1. (6 marks) Consider a homogeneous solid body with density δ , specific heat c, conductivity K, all assumed constant. If the rate of heat generation is $Q(\vec{r}, t)$ in ca./c.c./sec., say, show that the temperature $\psi(\vec{r}, t)$ at a point $P(\vec{r})$ after time t satisfies the partial differential equation

$$\frac{1}{\alpha^2}\frac{\partial\psi}{\partial t} - \nabla^2\psi = \frac{Q}{K}$$

where $\alpha^2 = \frac{K}{c\delta}$.

2. (12 marks) Solve

$$\psi_t - \psi_{xx} = h(x, t); \ 0 < x < \pi, \ t > 0$$

(a)
$$\psi_x(0,t) = \left[\frac{\partial\psi}{\partial x}(x,t)\right]_{x=0} = F(t).$$

(b) $\psi_x(L,t) = \left[\frac{\partial\psi}{\partial x}(x,t)\right]_{x=L} = G(t).$
(c) $\psi(x,0) = f(x)$

and interpret physically.

3. (a) (8 marks) Find the potential distribution inside a hemisphere if the spherical part is maintained at a potential $f(\cos \phi)$ and the flat part is insulated. <u>Hint</u>: Show that the insulation of the flat face, i.e.

$$\left[\frac{\partial \psi}{\partial z}\right]_{\phi=\pi/2} = 0 \text{ implies } \left[\frac{\partial \psi}{\partial \phi}\right]_{\phi=\pi/2} = 0.$$

(b) (4 marks) Consider the special case in (a) of $\psi(a, \phi) = V_0(1 + 2\sin^2 \phi)$, with V_0 a constant, giving your answer in <u>simplest</u> form. Note "a" is the radius of the hemisphere.

You may assume that the general solution of Laplace's equation in spherical coordinates, i.e., $\nabla^2 \psi(r, \varphi) = 0$, $0 \leq \varphi \leq \pi$, ψ finite at $\varphi = 0$ and $\varphi = \pi$, is given by $\psi(r, \varphi) = \sum_{n=0}^{\infty} \left[A_n r^n + \frac{B_n}{r^{(n+1)}} \right] P_n(\cos \varphi)$, where P_n are the Legendre polynomials of order n.

4. (11 marks) Find the steady-state temperature distribution in the region below:

- 5. (12 marks) Solve and interpret physically:
 - (a) $\nabla^2 \psi(r, z) = 0$; $0 < r < b, 0 < z < \pi$. (i) $\psi(r, 0) = 0$, (ii) $\psi(r, \pi) = f(r)$, (iii) $\psi(b, z) = g(z)$. <u>Hint</u>: Divide the problem into two parts.
 - (b) (9 marks) $\nabla^2 \psi(r, z) = -F(r, z);$ $0 < r < b, \ 0 < z < \pi.$ (i) $\psi(r, 0) = 0,$ (ii) $\psi(r, \pi) = f(r),$ (iii) $\psi(b, z) = g(z).$
- 6. (12 marks) A sphere of radius b has its surface maintained at a constant temperature of T° . There is a constant heat generation at the rate of Q (cal./c.c./sec., say) inside the sphere. If the initial temperature is f(r) determine the temperature at any point inside the sphere after time t.

<u>Hint</u>: The temperature $\psi = \psi(r, t)$ only.

7. (a) (8 marks) Solve the boundary value problem:

$$rac{\partial^2 \psi}{\partial x^2} + rac{\partial^2 \psi}{\partial y^2} = 0, \qquad 0 < x < \infty, \ 0 < y < \infty$$

(i)
$$\psi(x,0) = 0$$
, (ii) $\lim_{x \to \infty} \psi(x,y) = 0$, (iii) $\left[\frac{\partial \psi}{\partial x}\right]_{x=0} = 0, \ y > b = -q/K, \ 0 < y < b.$

You may leave your answer as a single integral. Interpret physically.

- (b) (5 marks) Show that the magnitude of the heat current through the face y = 0, i.e., $K \left[\frac{\partial \psi}{\partial y} \right]_{y=0}$, where K is the conductivity, is given by $\frac{q}{\pi} \ln \left[1 + \frac{b^2}{x^2} \right]$.
- 8. (13 marks) Solve the following Dirichlet problem:

$$rac{\partial \psi}{\partial t} = rac{\partial^2 \psi}{\partial x^2} + h(x,t); \ 0 < x < \infty, \ t > 0.$$

(i) $\psi(x,0) = f(x)$, (ii) $\psi(0,t) = q(t)$, (iii) $\lim_{x \to \infty} \psi(x,t) = 0$, (iv) $\lim_{x \to \infty} \psi_x(x,t) = 0$.

Good Luck!

Final Examination

December 19, 1997

FACULTY OF SCIENCE

FINAL EXAMINATION

<u>MATHEMATICS 189-375A</u> <u>DIFFERENTIAL EQUATIONS</u> <u>PHYSICS 198-355A</u> <u>MATHEMATICAL PHYSICS</u>

Examiner: Professor C. Roth Associate Examiner: Professor D. Sussman Date: Friday, December 19, 1997 Time: 2:00 P.M. - 6:00 P.M.

INSTRUCTIONS

Calculators are neither required nor permitted.

This exam comprises the cover, 2 pages of questions and 1 page of useful information.