Student Name: Student Id#:

McGILL UNIVERSITY

FACULTY OF SCIENCE

FINAL EXAMINATION

<u>MATH 579</u>

Numerical Differential Equations

Examiner: Professor A.R. Humphries Associate Examiner: Professor G. Schmidt Date: April 17, 2009 Time: 2:00 P.M. - 5:00 P.M.

INSTRUCTIONS

- 1. All questions carry equal weight.
- 2. Answer 6 or more questions; credit will be given for the best 6 answers.
- 3. Answer questions in the exam book provided. Start each answer on a new page.
- 4. This is a closed book exam.
- 5. Notes and textbooks are not permitted.
- 6. Calculators are permitted.
- 7. Translation dictionaries (English-French) are permitted.

This exam comprises of the cover page, and 2 pages of 8 questions.

1. Define the terms *absolute stability* and *A-stability* as applied to a Runge-Kutta method used for solving initial value problems for ordinary differential equations.

Show that the linear stability function R(z) of an *s*-stage explicit Runge-Kutta method is a polynomial in z of degree at most s. Hence deduce that

- (a) the maximum order of an explicit s-stage Runge-Kutta method is s,
- (b) no consistent explicit Runge-Kutta method is A-stable.
- 2. Derive the three stage third order explicit Runge-Kutta method which has $c_2 = c_3$ and $b_2 = b_3$ and state its Butcher Tableau. (You may use the Runge-Kutta order conditions without proof but should state them clearly).

Find a lower order method which uses the same stages but different weights \tilde{b}_i . Hence state an estimate for the local truncation error of the lower order method in terms of the stage values $f(Y_i, t_n + c_i h)$, and give a formula which could be used to update the step-size so that the (estimated) local error is controlled with respect to a tolerance τ .

3. Consider the general 2d dimensional Hamiltonian system $\dot{u} = f(u)$ with u = (x, y) and

$$\dot{x} = \frac{\partial H}{\partial y}, \qquad \dot{y} = -\frac{\partial H}{\partial x}$$

where $x(t) \in \mathbb{R}^d$ and $y(t) \in \mathbb{R}^d$.

Show that $\dot{H}(u(t)) = 0$ and $\nabla \cdot f(u) = 0$. What is the significance of each of these equalities for solutions of the differential equation (one sentence for each)?

Apply the forward Euler method with step-size Δt to the 2-dimensional Hamiltonian system defined by $H(x, y) = x^2 + y^2$, where x and y are scalars and show that $H(x_{n+1}, y_{n+1}) = (1 + \Delta t^2)H(x_n, y_n)$.

Modify the forward Euler method for this problem by applying the Stabilisation method $u_{n+1} = u_{n+1}^* - \alpha \nabla H(u_{n+1}^*)$ where α solves $H(u_{n+1}^* - \alpha \nabla H(u_{n+1}^*)) = H(u_n)$, and derive explicit formulae for x_{n+1} and y_{n+1} in terms of x_n , y_n and Δt for the resulting Hamiltonian conserving method.

4. State and derive the conditions for a linear multistep method to be of order p for any $p \ge 1$. For what values of the parameter α is the method

$$u_{n+2} + (\alpha - 1)u_{n+1} - \alpha u_n = \frac{h}{2} \Big[(\alpha + 3)f_{n+1} + (\alpha - 1)f_n \Big]$$

convergent?

5. State the region of absolute stability \mathcal{S} for a linear multistep method in terms of the roots $\xi_i(z)$ of $\tau(\xi)$ where

$$\tau(\xi) = \rho(\xi) - z\sigma(\xi).$$

Consider the two-step method

$$u_{n+2} - \frac{4}{3}u_{n+1} + \frac{1}{3}u_n = \frac{2}{3}hf(t_{n+2}, u_{n+2}).$$

Define strict zero-stability and show that this method has that property.

Use the root locus method to show that if $z \in \partial S$ (where ∂S denotes the boundary of the region of absolute stability) then

$$z(\theta) = (\cos \theta - 1)^2 + i \sin \theta (2 - \cos \theta),$$

for some $\theta \in [0, 2\pi]$.

Deduce whether or not the method is A-stable.

6. Show that every solution of $-u_{xx} + u = f$, for $x \in [0, 1] = \Omega$, u(0) = u(1) = 0, is also the solution of a related weak problem (which you should state). Show that the weak problem is equivalent to a minimization problem.

Formulate a Galerkin Finite Element Approximation to this problem using a suitable space V_h of piecewise linear basis functions, showing how the method reduces to a linear algebra problem Ku = F by constructing K and F and giving the meaning of the entries of the unknown vector x.

7. Consider the PDE $u_{xx} + u_x = f(x), x \in [0, 1]$, with Dirichlet boundary conditions, $u(0) = u_0$ and $u(1) = u_1$. Define a finite difference discretization of this problem, and show that it has second order truncation error (that is show that $L_h u - f = \mathcal{O}(h^2)$ where Lu = f and $Lu \equiv u_{xx} + u_x$ and $L_h u$ is your FD formula applied to the exact solution).

Show that the discretized problem can be formulated as a linear algebra problem Ax = b, by constructing A and b and giving the meaning of the entries of the unknown vector x.

If the left hand boundary condition is replaced by $u_x(0) = a$ for a constant a, how could you modify your scheme so as to still retain second order truncation error?

8. Let u(x,t) be the solution of

$$u_t = u_{xx} + \lambda u, \quad \lambda < 0,$$

for $t \ge 0, x \in [0, 1]$ with $u(0, t) = \alpha, u(1, t) = \beta$, and $u(x, 0) = u_0(x)$.

Consider a numerical solution defined by the finite difference scheme

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} = \frac{u_{j+1}^n - 2u_j^n + u_{j-1}^n}{\Delta x^2} + \lambda u_j^n.$$

Use Von Neumann stability analysis to show that the method is stable under a suitable condition on Δt and Δx , which you should state.

Define the truncation error of the scheme, and show that under a suitable relation between Δt and Δx , it can be written as $\mathcal{O}(\Delta x^p)$ for suitable p (which you should determine).