FACULTY OF SCIENCE

FINAL EXAMINATION

MATHEMATICS MATH 355

Analysis 4

Examiner: Professor S. W. Drury

Date: Wednesday, April 18, 2007

Associate Examiner: Professor K. N. GowriSankaran

Time: 2: 00 pm. - 5: 00 pm.

INSTRUCTIONS

Attempt six questions for full credit.

This is a closed book examination.

Write your answers in the booklets provided.

All questions are of equal weight, each is alloted 20 marks.

This exam has 7 questions and 4 pages

- 1. (i) (4 points) Define the concepts field and σ -field.
 - (ii) (2 points) Define the concept of premeasure on a field and measure on a σ -field.
 - (iii) (2 points) Define the concept of outer measure.
 - (iv) (4 points) State the Carathéodory Extension Theorem.
- (v) (8 points) If μ is a premeasure on a field \mathcal{F} of subsets of X and μ^* is the outer measure it defines on X by the equation $\mu^*(A) = \inf \sum_{j=1}^{\infty} \mu(A_j)$ where the infimum is taken over all possible sequences of sets $A_j \in \mathcal{F}$ such that $A \subseteq \bigcup_{j=1}^{\infty} A_j$, show that for any subsets A and B of X that $\mu^*(A \cup B) + \mu^*(A \cap B) \leq \mu^*(A) + \mu^*(B)$.
- 2. Let (X, \mathcal{M}, μ) be a measure space.
- (i) (5 points) Under what conditions can one define $\int f(x)d\mu(x)$ for a signed \mathcal{M} -measurable function f on X? In this case give the definition in terms of the integral of nonnegative \mathcal{M} -measurable functions on X.

Let g be a nonnegative M-measurable function on X satisfying $\int g(x)d\mu(x) < \infty$.

- (ii) (5 points) Prove Tchebychev's inequality $\mu(\{x;g(x)>t\}) \leq \frac{1}{t} \int g(x) d\mu(x)$ for t>0.
- (iii) (10 points) Let $\mu(X) = 1$ and let f be a signed \mathcal{M} -measurable function such that $\int f d\mu = 0$ and $\int f^2 d\mu = 1$. Show that $\mu(\{x; f(x) > s\}) \leq \frac{1}{1+s^2}$ for s > 0.

Hint: Consider $g(x) = (sf(x) + 1)^2$.

- 3. (i) (5 points) State the Monotone Convergence Theorem.
 - (ii) (5 points) State the Dominated Convergence Theorem.
- (iii) (10 points) Find $\lim_{n\to\infty} n \int_0^\infty \frac{1}{1+x^4} \sin\left(\frac{x}{n}\right) dx$. In answering the question you may use the inequality $|\sin(u)| \leq \min(1,|u|)$. Otherwise, justify all steps and for full credit simplify your answer as much as possible.
- 4. (i) (5 points) Let (X, \mathcal{S}) and (Y, \mathcal{T}) be measurable spaces. Define $\mathcal{S} \otimes \mathcal{T}$.
- If X is a metric space, we denote \mathcal{B}_X , its Borel σ -field.
 - (ii) (15 points) Prove in detail that $\mathcal{B}_{\mathbb{R}} \otimes \mathcal{B}_{\mathbb{R}} = \mathcal{B}_{\mathbb{R}^2}$.

- 5. (i) (5 points) State Tonelli's Theorem.
 - (ii) (5 points) State Fubini's Theorem.
 - (iii) (10 points) Starting from the identity

$$\int_0^\infty e^{-sx} \sin(ux) dx = \frac{u}{u^2 + s^2}$$

valid for s > 0 and $u \in \mathbb{R}$, show that

$$\int_0^\infty e^{-sx} \frac{1 - \cos(tx)}{x} dx = \frac{1}{2} \ln(s^2 + t^2) - \ln(s)$$

provided that s > 0 and $t \in \mathbb{R}$. Hint: $\int_0^t \sin(ux) du = \frac{1 - \cos(tx)}{x}$.

6. Let \mathcal{L} be the Lebesgue σ -field on $[0, \infty[$ and $d\mu(x) = e^{-x}dx$. Consider the linear subspace M of $H = L^2([0, \infty[, \mathcal{L}, \mu])$ consisting of equivalence classes of functions that are periodic a.e. with period 2π , i.e.

$$f(x+2\pi)=f(x)$$
a.a. $x\in[0,\infty[$

- (i) (4 points) Show that M is itself an L^2 space over a smaller σ -field than \mathcal{L} .
- (ii) (4 points) Deduce that M is a closed linear subspace of H. What fact are you using here?
- (iii) (4 points) Show that for $f, g \in H$,

$$\langle f, g \rangle = \sum_{k=0}^{\infty} e^{-2k\pi} \int_0^{2\pi} \overline{f(x+2k\pi)} g(x+2k\pi) e^{-x} dx$$

- (iv) (4 points) Show that the closed linear span of the functions $x \mapsto e^{inx}$ as n runs over all integers is the whole of M. What fact are you using here?
- (v) (4 points) For an arbitrary member f of H, let h be its orthogonal projection on M. Show that

$$h(x) = (1 - e^{-2\pi}) \sum_{k=0}^{\infty} e^{-2k\pi} f(x + 2k\pi),$$

for almost all x in $[0, 2\pi[$ (and extended by periodicity for other values of x).

7. Consider the trigonometric polynomials P_m and Q_m defined for nonnegative integers m inductively as follows

$$P_0(t) = Q_0(t) = 1$$
 and $P_{m+1}(t) = P_m(t) + e^{i2^m t} Q_m(t)$, $Q_{m+1}(t) = P_m(t) - e^{i2^m t} Q_m(t)$

- (i) (5 points) Show that $P_1(t) = 1 + e^{it}$, $Q_1(t) = 1 e^{it}$, $P_2(t) = 1 + e^{it} + e^{2it} e^{3it}$ and $Q_2(t) = 1 + e^{it} e^{2it} + e^{3it}$.
 - (ii) (5 points) Show that $\widehat{P}_m(n) = 0$ if n < 0 or if $n > 2^m$ and that $\widehat{P}_m(n) = 1$ or -1 otherwise.
- (iii) (5 points) Show that $|P_{m+1}(t)|^2 + |Q_{m+1}(t)|^2 = 2(|P_m(t)|^2 + |Q_m(t)|^2)$ and deduce first that $|P_m(t)|^2 + |Q_m(t)|^2 = 2^{m+1}$ for all t and then that $\sup_{t} |P_m(t)| \le 2^{\frac{m+1}{2}}$.
 - (iv) (5 points) Show that $\int_0^{2\pi} |P_m(t)|^2 dt = 2^{m+1}\pi$.