1. Evaluate, showing all details,

$$\int_{-\infty}^{\infty} \frac{\sin(x)}{x(x^2+1)} dx .$$

- 2. Find the residues of:
 - (a) $\frac{e^z}{z^2(1+z^2)}$ at all singularities,
 - (b) $\frac{e^{1/z}}{1-z}$ at z=0.
- 3. Let f(z) be an entire function.
 - (a) Prove that for all R > 0,

$$|f^{(n)}(0)| \le \frac{n!}{R^n} \operatorname{Max}\{|f(z)|: |z| = R \}.$$

- (b) If $|f(z)| \le A + B|z|^{7/2}$ for some constants A and B, prove that f is a polynomial of degree ≤ 3 .
- 4. (a) Define isolated singularity of f(z).
 - (b) Define removable singularity of f(z) and pole of f(z).
 - (c) If a is an isolated singularity of f(z) and if

$$\lim_{z \to a} (z - a) f(z) = 0,$$

prove that a is removable.

(d) If a is an isolated singularity of f(z) and if $|f(z)| \to \infty$ when $z \to a$, prove that a is a pole of f.

- 5. Find a 1-1 analytic mapping of the upper half plane $U=\{z\colon \ \ {\rm Im}z>0\}$ onto the strip $S=\{z\colon \ \ 0<{\rm Re}z<1\}$.
- 6. Find the number of zeroes of $e^z + 4iz$ in $|z| \le 1$. Explain your work.
- 7. Let f(z) be analytic on the closed upper half plane $D=\{z\colon \operatorname{Im} z\geq 0\}$, and suppose that $|f(z)|\to 0$ as $|z|\to \infty$ in D. Show that

$$\sup_{z \in D} |f(z)| = \sup_{x \in \mathbf{R}} |f(x)|.$$

FACULTY OF SCIENCE

FINAL EXAMINATION

MATHEMATICS 189-466A

COMPLEX ANALYSIS

Examiner: Professor I. Klemes Date: Friday, December 11, 1998 Associate Examiner: Professor K.P. Russell Time: 2:00 pm - 5:00 pm

INSTRUCTIONS

NO CALCULATORS PERMITTED Show all work and simplify answers. Answer all 7 questions. Keep this exam paper.

This exam comprises the cover and 2 pages of questions.