McGILL UNIVERSITY

FACULTY OF SCIENCE

IN-DEPARTMENT FINAL EXAMINATION

<u>MATH 574</u>

Dynamical Systems

Examiner: Professor A. Humphries Associate Examiner: Professor G. Tsogtgerel Date: Wednesday April 15, 2010 Time: 2:00PM - 5:00PM

INSTRUCTIONS

Answer 5 or 6 questions; credit will be given for the best 5 answers. Please attempt all questions in the exam booklets provided. Start each question on a new page. All questions carry equal weight. This is a closed book exam. No notes, and text books are permitted. Non-programmable and non-graphical calculators are permitted. Dictionaries are not permitted.

This exam of comprises the cover page, and 2 pages of 6 questions.

Final Examination

April 2010

1. Consider the system of differential equations

$$\dot{x} = x - xy - x(x^2 + y^2),$$
 $x(0) = x_0 \in \mathbb{R},$
 $\dot{y} = y + x^2 - y(x^2 + y^2),$ $y(0) = y_0 \in \mathbb{R}.$

- (a) By converting to polar coordinates, or otherwise, show that this system of differential equations defines a dynamical system.
- (b) Sketch the phase portrait of the dynamical system.
- (c) State (without proof) the ω -limit set of each initial condition in the plane. Does the dynamical system have a global attractor, and if it does, what is it?
- 2. Consider a dynamical system defined by

$$\dot{x} = x(2 - x - y),$$

$$\dot{y} = y(3 - 2x - y),$$

where $x(t) \ge 0$ and $y(t) \ge 0$ represent the size of competing animal populations.

- (a) Find all the fixed points of this dynamical system which satisfy $x \ge 0$, $y \ge 0$, and determine their stability types using the Jacobian matrix.
- (b) Sketch the phase portrait for $x \ge 0$, $y \ge 0$, clearly indicating the fixed points and direction of flow, and making use of the isoclines (nullclines). Label the *stable* and *unstable* manifolds of any saddle points.
- (c) State without proof the ω -limit sets for all initial conditions. What does this is imply for the animal populations?
- 3. Consider the system of differential equations

$$\dot{x} = -2x + y, \qquad x(0) = x_0 \in \mathbb{R},$$
$$\dot{y} = \mu y - x^3, \qquad y(0) = y_0 \in \mathbb{R},$$

where $\mu \in \mathbb{R}$ is a bifurcation parameter.

- (a) Find the eigenvalues and eigenvectors of the Jacobian of f at (x, y) = (0, 0) for all values of $\mu \in \mathbb{R}$. Hence, determine the value of the parameter $\mu \in \mathbb{R}$ at which the fixed point at (0,0) is not hyperbolic. At this value of μ state the linear stable, linear unstable and linear centre manifolds of (0,0).
- (b) Assuming that near the non hyperbolic point found above the extended centre manifold can be written as

$$y = h(x,\mu) = a(\mu) + b(\mu)x + c(\mu)x^{2} + d(\mu)x^{3} + \mathcal{O}(x^{4}),$$

where a, b c and d are functions of μ only. Find two expressions for \dot{y} on the curve $y = h(x,\mu)$ and hence, or otherwise, determine and state the functions $a(\mu)$, $b(\mu)$, and $c(\mu)$. Find a function $f(x,\mu)$ so that $\dot{x} = f(x,\mu) + \mathcal{O}(x^4)$ describes the dynamics on the extended centre manifold, and use $f(x,\mu)$ (ignoring the $\mathcal{O}(x^4)$ terms) to determine which type of bifurcation occurs.

4. Consider the system of differential equations

$$\dot{x} = y,$$
 $x(0) = x_0 \in \mathbb{R},$
 $\dot{y} = -\mu y - x + x^3,$ $y(0) = y_0 \in \mathbb{R},$

where $\mu \in \mathbb{R}$ is a bifurcation parameter.

(a) Show that when $\mu = 0$ that the system of equations can be written as a Hamiltonian system.

$$\dot{x} = \frac{\partial H}{\partial y}, \qquad \dot{y} = -\frac{\partial H}{\partial x}.$$

Determine the fixed points of the dynamical system in this case, and their linear stability types and sketch a plausible phase portrait.

(b) Consider the fixed point at the origin for general values of the parameter μ , and show that the eigenvalues λ of the Jacoabian matrix satisfy the characteristic equation

$$\lambda^2 + \mu\lambda + 1 = 0.$$

Hence find the value of μ for which this fixed point is not hyperbolic, and show that $Re(\frac{d\lambda}{d\mu}) \neq 0$ at this value of μ . What type of bifurcation is indicated? (Briefly), would you expect the bifurcation to be supercritical, subcritical or degenerate?

- 5. Consider the dynamical system $\dot{x} = f(x, \mu)$ where $x \in \mathbb{R}$, and $\mu \in \mathbb{R}$ is a bifurcation parameter.
 - (a) Assuming that f(0,0) = 0, state a necessary condition for a bifurcation to occur at $(x,\mu) = (0,0)$.
 - (b) By expanding $f(x,\mu)$ in a Taylor series and ignoring higher than quadratic terms, show that if $f_{\mu}(0,0) \neq 0$ and $f_{xx}(0,0) \neq 0$ then fixed points satisfy

$$x(\mu) = \pm \sqrt{-rac{2\mu f_{\mu}(0,0)}{f_{xx}(0,0)}} + \mathcal{O}(\mu).$$

What type of bifurcation is this? Which fixed point is stable?

- (c) The derivation of the bifurcation in the previous part is non-rigorous since the higher order terms in the Taylor expansion were ignored. However there is a one line proof of the existence of a continuous curve of fixed points in a neighbourhood of $(x, \mu) = (0, 0)$. What is it?
- 6. Consider the map $f:[0,1] \to [0,1]$ defined by

$$f(x) = \begin{cases} 1 - 2x & x \in [0, 1/2) \\ 2 - 2x & x \in [1/2, 1] \end{cases}$$

- (a) Show that eventually periodic points are dense in [0, 1].
- (b) Show that f has periodic points of prime period n for all $n \ge 1$, and that periodic points are also dense in [0, 1].
- (c) Define topological transitivity and show that the map has this property.