ = ε, and k = l. Let i = 1 be our base case:
we have n = εp1 = µq1, implying n is itself a prime number, with a fixed sign,
and so p1 = q1 trivially.

i − 1→ i: we have that k ≥ 1 and l ≥ 1. Assume wlog that p1 ≤ q1

p1|n =⇒ p1|q1q2...ql

and thus p1 divides some qi . However, since the chosen qi must be prime, we
can conclude that p1 = qi

Further, we have p1 ≤ q1 ≤ qi with p1 = qi =⇒ p1 ≤ q1 ≤ p1 =⇒ p1 = q1.

=⇒ n
p1

= p2...pk = q2...ql . However, we have that p2 = q2, ..., pk = ql by our
induction hypothesis.

For q1 ≤ p1, the proof will be
identical.

Proposition 3.4
We will consider some immediate corollaries, the first of which being that there are
infinitely many prime numbers. One proves this with a diagonalization argument.

For non-zero integers a and b, a|b iffProposition 3.5

a = pa1
1 pa2

2 ...pann =⇒ b = p
a′1
1 p

a′2
2 ...p

a′n
n with a′i ≥ ai

where pi are distinct primes, and ai may be zero (this allows us to disregard
primes which make up b, but not a).

Proof. ( =⇒ ) Suppose we can write a and b in this fashion. Then we have b =

pa1
1 pa2

2 ...pann p
a′1−a1
1 p

a′2−a2
2 ...p

a′n−an
n = a · pa

′
1−a1

1 p
a′2−a2
2 ...p

a′n−an
n , so a|b.

(⇐= ) Let a|b. Since a|b, b = ak for an integer k.

We order primes as follows: let p1, ..., pl be primes contained in the unique
factorization of k that are also contained in that of a. Label their exponents ai
and bi for a and k, respectively. Let pl+1, pl+2, ..., pm be primes in the unique
factorization of a that are not in that of k. Finally, let pm+1, ..., pn be primes in
the factorization of k which are not in that of a, and label their exponents bi
as well. We can then write:

a = pa1
1 ...pall p

al+1
l+1 ...p

am
m p0

m+1...p
0
n and k = pb1

1 ...pbll p
bm+1
m+1 ...p

bn
n
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Thus, b = ak = pa1+b1
1 ...pal+bll pa+l

l+1...p
am
m pbm+1

m+1 ...p
bn
n . This is precisely p

a′1
1 ...p

a′n
n .

Let a = pan1 ...pann and b = pb1
1 ...pbnn for distinct primes pi (their exponents may be Proposition 3.6

0). Then

gcd(a, b) = p
min(a1,b1)
1 ...p

min(an,bn)
n and lcm(a, b) = p

max(a1,b1)
1 ...p

max(an,bn)
n

3.5 Fundamental Theorem of Algebra for Q
For any non-zero rational number q ∈ Q, we have the unique prime factor-
ization q = pa1

1 pa2
2 ...pamm

We’ll show that
√

2 is irrational using the fundamental theorem. Let
√

2 be rational, Example

with q = a
b for non-zero integers a, b ∈ Z

Then
√

2 = pa1
1 pa2

2 ...pamm , and this is unique.

=⇒ 2 = p2a1
1 p2a2

2 ...p2am
m , and this too is a unique factorization.

However, since 2 is prime, we know that its factorization is 2 = 21

2 = p2a1
1 =⇒ p1 = 2 and 2a1 = 1

=⇒ a1 = 1/2, which is a contradiction.  

congruences

Fix n > 1, an integer. Define the relation on Z

x ∼ y if n|(x − y)

We also notate x ≡ y (mod n) or x ≡ y, and say that x is congruent to y. For
example, if n = 2, then x ≡ y if they have the same parity. Note that x ≡ y is an
equivalence relation:

Reflexive: x − x = 0, and n|0, so x ≡ x

Symmetric: n|(x − y) =⇒ n| − (x − y), so n|y − x

Transitive: Given that x ≡ y and y ≡ z, we have n|(x − y) + (y − z), and thus n|x − z

We can also describe this relation’s set of representatives, i.e. the set of elements
which disjointly and completely defines all equivalence classes. It is precisely the
set {0, 1, ..., n − 1}.
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As proof, note that all integers x can be written as qn + r, with 0 ≤ r < n =⇒
x − r = qn =⇒ n|x − r, or simply x ≡ r. We can thus deduce that, for any x ∈ Z,
it will be congruent to r ∈ {0,1, ..., n − 1}. To show their respective classes must
be disjoint, assume that x ≡ r1 and x ≡ r2, with 0 ≤ r1 < r2 < n as required. Then
n|x − r1 and n|x − r2 =⇒ n|r2 − r1. But r2 − r1 , 0, and n > r2 − r1, so n cannot
divide this  

Instead of denoting these equivalence classes [0], [1], ..., [n − 1], write 0, 1, ..., n − 1.
Define the set of all equivalence classes for x ≡ y(mod n) as Z/nZ. Define further,
under this set, the following for addition and multiplication:

i + j = i + j and ij = ij

In this case, 0 = 0, 1 = 1, and −i = −i (the inverse of addition). Let’s play around
with i for a moment:

With n = 13, we’ll compute 5 · 6 − 5. We first have that 5 · 6 = 30. For someExamples

x ∈ Z, if we have 13|x − 30, then 13q + 30 = x for an integer q, but this also
holds for 13(q + 2) + 4 = x.

This way of writing preserves our condition that r < n = 13, and thus 30 = 4.
In any case, if r ≥ n or r < 0, r can be reduced to the remainder of r when
divided by n.

We then have only to compute 4 − 5, or 4 + −5 = −1 = 12, which is our final
answer.

Importantly, Z/nZ is a commutative ring. A proof for this begins by showing that
our stated definitions are well-defined, i.e. that x ≡ x′ and y ≡ y′ should imply
that x + y = x′ + y′ and similarly xy = x′y′. Then, of course, one has to trudge
through demonstrating the 7 axioms.

Here are a few more examples of modular arithmetic (what we were doing in the
example above–some call it “clock arithmetic”), with n = 4:The inclusion of 4 in the

right-most columns is pedan-
tic; to be clear, 4 = 0. + 0 1 2 3 4

0 0 1 2 3 0
1 1 2 3 0 1
2 2 3 0 1 2
3 3 0 1 2 3
4 0 1 2 3 0

and

× 0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 0
2 0 2 0 2 0
3 0 3 2 1 0
4 0 0 0 0 0

Define a zero divisor as an element x ∈ R, with x , 0, such that ∃ y , 0 with either
xy = 0 or yx = 0.
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Suppose we have that R is a commutative ring. If R contains any zero divisors, Proposition 3.7

then R is not a field. As proof, assume that this is not true, and pick x , 0 and
y , 0 with xy = 0. Since R is a field, we have that ∃x−1 with xx−1 = 1. Thus,
(xx−1)y = y but x−1(xy) = 0 

Using this fact, we can prove that Z/nZ is a field if and only if n is prime. Proposition 3.8

( =⇒ ) Suppose that n > 1 is not prime. Then we have that n = ab for integers (Partial) Proof.

a, b ∈ [2, n − 1]. Thus, a , 0 and b , 0, but a · b = ab = n = 0. Thus, R has zero
divisors, and it cannot be a field. For the case n = 1, note that Z/1Z will have 1
element, i.e. Z/1Z is the zero ring, and is not a field.

We denote the ring Z/nZ as Fp when n = p is prime. This ring has exactly p
elements.

fermat’s little theorem

Let p be a prime number, and let a . 0(mod p). Then we have that

ap−1 ≡ 1(mod p)

To calculate 2100 (mod 13), we have that 2100 = 296 ·24 = (212)8 ·24. From Fermat’s, Example

this is simply 18 · 24 = 24 (mod 13), which is just 3.
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IV Polynomial Arithmetic
rings of polynomials

Define the ring of polynomials over a particular ring R as

R[x] = {anxn + ... + a1x + a0 : ai ∈ R}

with n ≥ 0. Note that, since n may be 0, we can construct the zero polynomial,
where both n and a0 = 0. Addition is well defined on this ring, with

(anx
n + ... + a1x + a0) + (bmx

m + ... + b1x + b0)

= anx
n + ... + (am + bm)xm + ... + (a1 + b1)x + (a0 + b0)

assuming n ≤ m wlog. Similarly, multiplication is given by

(anx
n + ... + a1x + a0)(bmx

m + ... + b1x + b0)

= cn+mx
n+m + ... + c1x + c0 with ci = a0bi + a1bi−1 + ... + aib0

We say that a polynomial f (x) is monic if an = 1. f (x) is said to be of degree n
if an = 0. And finally, define the constant polynomial when f has degree 0, i.e.
f (x) = a with a , 0.

Though it won’t be shown, R[x] with addition and multiplication as defined
above is commutative ring. Further, 0 is the zero polynomial, 1 is the constant
polynomial 1, and −f is simply −(anxn + ... + a1x + a0).

division of polynomials

Let R[x] be such that the multiplication of any two non-zero elements is non-zeroProposition 4.1

(this is called an integral domain, and defines most rings we’ve considered before).
Then if f (x) and g(x) ∈ R[x] are non-zero, then we have that

deg[f (x)g(x)] = deg[f (x)] + deg[g(x)]

Suppose deg(f ) = n and deg(g) = m. We have that f (x) = anx
n + ... + a0 andProof.

g(x) = bmx
m + ... + b0. Then we have that f (x)g(x) = anbmx

m+n + lot. Since R is“lower-order terms”

an integral domain, anbm , 0, so deg(f g) = m + n = deg(f ) + deg(g), and we are
done.
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4.1 Division of Polynomials
Let f (x), g(x) be two polynomials in F[x], with g(x) , 0. Then there always
exist two unique polynomials q(x) and r(x) in F[x] such that

f (x) = q(x)g(x) + r(x)

with r(x) either 0 or with deg(r) < deg(g)

As we’ve done before, define f |g for functions in F[x] as the property f (x) = Proposition 4.2

q(x)g(x) for some non-zero q(x) ∈ F[x]. The following still hold:

1. f |g =⇒ f | − g

2. f |g =⇒ f |gh for any h ∈ F[x]

3. f |g and f |h =⇒ f |g ± h

We define the gcd of two not-both-zero polynomials f and g as the monic poly-
nomial h of largest degree for which h|f and h|g. This is unique.

4.2 Bézout’s for Polynomials
Let f , g be not-both-zero polynomials with a greatest common divisor h.
Then there exists functions u, v ∈ F such that

h = uf + vg

Further, h is the smallest-degree monic polynomial satisfying this equation.

As with integers, if d is the gcd of f and g, then any common divisor h divides d. Corollary 4.2.1

Proof of corollary.Since h|f and h|g, write hq1 = f and hq2 = g for polynomials q1, q2. We can
write the gcd of f and g as d = uf + vg for some polynomials u, v. Then
d = uhq1 + vhq2 = h(uq1 + vq2). Thus, h|d.

Euclidean Algorithm for Polynomials

Just as we’ve had before for integers, there is a Euclidean algorithm for finding
the gcd of two functions f and g ∈ F[x]. Let g(x) = anx

n + lot.

If g |f , then a−1
n g(x) is the gcd of f and g. Suppose not, and define indefinitely: We multiply by a−1

n since the
gcd of polynomials is de-
fined to be monic. A similar
constant is factored in after
the Euclidean algorithm.
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f (x) = q0(x)g(x) + r0(x)

g(x) = q1(x)r0(x) + r1(x)

r0(x) = q2(x)r1(x) + r2(x)
...

rt−2(x) = qt(x)rt−1(x) + rt(x)

rt−1(x) = qt+1(x) rt(x)

Let rt(x) = cmx
m + ... + cm.The gcd of f and g is c−1

m rt(x).Proposition 4.3

associates
F× denotes the real mem-
bers of F, used to differenti-
ate polynomials in F[x] with
their coefficients, for exam-
ple.

Let F be a field, f , g ∈ F[x] be two non-zero polynomials. We say that f and g are
associates if ∃α ∈ F× such that αf = g. This is an equivalence relation on the set
of polynomials. As proof, see that F being a field =⇒ α−1 exists.

A non-constant polynomial f , with deg(f ) > 0, is called irreducible if, for any g
with g |f , g is either an associate of 1 or of f Suppose that deg(f ) ≥ 1. Then theA similar thought: if p is a

prime number, for m|p, ei-
ther m = ±1 or m = ±p.

following are equivalent:

(1) f is irreducible (2) f |gh =⇒ f |g or f |h.Proposition 4.4

This is precisely an analog for what we did with prime numbers, and the proof,
too, is similar:

( =⇒ ) Suppose f is irreducible and f |gh. If f ∤ g, then gcd(f , g) = 1. We canPartial Proof

then write 1 = uf + vg for some u, v ∈ F[x]. Thus, h = uf h + vgh, but f |uf h, and
f |ghu, so f |h.

The following is a lemma to an upcoming theorem. Let f be any non-zero polyno-
mial in F[x]. Then f can be written as

f = cf1f2...fn with all fi ∈ F[x] irreducible and monic, with c ∈ F×

Proof. By induction, suppose deg(f ) = 0. Then f is a constant, and f = f ✓

deg(n)→ deg(n + 1): case (1): If f is irreducible, ∃c such that f = cf1 with f1
monic and irreducible.

Case(2) If f is reducible, write f = f1f2 with deg(f1) < deg(f ), deg(f2) <
deg(f ). Then each f1, f2 can be written as c1p1...pa and c2pa+1...pb, and thus
f1f2 = c1c2p1...pb, and we are done.
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4.3 Unique Factorization for Polynomials
Let f ∈ F[x] be a non-zero polynomial. Then we have that

f = cpa1
1 ...parr

for c ∈ F× and pi monic, distinct, and irreducible polynomials ∀ i. Moreover,
c and all pi are uniquely determined.

Some important results follow. Suppose f and g ∈ F[x] are nonzero. Then f |g if Corollary 4.3.1

and only if
f (x) = cf1(x)a

′
1 ...fr(x)a

′
r g(x) = df1(x)a1 ...fr(x)ar

where c, d ∈ F× and all fi are irreducible monic. Lastly, we have that 0 ≤ a′i ≤ ai

( =⇒ ) We can easily find and h such that g = f h using the form above: h = Proof.

dc−1f1(x)a1−a′1 + fr(x)ar−a
′
r . Thus, we conclude f |g

( ⇐= ) Assume now that f |g. We then have g = f h. We can write the following
wlog:

f = cf
a′1

1 ...f
a′s
s and h = ef b1

1 ...f bs
s f as+1

s+1 ...f ar
r

Then we have that g = cef
a′1+b1

1 ...f
a′s+bs
s f as+1

s+1 ...f ar
r . One lets d = ce, ai = a′i + bi , and

we are done.

If f , g are non-zero polynomials with f = cf a1
1 ...f ar

r and g = df b1
1 ...f br

r , c, d ∈ F×, Corollary 4.3.2

and ai ∈ Z, then the gcd of f and g can be written as follows:

gcd(f , g) = f
min{a1,b1}

1 ...f
min{ar ,br }
r and lcm(f , g) = f

max{a1,b1}
1 ...f

max{ar ,br }
r

where the lcm is the smallest monic polynomial c such that f |c and g |c.

Let f = (x + 1)(x + 2) and g = x(x + 1)2. Consider the minimum and maximum Example

exponents of these common irreducible polynomials (note: all linear polynomials
are irreducible). Then gcd(f , g) = (x + 1) and lcm(f , g) = x(x + 1)2(x + 2).

identifying irreducible polynomials

Just as we asked for integers and primes: how do we tell if a polynomial is irre-
ducible? While there is no sure algorithm to answer this question, the following
come in handy:

1. If f ∈ F[x] has a root, then it is reducible, and write f (x) = (x − α)g(x). The
converse for this is not necessarily true: if we have a reducible polynomial,
is still may have no roots in F. If f is irreducible, then f has no roots in F.
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2. Any linear polynomial, ax + b, a , 0, is irreducible.

⋆ 3. If f (x) ∈ F[x] has degree 2 or 3, then f is reducible iff f has root in F.

4. In C, the only irreducible polynomials are the linear polynomials. We saw
previously that for any f ∈ C[x]

f (x) = c

deg(f )∏
i=1

(x − αi)

and the result follows.

5. In R, any irreducible polynomial has either degree 1 or 2.

6. The number of roots of f ∈ F[x] is at most deg(f ).

Proof of ⋆ . ( =⇒ ) If f (α) = 0, then f (x) = (x − α)g(x) for some g(x) ∈ F[x], and is thus
reducible. ( ⇐= ) If f is reducible, we have f (x) = g(x)h(x). Then deg(f ) =
deg(g) + deg(h). Since deg(f ) = 2 ∨ 3, assume wlog that deg(h) = 1. Then
h(x) = ax + b for some a, b ∈ F. Then α = −ba−1 is a root of h and thus f .

identifying roots of f (x )

Let f (x) ∈ F[x]. The criterion outlined in (1) and (3) from above will be particular-
ity useful. We’ll focus a bit on how to pinpoint whether a polynomial has a root
or not, which will often indicate whether it is reducible or not.

4.4 Characterization of Roots in Q[x]
Let f (x) = anx

n + ... + a1x + a0 be a non-constant polynomial with integer
coefficients. If f has a root, q = s

t , where q is a reduced fraction, then

t|an and s|a0

We have f
(
s
t

)
=

(
s
t

)n
an +

(
s
t

)n−1
an−1 + ... +

(
s
t

)
a1 + a0 = 0. We can multiply by bnProof.

to yield

snan + sn−1tan−1 + ... + stn−1a1︸                                  ︷︷                                  ︸
Divisible by s

+a0t
n = 0 snan + sn−1tan−1 + ... + stn−1a1 + a0t

n︸                                  ︷︷                                  ︸
Divisible by t

= 0

Thus, s|a0t
n =⇒ s|a0 and t|snan =⇒ t|an
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Consider f = xp−1 − 1. Fermat’s Little Theorem ensures that ap−1 ≡ 1 for any
a . 0 ∈ Z/pZ, so the elements a for a ∈ [1, p − 1] are roots of the polynomial
xp−1 − 1.

Since there are p − 1 elements in this set, there are at least p − 1 roots of f . Further,
since xp−1 has degree p − 1, we conclude each root a has multiplicity 1, and these
are the only roots.

=⇒ multiplying by x, all elements of Z/pZ are roots of xp − x: Proposition 4.4

xp − x =
p−1∏
a=0

(x − a)

4.5 Existence of roots in Z/pZ Suppose f (x) ∈ Z/pZ[x] is a non-zero
polynomial. Then, f has a root in Z/pZ iff gcd(f , xp − x) , 1. Thus, if
gcd(f , xp−1 − 1) , 1, f has a root.

Proof.( =⇒ ) Suppose f (a) = 0 for some a ∈ Z/pZ. Then (x− a)|f (x) and (x− a)|xp −x,
using Prop. 4.4. Thus, gcd(f , xp − x) has degree at least (x − a), and thus , 1.

(⇐= ) Now suppose that h(x) = gcd(f , xp−x) , 1. Then h(x)|xp−x =
p−1∏
a=0

(x−a).

Since h has a unique factorization, we conclude that h =
∏
a∈I

(x − a), for some

subset I ∈ [0, p − 1].

Since h(x)r(x) = f (x), when x = a ∈ I , h(a) = 0 and thus f (a) = 0.

If f ∈ R[x] is a polynomial of odd degree, then f has a root in R. Proposition 4.5

Proof.Let f = anx
n + ... + a0, and choose an > 0 wlog. For some large N we can

guarantee that f > 0, and likewise for some large, negative Ñ , f < 0. It
follows by intermidate value theorem that f = 0 for some x ∈ [Ñ , N ].
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V Rings
ideals

Recall that a ring R is a non-empty set equipped with operations addition and
multiplication:

(x, y)→ x + y and (x, y)→ xy

In the future, assume that any ring R is commutative, i.e. xy = yx.

An ideal of ring R is a subset I ⊆ R such that

(1) 0 ∈ I (2) a, b ∈ I =⇒ a + b ∈ I (3) a ∈ I , r ∈ R =⇒ ra ∈ I and ar ∈ I

One notates I ◁ R for “I is an ideal of R.” Typically, 1 < I , since we have that
1 ∈ I ⇐⇒ I = R. One concludes that I is not typically a subring.

The sets {0} and R are called the “trivial ideals” of R. Note that, if R is a division
ring (i.e. ∃a−1 : aa−1 = 1), then any non-zero ideal is I = R. As proof, see that if
a , 0 ∈ I , then aa−1 ∈ I , so 1 ∈ I . The result follows.

Let R be a commutative ring. Then we define (r) := {ra : a ∈ R} = {ar : a ∈ R},
where r ∈ R, to be the principal ideal ring of R. This set is sometimes denoted by
rR, Rr or ⟨r⟩. One can verify that (r) is an ideal:

1. Since 0 ∈ R and ra ∈ R for any a ∈ R, r0 = 0 ∈ (r)

2. ra1 + ra2 = r(a1 + a2). Since R is closed by addition, r(a1 + a2) ∈ (r).

3. For any ra ∈ (r), s ∈ R, r(as) ∈ (r)

5.1 Ideals of Z
Every ideal of Z is a principal ideal (m), notated mZ, for some integer m ∈ Z.
The complete list of ideals is precisely (0), (1), (2), (3), ...

Suppose that I is a non-zero ideal of Z. Then we can always find a positiveProof.

element a ∈ I (otherwise, pick a negative a′; then a′(−1) ∈ I is positive). Choose
the minimal element i ∈ I . Clearly (i) ⊆ I (one can check the axioms). Let j < I .
Then j = iq + r, where r < i. We have then that r = j − iq is an element of I less
than i, which is a contradiction. Let r = 0. Then j = iq, and since q ∈ Z, j ∈ (i).
The minimal positive element of (i) is i for all i ∈ Z, thus {(i) ∀i ≥ 0} are a unique
collection of all the ideals of Z.
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5.2 Ideals of F[x]
All ideals of F[x] can be written as (f ) for a unique polynomial f ∈ F[x].
Furthermore, f ∼ g ⇐⇒ (f ) = (g).

Consider an ideal I ⊆ F[x]. Choose the polynomial f ∈ I with minimal degree. Proof.

Recall that an associate of f is a polynomial αf for any α ∈ F×. Clearly αf ∈ I ,
and since deg(f ) = deg(αf ), one could just as easily choose αf as the minimal
degree element. From here, conclude that f ∼ g =⇒ (f ) = (g). Furthermore, if
(f ) = (g), then f and g’s minimal degree polynomials are such that f = g, f = gα,
or g = f α for any α. Thus (f ) = (g) =⇒ f ∼ g.

Consider now (f ). Clearly (f ) is a subset of I . Suppose g ∈ I but g < (f ). We can
write g = f q + r =⇒ r = g − f q. Thus r ∈ I , but deg(r) < deg(f ), which is a
contradiction. Set r = 0. Then g = f q, and thus g ∈ (f ). We conclude that (f ) = I
for the ideal I whose minimal degree polynomial is f .

For any two elements r, s ∈ R, we say r ∼ s, or r and s are associates, if (r) = (s).
For two polynomials, our definition of associativity remains unchanged.

homomorphisms

Let R and S be commutative rings. The function f : R → S is called a ring
homomorphism if (1), (2), and (3) hold ∀x, y ∈ R. (i), (ii), (iii) follow from these
axioms: Proposition 5.1

1. f (1R) = 1S i. f (0R) = 0S

2. f (x + y) = f (x) + f (y) ii. − f (x) = f (−x)

3. f (xy) = f (x)f (y) iii. f (x − y) = f (x) − f (y)

(i): We have that f (0S ) = f (0S + 0R) = f (0S ) + f (0R). On adds −f (0S ) to both sides Proof.

to yield 0S = f (0R)

(ii): From above, 0S = f (0R) = f (x + (−x)) = f (x) + f (−x). Adding −f (x) to both
sides yields f (−x) = −f (x)

(iii): The proof here follows from (ii).

Define the image of the homomorphism f to be Im(f ) = {f (r) : r ∈ R}. This is a Proposition 5.2

subring of S.
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One checks individually thatProof.

1. We have 0R, 1R ∈ R.
Thus f (0R) = 0S and
f (1R) = 1S ∈ Im(f )
2. Let x1, x2 ∈ Im(f ). Then
∃r1, r2 ∈ R : f (r1) = x1
and f (r2) = r2. Note that
r1 + r2 ∈ R. We have
f (r1 + r2) = f (r1) + f (r2) =
x1 + x2, so x1 + x2 ∈ Im(f )
3. Similarly, f (r1r2) =
f (r1)f (r2) = x1x2, so
x1x2 ∈ Im(f ).
4. ∃r ∈ R : f (r) = x. Then
f (−r) = −f (r) = −x, so
−x ∈ Im(f )

(1) 0S , 1S ∈ Im(f ) (3) x1, x2 ∈ Im(f ) =⇒ x1x2 ∈ Im(f )

(2) x1, x2 ∈ Im(f ) =⇒ x1 + x2 ∈ Im(f ) (4) x ∈ Im(f ) =⇒ −x ∈ Im(f )

Let f : R→ S be a homomorphism. Define the kernel of f to be

ker(f ) = {r ∈ R : f (r) = 0S} = f −1(0S )

The kernel of f is an ideal of R. Moreover, f is injective ⇐⇒ ker(f ) = {0R}, and

Proposition 5.3

f (x) = f (y) ⇐⇒ x − y ∈ ker(f )

To show that ker(f ) is an ideal of R, we first need to show 0R ∈ ker(f ). See that

Proof.

f (0R) = 0S , so this is true. Now to show a, b ∈ ker(f ) =⇒ a + b ∈ ker(f ): we have
that f (a + b) = f (a) + f (b) = 0S + 0S = 0S . Finally, to show ra ∈ ker(f ) for any
r ∈ R: f (ar) = f (a)f (r) = 0S f (r) = 0S , and we are done.

f is injective iff f (x) = f (x′) ⇐⇒ x = x′. Thus f (x)− f (x′) = 0S ⇐⇒ x− x′ = 0R.
Let r = x − x′. f (r) = 0S ⇐⇒ r = 0R, and we are done. For the last claim, see that
f (x) = f (y) ⇐⇒ f (x) − f (y) = 0S ⇐⇒ f (x − y) = 0S ⇐⇒ x − y ∈ ker(f ).

Example:

Let n ≥ 1 be some integer and define f : Z → Z/nZ, f (a) = a (i.e. maps a to
its congruence/residue class). We have that f is a homomorphism. Checking all
conditions:

1. f (1) = 1, 1 = 1Z, 1 = 1Z/nZ ✓

2. f (x + y) = x + y = x + y = f (x) + f (y) ✓

3. f (xy) = xy = xy = f (x)f (y) ✓

Observe that ker(f ) = {r : f (r) = r ≡ 0Z/nZ = 0 mod n} = {r : r ≡ 0 mod n}. This is
just the set of integer multiples of n, i.e. nr ∀r ∈ Z, sometimes denoted nZ

cosets

All our work on Z/nZ has been, more or less, a particular case of the general
theory of cosets. Let R be a commutative ring and I be an arbitrary ideal of R.
Define the following relation on R:

x ∼ y ⇐⇒ x − y ∈ I

For example, when R := Z and I := nZ, x ∼ y if x−y ∈ nZ, or if x−y are multiples
of n, or n|x − y. This is exactly x ≡ y mod n.
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x ∼ y has the following properties: Proposition 5.4

1. x ∼ y is an equivalence relation

2. Every equivalence class is of the form x + I := {x + t : t ∈ I} for a particular
x ∈ R

3. x + I = y + I ⇐⇒ x − y ∈ I

4. Either (x + I) ∩ (y + I) = � or x + I = y + I

For (1): see that x−x = 0 ∈ I , so x ∼ x. Then assume x ∼ y =⇒ x−y ∈ I . Since any Proof.

element in I multiplied by an element in R is in I , 1(x − y) = y − x ∈ I =⇒ y ∼ x.
Finally, take x ∼ y and y ∼ z. Then x − y ∈ I and y − z ∈ I , and we conclude
x − y + y − z = x − z ∈ I =⇒ x ∼ z.

For (2): consider x + I = {x + t : t ∈ I} for x ∈ R. If y ∈ x + I , we have that y = x + t
for some t. Then x − y = x − (x + t) = −t ∈ I =⇒ x ∼ y. Now assume that x ∼ y.
Then x − y := s ∈ I . We say y = x + (y − x) = x + s =⇒ y ∈ x + I . We conclude that
x + I , x ∈ R, describes all equivalence classes.

For (3): x + I is the equivalence class of x, and y + I is the equivalence class of y.
Since x + I = y + I , x ∼ y, so x − y ∈ I .

For (4): Follows from the fact that equivalence classes form a partition of R.

Define the ring R/I , “R mod I ,” to be the set of equivalence classes as defined
above. This ring is commutative, and addition and multiplication are defined as
follows:

(x + I) + (y + I) := (x + y) + I

(x + I)(y + I) := xy + I

We will notate x = x + I . This may feel familiar: x + y = x + y and xy = xy.
Furthermore, 0 = 0 and 1 = 1 for this ring.

5.3 Mapping R→ R/I
Let R be a commutative ring, R/I defined as above. The function π : R →
R/I π(x) = x is a surjective homomorphism. Furthermore, ker(π) = I

To check that π is a homomorphism, see that π(1) = 1; f (a + b) = a + b = a + b = Proof.

f (a) + f (b); finally, f (ab) = ab = ab = f (a)f (b). This is surjective too: choose
r = r + I . By definition, r ∈ R.

Now, ker(π) = {r ∈ R : π(r) = 0} = {r ∈ R : r + I = I} = {r ∈ R : r ∈ I}
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Any ideal is the kernel of some ring homomorphism. As proof, we see that, forCorollary 5.3.1

any I ▷ R, π : R→ R/I has ker(π) = I .

isomorphisms

For two rings R and S, one says that R is isomorphic to S if there exists a bijective
ring homomorphism between the two. This is notated R � S.

5.4 First Isomorphism Theorem
Let ϕ : R→ S be a surjective ring homomorphism. Let I = ker(ϕ). Then R/I
is isomorphic to S.

R/I

R S

π F

ϕ

where π : α → α and F is a bijective homomorphism

5.5 Chinese Remainder Theorem
Let m, n be integers such that gcd(m, n) = 1. Then

Z/mnZ � Z/mZ × Z/nZ

Proof. We’ll use the first isomorphism theorem. Let ϕ : Z → Z/mZ × Z/nZ with
ϕ(a) = (a mod m, a mod n). One checks that this is a surjective homomor-
phism. Also, ker(ϕ) = {a : (a mod m, amod n) = (0,0)} = {a : a = mk1, a =
nk2} = {a : n|a, m|a}. Since m, n are relatively prime, this is {mnk : k ∈ Z} =
mnZ.

By fit, Z/ ker(ϕ) � Z/mZ × Z/nZ =⇒ Z/mnZ � Z/mZ × Z/nZ

quotient rings

Let F be a field, F[x] be the ring of polynomials in F, and f (x) ∈ F[x] some non-
constant, irreducible polynomial. We define the ring F[x]/⟨f (x)⟩ to be set of cosets
generated by the principal ideal ⟨f (x)⟩.
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5.6 Elements of F[x]/⟨f (x)⟩
The cosets of the ring F[x]/⟨f (x)⟩ can be all be written as g(x) for some
unique polynomial with 0 ≤ deg(g) < deg(f )

Proof.Let h(x) ∈ F[x] with h(x) = q(x)f (x) + r(x). The degree of r is less than f .
Furthermore, h(x)− r(x) = f (x)q(x), and f (x)q(x) ∈ ⟨f (x)⟩, so h ≡ r. Thus, any
arbitrary coset will be congruent to r for some r : deg(r) < deg(f ).

5.7 Size of F[x]/⟨f (x)⟩
Let f (x) be non-constant and irreducible in F[x]. Then F[x]/⟨f (x)⟩ is a field
with qn elements, where q is the number of elements in F[x] and n = deg(f ).

Proof.We know that F[x]/⟨f (x)⟩ is a commutative ring, and, since 1 < ⟨f (x)⟩, 1 , 0.
Consider a non-zero element g : g , 0. We have that f ∤ g, since, otherwise,
g ∈ ⟨f ⟩ =⇒ g = 0. Since f is irreducible, we conclude that gcd(f , g) = 1, so
∃u(x), v(x) : 1 = uf + vg.

=⇒ 1 = u(x)f (x) + v(x)g(x), since u(x)f (x) ∈ ⟨f ⟩, so uf = 0. Thus, 1 =
v(x) g(x). We then have a multiplicative inverse for g, so F[x]/⟨f (x)⟩ is a field.

We know that F[x]/⟨f (x)⟩ ⊆ {bn−1x
n−1 + ... + b0 : bi ∈ F}, i.e. the set of poly-

nomials g with deg(g) < deg(f ) = n. To show that all polynomials of this
form are unique cosets, let g, h have degrees less than f , and suppose g = h.
Then, g − h ∈ ⟨f ⟩ =⇒ deg(g − h) ≥ n, but this can’t happen, since deg(g) < n
and deg(h) < n (unless, of course, g = h). Thus, all polynomials of the form
bn−1x

n−1 + ... + b0 are unique cosets. If there are q elements of F, this leaves
us with qn possible polynomials.

Examples:

1. Consider f ∈ F2 and the ring F2[x]/⟨x2 + x + 1⟩. It’s members are simply
the remaining polynomials of the form ax + b in F2, i.e. {0, 1, x, x + 1}. The
following describe addition and multiplication in the quotient ring:

+ 0 1 x x + 1

0 0 1 x x + 1

1 1 0 x + 1 x

x x x + 1 0 1

x + 1 x + 1 x 1 0

× 0 1 x x + 1

0 0 0 0 0

1 0 1 x x + 1

x 0 x x + 1 1

x + 1 0 x + 1 1 x
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2. Suppose we want to find a finite field with 25 elements. This is 52, so
F/f will work if deg(f ) = 2 is monic-irreducible and F has 5 elements, i.e.
F5/⟨x2 − 2⟩.

5.8 Roots in Larger Fields Let g(x) ∈ F[x] be a non-constant polynomial.
Then there is a field L ⊇ F such that g(x) always has a root in L.

Proof. One assumes wlog that g is irreducible. Otherwise, g ′ |g for some irre-
ducible polynomial, and a proof of the theorem for irreducible polynomials
=⇒ g ′(l) = 0 =⇒ f (l) = 0.

Let L := F[x]/⟨g(x)⟩. This is a field. Consider the natural map ϕ : F →
F[x]/⟨g(x)⟩ with ϕ(α) = α. One can check that this is an injective ring homo-
morphism, so the image of ϕ = {α : α ∈ F} = F is a subring of L =⇒ L ⊇ F.

Let g(x) = anx
n + ... + a0 : ai ∈ F. Note that ai = ai in L. Then when x = x, we

have g(x) = g(x), i.e. the ideal generating L, so g(x) = 0. Thus, g(x) has the
root x in F[x]/⟨g(x)⟩.
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VI Groups
Reminiscent of rings, a group G is any non-empty set equipped with a closed
operation G × G→ G : (a, b)→ ab.

Group Axioms: Consequences:

Associativity: a(bc) = (ab)c ab = ac =⇒ b = c

Neutral Element: ∃1G : a1G = 1Ga = 1G 1G is unique

Inverse Element: ∀a ∈ G ∃b ∈ G : ab = ba = 1G The inverse of a is unique

Though inverses are well defined, we never notate them 1
a , but instead write a−1.

Another consequence of the axioms is (a1a2)−1 = a−1
2 a−1

1 .

Define for a ∈ G, n ∈ Z:

an :=



1G if n=0

a · a · ... · a
n times

if n > 0

a−1 · a−1 · ... · a−1

n times

if n < 0

Our axioms imply that an+m = anam for any a, m ∈ Z. Some things clearly do
not hold for groups. For example, we do not have a 0 element, nor an addition
operation to accompany multiplication. Usually, we also have that groups are not
commutative, but they may be, and in that case we call them abelian groups. When a group is abelian, and

rings with addition always
are, we sometimes write ×
as +. This group is still
equipped with only one oper-
ation, though.

Examples:

1. The trivial group G has one element, i.e. G = {1}

2. G = Z or Z/nZ, where addition is the operator, is an abelian group.

3. If F is a field, it is especially a ring, and so (F,+) is an abelian group, but
(F,×) is too, since multiplication is commutative.

4. Consider the 2 by 2 matrix ring denoted by M2(R) =

a b

c d

 with matrix

addition and multiplication as usual. If det


a b

c d


 , 0, then inverses

exist, so M2(R)× := {M ∈ M2(R) : ad − bc , 0} is a non-abelian group under
multiplication.
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5. If F is a field, M2(F)× is a group as above. However, it is still non-abelian.
This group is sometimes denoted GL2(F).

first properties and types of groups

Define a subgroup H ⊆ G with the following properties:One sometimes denotes this
H < G.

1. 1 ∈ H 2. a, b ∈ H =⇒ ab ∈ H 3. a ∈ H =⇒ a−1 ∈ H

Define a cyclic subgroup ⟨g⟩ := {gn : n ∈ Z} with g ∈ G. In the event that our group
is equipped with addition, then this definition changes to ⟨g⟩ := {gn : n ∈ Z}.In kind, “using addition” is

only a notational change. Proving this is indeed a subgroup of G is straightforward using the closure
property of multiplication. One calls a group cyclic if it is its own cyclic subgroup,
i.e. G can be written as ⟨g⟩ for some g ∈ G (this element is called the generator).

As an example, see that Z and Z/nZ are cyclic under addition. An important
observation is that all cyclic groups are abelian, and thus all non-abelian groups
are non-cyclic.

Define the order of G, denoted |G|, and #G less often, to be the number of elements
in G. We also have a notion of order for any g ∈ G, which is the minimal n ∈ N
such that gn = 1. One notates ord(g) = n. If no such n exists, write ord(g) = ∞.

Examples:

1. The order of Z is clearly infinite. The order of any positive element k ∈ Z is
also infinite. As proof, see that nk = 0 =⇒ n = 0, remembering that we are
working with addition.

2. Let µn, for some fixed n ∈ N, be the set of nth roots of unity. (µn,×) is a cyclic
group with n elements, and µn = ⟨e 2πi

n ⟩

3. For M2(F2) as defined above, has six elements, and thus has order 6. All of

its elements have a finite order, and, for instance, ord


1 1

0 1


 = 2.

Our first big proposition about groups is that ord(g) = |⟨g⟩|.Proposition 6.1

If |⟨g⟩| is finite, since one writes g r for all integers, and especially positive integers,Proof.

there are elements in this set such that ga = gb, with a > b > 0. Then ga−b =
gb−b = gbg−b = 1. Thus we’ve found a positive a − b with ga−b = 1, so ord(g) must
be finite. By contrapositive, ord(g) = ∞ =⇒ |⟨g⟩| = ∞.
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Now fix ord(g) = n. Let a ∈ Z. By residue division, one writes ga = gqn+r =
(gn)qg r = g r . We conclude that all ga are equal to g r for some r < n. Clearly, one
can cook up an a such that its residue mod n is r for any r they’d like, so |⟨g⟩| has
at most n elements. To show this is exactly the case, see that ga , gb for a, b < n.
Otherwise, ga−b = 1, and ord(g) < n, which is a contradiction.

Permutations and Cycles

Define a permutation σ : [1, n]→ [1, n] which reorders the elements in {1, 2, ..., n}
to {σ (1), σ (2), ..., σ (n)}. There are n! ways to permute the set [1, n] (or any set with
n elements), and all permutations functions must be bijective.

We call the set Sn the symmetry group, and it contains the set of permutations
of [1, n], written Sn := {σ : [1, n] → [1, n], σ bijective}. With its operation being
compositions (of permutations), Sn is a non-abelian group for n ≥ 3, and abelian
otherwise. S2 contains the permutation

which swaps {a, b} and the
identity, which commute. S1
follows similarly.

Checking the group axioms, for permutations σ, ρ, we have that σ ◦ ρ is bijective
=⇒ ∈ Sn, and Sn is closed under multiplication. Then, see that compositions
are associative. The neutral permutation τ that sends elements ai → ai satisfies
σ ◦ τ = τ ◦ σ = σ . Finally, since σ is bijective, so is σ−1, so this is in Sn. As stated
above, |Sn| = n!

When one writes out a particular permutation, the most explicit form is a table,
where the top entry in a column is mapped to the entry below it:

σ =

1 2 3 4 5

4 3 2 1 5

 σ (Id) =

1 2 3 4 5

4 3 2 1 5


1 2 3 4 5

1 2 3 4 5


1 2 3

1 3 2


1 2 3

3 2 1


1 2 3

2 3 1

 =

1 2 3

1 2 3


This notation has obvious limitations and redundancies, so we distill these charts
into cycles, which store information about the closed “chains” of movement in the
permutation. They are written (a b c ...y z) for the integers in [1, n], and can be
understood as: a 7→ b, b 7→ c, ..., y 7→ z, z 7→ a. Sometimes a permutation requires
that multiple cycles be strung together, so in truth {a...z} are subsets of [1, n].
Finally, see that the inverse of σ = (a b...z) is just the cycle in reverse, (z y...b a). Proving this is good exercise.

Examples:

In the examples given above, σ = (4 1)(2 3). When an element is fixed, (5) in this
case, it can be omitted from the cycle. The second line expresses (3 2)(1 3)(2 3 1) =
Id. When multiplying a chain of cycles, do so in pairs, right to left.
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We’ll consider (1 5 2 4)(2 6 4)(3 4 7). The last two terms are (2 6 4)(3 4 7). Let’s
start at 3 in the right cycle. This will map to 4, which then is hijacked by the left
cycle and redirected to 2, which now goes to 6. Thus we have (3 2 6...). Continuing
on the left, we see that 6 goes to 4, but the right cycle maps this to 7, so 6 maps
to 4, which is mapped to 7. Finally, we get (3 2 6 4 7). See that 7 goes to 3 in the
right cycle, which is consistent with this answer.

The “method,” using the logic just used, is to start in the right cycle until you
count an element that appears on the left. Redirect this element to the element the
left cycle maps it to, and continue on the left. Now, when you count an element
that appears on the right, count it, and continue on the right. Repeat this until
you have a closed loop.

We can now find (1 5 2 4)(3 2 6 4 7) without justifying each step: (3 4 7)(6 1 5 2).

For additional practice, find for yourself that (7 2)(9 1)(1 5 9)(2 8) = (1 5)(2 8 7)For this one, note that if two
cycles are disjoint, they are
commutative.

If we have a permutation in Sn, this can be written always as a product of disjoint
Proposition 6.2

cycles. Furthermore, we can characterize the order of σ ∈ Sn, i.e. the number of
compositions one needs for σ ◦ σ ◦ ... ◦ σ = Id, as lcm(a1, ..., an), where ai is the
length of each disjoint cycle τi (this is also the order of the cycle).

No proof will be given for the first claim. Let σ be a permutation of disjoint cyclesPartial Proof.

τ1, ..., τn. We write σ k is τ1...τnτ1...τn...τ1...τn︸                    ︷︷                    ︸
k times

, but since all τi , τj are commutative

by their disjointedness, and τi is commutative with itself, one can rearrange:
σ k = τ1...τ1︸︷︷︸

k times

τ2...τ2︸︷︷︸
k times

...... τn...τn︸ ︷︷ ︸
k times

. Thus, we have that σ k = τk1 ...τ
k
n .

Then σ k = 1 ⇐⇒ τk1 = ... = τkn = 1 ⇐⇒ a1|k, ..., an|k ⇐⇒ lcm(a1, ..., an)|k.Lemma: If g ∈ G with
ord(g) = a, then gk = 1 iff
a|k.
As proof, write k = qa + r by
residue. Then gk = (ga)qgr =
gr . Then gr = 1 with r < a,
which is contradictory unless
r = 0 =⇒ k = qa =⇒ a|k

With ord(σ ) being the minimal k satisfying this, we conclude ord(σ ) = lcm(a1, ..., an).

Symmetries and Dihedral Groups

Define the Dihedral group Dn to be the group of symmetries of a regular n-gon
(which is defined for n ≥ 3), and let x, y ∈ Dn be two of its elements, where x is
a rotation about the center of the n-gon by 360/n degrees, and y is the reflection
across its line of symmetry (one can always choose the y-axis, with the n-gon
oriented appropriately).

We have that the order of x is n (composing n 360/n-degree rotations will land you
where you started), and the order of y is 2 (flip twice).
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1
2
→
x

σ (2)

σ (1)
1

2
→
y

↔

↔

σ (1)
σ (2)

Additionally, every symmetry σ ∈ Dn can be completely characterized by where Proposition 6.3

it takes two adjacent lattices, here labeled 1 and 2. Notationally, we have σ =
τ ⇐⇒ σ (1) = τ(1) and σ (2) = τ(2). We can identify all the elements of Dn, too:

Dn = {x, x2, ..., xn−1, y, xy, x2y, ..., xn−1y, Id}

with Dn non-abelian with 2n elements.

We know that if σ ∈ Dn, then σ (1) and σ (2) are next to each-other. Thus, if Proof.

σ (1) = 1 + a, then σ (2) = 1 + a or a. =⇒ σ = xa or xay. Visualize what these mean in
terms of rotations and reflec-
tions, and note that 0 = n.
A chart of symmetries looks
like:

1 2

xa 1 + a 2 + a

xay 1 + a a

For Dn, we have the property⋆ that xy = yx−1, which comes from rearranging
xyxy = 1. By induction, one can prove xay = yx−a in generality (good practice).
Then, to show that Dn is non-abelian, take xy = yx =⇒ yx−1 = yx =⇒ x2 = 1,
and this is clearly not true in generality.

As practice, what is x3yxyx2yx4 in D5?
.
This evaluates to y, with am-
ple use of ⋆.cosets for groups

Let H < G. Define a left coset of G in G to be a subset gH ⊆ G with gH := {gh :
h ∈ H}. These cosets will form an equivalence class for the relation Proposition 6.4

x ∼ y if y−1x ∈ H with x, y ∈ G

Thus, 2 cosets are either disjoint or equal under this relation. We also write

xH = yH ⇐⇒ y−1x ∈ H ⇐⇒ x−1y ∈ H ⇐⇒ ∃h ∈ H : x = yh

and xH = H ⇐⇒ x ∈ H

Proof.First, to show x ∼ y is an equivalence relation, we have (1) x−1x = 1 ∈ H ,
so x ∼ x; (2) if x ∼ y, then y−1x ∈ H . Since H is closed under the inverse,
(y−1x)−1 = x−1y ∈ H =⇒ y ∼ x; (3) if x ∼ y and y ∼ z, write y ∼ x and z ∼ y,
so x−1yy−1z = x−1z ∈ H =⇒ z ∼ x =⇒ x ∼ z.
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To show that the left cosets form equivalence classes, suppose x ∼ y. Then
y ∼ x, and x−1y ∈ H =⇒ xx−1y ∈ xH =⇒ y ∈ xH . Similarly, if y ∈ xH ,
then y = xh for some h ∈ H , and then write x−1y = h =⇒ x−1y ∈ H , so x ∼ y.
We conclude that xH are equivalence classes under x ∼ y, so they are either
disjoint or equivalent.

Our first line of iff statements follows from the fact that xH and yH are
equivalence classes, except for the last statement, which requires a touch of
manipulation: y−1x ∈ H ⇐⇒ ∃h ∈ H : y−1x = h ⇐⇒ ∃h ∈ H : x = yh.

Finally, xH = H follows from the line above with y := 1.

6.1 Lagrange’s Theorem
Let G be a finite group and H < G be a subgroup. Define the index of H with
respect to G, notated [G : H], to be the number of distinct left cosets of G
w.r.t H . We then have

[G : H]|H | = |G| and |H | divides |G|

An immediate corollary is that ord(g) | |G|, where ord(g) = |⟨g⟩| as usual, since ⟨g⟩Corollary 6.1.1

is a subgroup of G for g ∈ G.

Proof. We need to show that all cosets have the same size, and this size is |H |. Then,
since left cosets are equivalence classes, they form a partition of G, and thus
[G : H]|H | = |G|. Also, #H |#G follows immediately.

Define f : H → xH with f (h) = xh for some fixed x ∈ G. This is a bijective
function: any element of the set xH is of the form xh, i.e. f (h), so f is sur-
jective. Now let f (h1) = f (h2). Then xh1 = xh2 =⇒ h1 = h2. Thus, for any
x ∈ G, |xH | = |H |, and the theorem follows.

Notation: |S | = #S denotes
the size of a set (# is usually
reserved for finite sets).

homomorphisms of groups

Just as we did for rings, define a homomorphism of groups to be a function f : G1 →
G2 for groups G1, G2, where f (xy) = f (x)f (y) ∀x, y ∈ G1.

It is not necessary to require that f (1G1
) = 1G2

, as this follows from our one
condition. As proof, see that

f (1G1
) = f (1G1

)f (1G1
) =⇒ 1G2

= [f (1G1
)]−1f (1G1

)f (1G1
) = f (1G1

)
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The second consequence of our axiom is that f (x−1) = [f (x)]−1. See that

f (x−1)f (x) = f (1G1
) = 1G2

, so f (x−1) = [f (x)]−1

Similarly, define an isomorphism of groups to be a homomorphism f : G1 → G2
which is bijective. If there exists such a function, we say G1 � G2, or G1 is
“isomorphic” to G2. As before, if f is an isomorphism, so is f −1.

Being isomorphic is an equivalence relation on groups. Proposition 6.5

Any two cyclic groups ⟨g1⟩ and ⟨g2⟩ are isomorphic iff ord(g1) = ord(g2). Proposition 6.6

Proof.We’ll consider the case where both groups are finite. Let f : ⟨g1⟩ → ⟨g2⟩ with
f (ga1) = ga2 , where a ∈ Z. This is well defined: let ga1 = gb1 . Then ga−b1 = 1, so
ord(g1) =: n|a − b. Then we say a − b = kn, or a = b + kn. We have f (gb+kn

1 ) =
gb+kn

2 = gb2g
kn
2 = gb2 . However, we also have f (gb+kn

1 ) = f (ga1) = ga2 , so ga2 = gb2 .

f is also a homomorphism: see that f (ga1g
b
1 ) = f (ga+b

1 ) = ga+b
2 = ga2g

b
2 =

f (ga1)f (gb1 ).

Lastly f is bijective: for any element of ⟨g2⟩, we can write it as ga2 , which is
precisely f (ga1). For injectivity, let f (ga1) = f (gb1 ). We can write a = b + kn, and
thus 1 = gkn1 = ga1g

−b
1 . Multiplying by gb1 yields gb1 = ga1 .

From this, we see that any group with p elements is cyclic and isomorphic to
Z/pZ. As proof, suppose |G| = p, and choose g , 1 ∈ G. Consider ⟨g⟩ < G. We
have #⟨g⟩||G| =⇒ #⟨g⟩|p by Lagrange. Since g , 1, ord(g) , 1, so #⟨g⟩ , 1. Since
p is prime, we conclude that #⟨g⟩ = p. Thus, ⟨g⟩ < G contain the same elements,
and ⟨g⟩ = G =⇒ G is cyclic. Since Z/pZ is cyclic with order p, from proposition
6.6, we conclude Z/pZ � G.

Let f : G1 → G2 be a function of any two groups. Define the kernel of f to be
ker(f ) := {g ∈ G1 : f (g) = 1G2

}. This is identical to our definition for functions
between rings.

Let f : G1 → G2 be a homomorphism. Then ker(f ) < G1. Furthermore, f is Proposition 6.7

injective iff ker(f ) = 1G1
.

Proof.For the subgroup result, we have: 1G1
∈ ker(f ) since f (1G1

) = 1G2
; let x, y ∈

ker(f ). Then f (xy) = f (x)f (y) = 1G2
, so xy ∈ ker(f ); now let x ∈ ker(f ). Then

f (x−1) = [f (x)]−1 = 1−1
G2

= 1G2
, so x−1 ∈ ker(f ).

For the second claim, suppose ker(f ) = 1G1
. Then

f (x) = f (y) =⇒ f (x)[f (y)]−1 = 1G2
=⇒ f (xy−1) = 1G2

=⇒ xy−1 ∈ ker(f ).
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We assumed ker(f ) = 1G1
, so xy−1 = 1G2

, and finally x = y. Conversely, if f
is injective, then f (1G1

) = 1G2
as expected, but this can be the only element

which maps to 1G2
, and we conclude that ker(f ) = 1G1

.

Let f : G1 → G2 be a homomorphism and H < G1. Then f (H), i.e. the setProposition 6.8

{f (h) : h ∈ H}, is a subgroup of G2.

Proof. We see immediately that 1G2
∈ f (H). Let x, y ∈ f (H). Then ∃a, b ∈ H with

f (a) = x and f (b) = y. We have f (ab) = f (a)f (b) = xy, so xy ∈ f (H).

Lastly, we need x−1 ∈ f (H) for x ∈ H . Let f (a) = x =⇒ [f (a)]−1 = x−1. By
homomorphism properties, [f (a)]−1 = f (a−1) = x−1. Since H is a subgroup,
a−1 ∈ H , so x−1 ∈ f (H).

6.2 Cayley’s Theorem
Let G be a finite group with n elements. Then G is isomorphic a subgroup of
the symmetric group Sn.

group action on sets

Let S be a non-empty set (any set), and let G be a group. We say that G acts on S
when one defines a function G × S → G : (g, s)→ g ∗ s satisfying 1G ∗ s = s and
g1 ∗ (g2 ∗ s) = (g1g2) ∗ s.

Examples:

1. Dn acts on the vertices of an n-gon, where xa(i) = i + a and y(i) = n − i

2. G acts on itself with (x, y)→ xyx−1: we have 1 ∗ y = 1y1 = y, which is our
first condition, and x1 ∗ (x2 ∗ y) = x1 ∗ (x2yx

−1
2 ) = x1x2yx

−1
2 x−1

1 = (x1x2) ∗ y
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