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1. (6 marks) Consider a homogeneous solid body with density �, speci�c heat c, conduc-
tivity K, all assumed constant. If the rate of heat generation is Q(~r; t) in ca./c.c./sec.,
say, show that the temperature  (~r; t) at a point P (~r) after time t satis�es the partial
di�erential equation
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2. (12 marks) Solve
 t �  xx = h(x; t); 0 < x < �; t > 0

(a)  x(0; t) =
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= F (t).

(b)  x(L; t) =
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= G(t).

(c)  (x; 0) = f(x)

and interpret physically.

3. (a) (8 marks) Find the potential distribution inside a hemisphere if the spherical part
is maintained at a potential f(cos�) and the 
at part is insulated. Hint: Show
that the insulation of the 
at face, i.e.
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= 0:

(b) (4 marks) Consider the special case in (a) of  (a; �) = V0(1 + 2 sin2 �), with V0
a constant, giving your answer in simplest form. Note \a" is the radius of the
hemisphere.

You may assume that the general solution of Laplace's equation in spherical co-
ordinates, i.e., r2 (r; ') = 0; 0 � ' � �;  �nite at ' = 0 and ' = �, is given

by  (r; ') =
1X
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Pn(cos'), where Pn are the Legendre polynomials of

order n.

4. (11 marks) Find the steady-state temperature distribution in the region below:
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5. (12 marks) Solve and interpret physically:

(a) r2 (r; z) = 0; 0 < r < b; 0 < z < �.

(i)  (r; 0) = 0, (ii)  (r; �) = f(r), (iii)  (b; z) = g(z).

Hint: Divide the problem into two parts.

(b) (9 marks) r2 (r; z) = �F (r; z); 0 < r < b; 0 < z < �.

(i)  (r; 0) = 0, (ii)  (r; �) = f(r), (iii)  (b; z) = g(z).

6. (12 marks) A sphere of radius b has its surface maintained at a constant temperature
of T �. There is a constant heat generation at the rate of Q (cal./c.c./sec., say) inside
the sphere. If the initial temperature is f(r) determine the temperature at any point
inside the sphere after time t.

Hint: The temperature  =  (r; t) only.

7. (a) (8 marks) Solve the boundary value problem:

@2 

@x2
+
@2 

@y2
= 0; 0 < x <1; 0 < y <1

(i)  (x; 0) = 0, (ii) lim
x!1

 (x; y) = 0, (iii)
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= 0; y > b

= �q=K; 0 < y < b:

You may leave your answer as a single integral. Interpret physically.

(b) (5 marks) Show that the magnitude of the heat current through the face y = 0,

i.e., K
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, where K is the conductivity, is given by
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8. (13 marks) Solve the following Dirichlet problem:
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+ h(x; t); 0 < x <1; t > 0:

(i)  (x; 0) = f(x), (ii)  (0; t) = q(t), (iii) lim
x!1

 (x; t) = 0, (iv) lim
x!1

 x(x; t) = 0.

Good Luck!
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