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INSTRUCTIONS

Attempt six questions for full credit.

This is a closed book examination.
Write your answers in the booklets provided.

All questions are of equal weight, each is alloted 20 marks.

This exam has 7 questions and 10 pages

1



Final Examination Wednesday, April 18, 2007 Mathematics MATH 355

1. (i) (4 points) Define the concepts field and σ-field.
(ii) (2 points) Define the concept of premeasure on a field and measure on a σ-field.
(iii) (2 points) Define the concept of outer measure.
(iv) (4 points) State the Carathéodory Extension Theorem.
(v) (8 points) If µ is a premeasure on a field F of subsets of X and µ? is the outer measure it

defines on X by the equation µ?(A) = inf
∞∑

j=1

µ(Aj) where the infimum is taken over all possible

sequences of sets Aj ∈ F such that A ⊆
⋃∞

j=1Aj, show that for any subsets A and B of X that
µ?(A ∪B) + µ?(A ∩B) ≤ µ?(A) + µ?(B).

Solution:
(i) Let X be a set. Then a collection F of subsets of X is a field if and only if

(a) X ∈ F .

(b) A ∈ F =⇒ X \ A ∈ F .

(c) A ∈ F , B ∈ F =⇒ A ∪B ∈ F .

Let X be a set. Then a collection F of subsets of X is a σ-field if and only if

(a) X ∈ F .

(b) A ∈ F =⇒ X \ A ∈ F .

(c) Ak ∈ F for k ∈ K, K countable =⇒
⋃

k∈K Ak ∈ F .

(ii) We now define the concept of a measure (premeasure) on a σ-field (field) F of subsets of
X as a function µ : F −→ [0,∞] such that

(a) µ(∅) = 0.

(b) µ
(⋃

k∈K Ak

)
=
∑

k∈K µ(Ak) wheneverK is a countable index set and Ak are pairwise disjoint
subsets of X with Ak ∈ F and

⋃
k∈K Ak ∈ F .

Note: Tragically many students defined a premeasure as a finitely additive set function. This
is incorrect.

(iii) An outer measure θ on a set X is a map θ : PX −→ [0,∞] with the following properties

(a) θ(∅) = 0.

(b) If A ⊆ B ⊆ X, then θ(A) ≤ θ(B).

(c) θ
(⋃∞

j=1Aj

)
≤
∑∞

j=1 θ(Aj).
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(iv) Let µ be a premeasure on a field F of subsets of X. Let G be the σ-field generated by F .
Then there exists a measure ν on G which agrees with µ on F .

(v) The easiest way is to use the Carathéodory Extension Theorem. Let the extension be
(X,G, ν). Then clearly we have µ∗(A) = inf

A⊆G∈G
ν(G), an equivalent way of rewriting the definition

of µ∗ a posteriori. Now given ε > 0 we can find P,Q ∈ G such that A ⊆ P , B ⊆ Q, ν(P ) < µ∗(A)+ε
and ν(Q) < µ∗(B) + ε

From the three identities

ν(P ∪Q) = ν(P \Q) + ν(P ∩Q) + ν(Q \ P ),

ν(P ) = ν(P \Q) + ν(P ∩Q),

ν(Q) = ν(P ∩Q) + ν(Q \ P ).

we get

ν(P ) + ν(Q) = ν(P \Q) + ν(P ∩Q) + ν(P ∩Q) + ν(Q \ P ) = ν(P ∪Q) + ν(P ∩Q).

But A ∪B ⊆ P ∪Q and A ∩B ⊆ P ∩Q so that

µ?(A ∪B) + µ?(A ∩B) ≤ ν(P ∪Q) + ν(P ∩Q) = ν(P ) + ν(Q) < µ∗(A) + µ∗(B) + 2ε.

Letting ε ↓ 0 gives the desired result.

2. Let (X,M, µ) be a measure space.
(i) (5 points) Under what conditions can one define

∫
f(x)dµ(x) for a signed M-measurable

function f on X? In this case give the definition in terms of the integral of nonnegative M-
measurable functions on X.

Let g be a nonnegative M-measurable function on X satisfying
∫
g(x)dµ(x) <∞.

(ii) (5 points) Prove Tchebychev’s inequality µ({x; g(x) > t}) ≤ 1

t

∫
g(x)dµ(x) for t > 0.

(iii) (10 points) Let µ(X) = 1 and let f be a signedM-measurable function such that
∫
fdµ = 0

and
∫
f 2dµ = 1. Show that µ({x; f(x) > s}) ≤ 1

1 + s2
for s > 0.

Hint: Consider g(x) = (sf(x) + 1)2.

Solution:
(i) The integral is only defined in case

∫
|f |dµ <∞. In this case, we define

f+(x) =
{
f(x) if f(x) ≥ 0,
0 otherwise.

and f−(x) =
{−f(x) if f(x) ≤ 0,

0 otherwise.
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In this way, we see that f+ ≥ 0, f− ≥ 0 and f = f+ − f−. Now, it is clear that f± ≤ |f | and that∫
f±dµ < ∞. The definition fdµ =

∫
f+dµ −

∫
f−dµ makes sense as the difference of two finite

nonnegative numbers.
(ii) Let A = {x; g(x) > t}, then A ∈M. Since g is nonegative and g ≥ t11A, it follows that∫

gdµ ≥
∫
t11Adµ = tµ(A)

as required.
(iii) Using the hypotheses we have∫

gdµ =

∫
(sf + 1)2dµ = s2

∫
f 2dµ+ 2s

∫
fdµ+ µ(X) = s2 + 1

But g is nonnegative and f(x) > s =⇒ g(x) > (s2 + 1)2, so taking t = (s2 + 1)2, we get

µ({x; f(x) > s}) ≤ s2 + 1

(s2 + 1)2
=

1

s2 + 1

3. (i) (5 points) State the Monotone Convergence Theorem.
(ii) (5 points) State the Dominated Convergence Theorem.

(iii) (10 points) Find lim
n→∞

n

∫ ∞

0

1

1 + x4
sin
(x
n

)
dx. In answering the question you may use

the inequality | sin(u)| ≤ min(1, |u|). Otherwise, justify all steps and for full credit simplify your
answer as much as possible.
Solution:

(i) If fn, f are nonnegative measurable functions and if fn ↑ f pointwise, then
∫
fndµ ↑

∫
fdµ.

(ii) Let fn be a sequence of measurable functions and suppose that fn −→ f pointwise. Further
suppose that there is a (nonnegative) function g such that |fn| ≤ g pointwise for every n ∈ N. If∫
gdµ <∞, then necessarily ∫

fndµ −→
n→∞

∫
fdµ.

(iii) From the given inequality, n
∣∣∣sin(x

n

)∣∣∣ ≤ x for x ≥ 0 and we know from L’Hôpital’s Rule

that n sin
(x
n

)
−→ x as n→∞. Letting fn(x) = n

1

1 + x4
sin
(x
n

)
we can take f(x) = g(x) =

x

1 + x4

in the Dominated Convergence Theorem. The value of the limit is∫ ∞

0

x

1 + x4
dx =

∫ ∞

0

1
2
u

1 + u2
du =

π

4
.

4



Final Examination Wednesday, April 18, 2007 Mathematics MATH 355

4. (i) (5 points) Let (X,S) and (Y, T ) be measurable spaces. Define S ⊗ T .

If X is a metric space, we denote BX , its Borel σ-field.
(ii) (15 points) Prove in detail that BR ⊗ BR = BR2 .

Solution:
(i) A measurable rectangle is a subset of X × Y of the form S × T with S ∈ S and T ∈ T .

We define S ⊗ T to be the smallest σ-field containing the measurable rectangles.
(ii) To see that BR2 ⊆ BR ⊗ BR, recall that every open subset of R2 is a countable union of

open rectangles J ×K where J,K are open intervals in R. This shows that every open subset of
R2 lies in the σ-field BR ⊗ BR. The inclusion now follows from the definition of BR2 . The other
direction is easier, but more involved. One starts from

A,B open =⇒ A×B open =⇒ A×B ∈ BR2 .

Now let A be a fixed open set then clearly

{B;B ⊆ R, A×B ∈ BR2} is a σ-field on R containing the open sets.

It follows that
A open , B borel =⇒ A×B ∈ BR2 .

Then, fix B borel the clearly

{A;A ⊆ R, A×B ∈ BR2} is a σ-field on R containing the open sets.

We may deduce that
A,B borel =⇒ A×B ∈ BR2 .

Finally, since BR2 is a σ-field, BR ⊗ BR ⊆ BR2 .
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5. (i) (5 points) State Tonelli’s Theorem.
(ii) (5 points) State Fubini’s Theorem.
(iii) (10 points) Starting from the identity∫ ∞

0

e−sx sin(ux)dx =
u

u2 + s2

valid for s > 0 and u ∈ R, show that∫ ∞

0

e−sx 1− cos(tx)

x
dx = 1

2
ln(s2 + t2)− ln(s)

provided that s > 0 and t ∈ R. Hint:

∫ t

0

sin(ux)du =
1− cos(tx)

x
.

Solution:
(i) Let (X,S, µ) and (Y, T , ν) be σ-finite measure spaces. Let f : X × Y −→ [0,∞] be

S ⊗ T measurable. Then ϕ(x) =

∫
f(x, y)dν(y) and ψ(y) =

∫
f(x, y)dµ(x) define nonnegative

measurable functions on (X,S) and (Y, T ) respectively and∫
ϕ(x)dµ(x) =

∫
f(x, y)d(µ× ν)(x, y) =

∫
ψ(y)dν(y).

(ii) Let (X,S, µ) and (Y, T , ν) be σ-finite measure spaces. Let f : X × Y −→ R be S ⊗ T
measurable. Suppose that one of the three quantities∫∫

|f(x, y)|dν(y)dµ(x) =

∫
|f |d(µ× ν) =

∫∫
|f(x, y)|dµ(x)dν(y).

is finite (they are all equal by Tonelli’s Theorem). Then

ϕ(x) =

∫
f(x, y)dν(y) and ψ(y) =

∫
f(x, y)dµ(x)

almost everywhere (w.r.t µ and ν respectively) define measurable functions on (X,S) and (Y, T )
respectively, the integrals being absolutely convergent at almost every point, and∫

ϕ(x)dµ(x) =

∫
f(x, y)d(µ× ν)(x, y) =

∫
ψ(y)dν(y),

where these integrals also make sense as absolutely convergent integrals.
(iii) Since t 7→ 1

2
ln(s2 + t2)− ln(s) and t 7→ 1− cos(tx) are even functions, there is no loss in

assuming that t ≥ 0.
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Assuming that Fubini’s Theorem can be applied, we have∫ ∞

0

e−sx 1− cos(tx)

x
dx =

∫ ∞

0

∫ t

0

e−sx sin(ux)dudx

=

∫ t

0

∫ ∞

0

e−sx sin(ux)dxdu

=

∫ t

0

u

u2 + s2
du

= 1
2
ln(s2 + t2)− ln(s)

To justify, the measure spaces are certainly σ-finite, the integrand (x, u) 7→ e−sx sin(ux) is contin-
uous and hence Borel and we have∫ t

0

∫ ∞

0

|e−sx sin(ux)|dxdu ≤
∫ t

0

∫ ∞

0

e−sxdxdu =
t

s
<∞

for s > 0.

6. Let L be the Lebesgue σ-field on [0,∞[ and dµ(x) = e−xdx. Consider the linear subspace M
of H = L2([0,∞[,L, µ) consisting of equivalence classes of functions that are periodic a.e. with
period 2π, i.e.

f(x+ 2π) = f(x) a.a. x ∈ [0,∞[

(i) (4 points) Show that M is itself an L2 space over a smaller σ-field than L.
(ii) (4 points) Deduce that M is a closed linear subspace of H. What fact are you using here?
(iii) (4 points) Show that for f, g ∈ H,

〈f, g〉 =
∞∑

k=0

e−2kπ

∫ 2π

0

f(x+ 2kπ)g(x+ 2kπ)e−xdx

(iv) (4 points) Show that the closed linear span of the functions x 7→ einx as n runs over all
integers is the whole of M . What fact are you using here?

(v) (4 points) For an arbitrary member f of H, let h be its orthogonal projection on M . Show
that

h(x) = (1− e−2π)
∞∑

k=0

e−2kπf(x+ 2kπ),

for almost all x in [0, 2π[ (and extended by periodicity for other values of x).

Solution:
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(i) Let G be the σ-field of Lebesgue measurable subsets of [0,∞[ that are a.e. periodic with
period 2π. Then it is routine to check that G is a σ-field and that M = L2([0,∞[,G, µ).

(ii) Since M is an L2 space, it is complete and hence is closed in any metric space that contains
it isometrically, such as L2([0,∞[,L, µ).

(iii)

〈f, g〉 =

∫ ∞

0

f(x)g(x)e−xdx

=
∞∑

k=0

∫ 2(k+1)π

2kπ

f(x)g(x)e−xdx

by splitting up the range of integration and using Dominated Convergence,

=
∞∑

k=0

∫ 2π

0

f(x+ 2kπ)g(x+ 2kπ)e−x−2kπdx

by changing variables in each of the inner integrals

=
∞∑

k=0

e−2kπ

∫ 2π

0

f(x+ 2kπ)g(x+ 2kπ)e−xdx

(iv) The trigonometric system en(x) = einx (for n ∈ Z) is an orthonormal basis for L2([0, 2π[,L, dx/2π)
and so its closed linear span is the whole of L2([0, 2π[,L, dx/2π). However, continuing from (iii)
above, we have for f ∈M

‖f‖2
H =

1

1− e−2π

∫ 2π

0

|f(x)|2e−xdx

So

C1
1

2π

∫ 2π

0

|f(x)|2dx ≤ ‖f‖2
H ≤ C2

1

2π

∫ 2π

0

|f(x)|2dx

for suitable C1, C2 satisfying 0 < C1 < C2 < ∞. Thus the restriction mapping f 7→ f |[0,2π[ is a
one-to-one linear map of M onto L2([0, 2π[,L, dx/2π). Furthermore on M the metric coming from
H and the metric coming from L2([0, 2π[,L, dx/2π) are equivalent and have the same convergent
sequences and therefore the same closed sets. It follows that M is also the closed linear span of
en(x) = einx (for n ∈ Z) in the metric coming from H.

Note: The set of functions x 7→ einx as n runs over all integers is not an orthonormal basis of
M .

(v) Let g ∈M . Then g ⊥ f − h or

0 =
∞∑

k=0

e−2kπ

∫ 2π

0

g(x)
(
f(x+ 2kπ)− h(x)

)
e−xdx
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using the periodicity of g and h. Applying Fubini’s Theorem, we get

0 =

∫ 2π

0

g(x)

(( ∞∑
k=0

e−2kπf(x+ 2kπ)
)
− 1

1− e−2π
h(x)

)
e−xdx.

Fubini’s Theorem is valid since g, h and x 7→
∞∑

k=0

e−2kπ|f(x+ 2kπ)| are all L2 functions on [0, 2π[

and the integrand is therefore dominated by a nonnegative L1 function by the Cauchy–Schwarz
Inequality. (Dominated convergence can also be used here). Finally, since g is arbitrary, we find

h(x) = (1− e−2π)
∞∑

k=0

e−2kπf(x+ 2kπ),

for almost all x in [0, 2π[.

7. Consider the trigonometric polynomials Pm and Qm defined for nonnegative integers m induc-
tively as follows

P0(t) = Q0(t) = 1 and Pm+1(t) = Pm(t) + ei2mtQm(t), Qm+1(t) = Pm(t)− ei2mtQm(t)

(i) (5 points) Show that P1(t) = 1 + eit, Q1(t) = 1 − eit, P2(t) = 1 + eit + e2it − e3it and
Q2(t) = 1 + eit − e2it + e3it.

(ii) (5 points) Show that P̂m(n) = 0 if n < 0 or if n ≥ 2m and that P̂m(n) = 1 or −1 otherwise.
(iii) (5 points) Show that |Pm+1(t)|2 + |Qm+1(t)|2 = 2 (|Pm(t)|2 + |Qm(t)|2) and deduce first

that |Pm(t)|2 + |Qm(t)|2 = 2m+1 for all t and then that sup
t
|Pm(t)| ≤ 2

m+1
2 .

(iv) (5 points) Show that

∫ 2π

0

|Pm(t)|2dt = 2m+1π.

Note: This question had a small error which has been corrected in this version.

Solution:
(i) According to the definitions, P1 = P0 + eitQ0 = 1 + eit, Q1 = P0 − eitQ0 = 1 − eit,

P2 = P1 + e2itQ1 = 1 + eit + e2it − e3it and Q2 = P1 − e2itQ1 = 1 + eit − e2it + e3it.
(ii) Proof by induction using the induction hypothesis that

• P̂m(n) = 0 if n < 0 or if n ≥ 2m and that P̂m(n) = 1 or −1 otherwise.

• Q̂m(n) = 0 if n < 0 or if n ≥ 2m and that Q̂m(n) = 1 or −1 otherwise.
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which clearly starts correctly. We have

P̂m(n) = P̂m−1(n) + Q̂m−1(n− 2m−1)

Q̂m(n) = P̂m−1(n)− Q̂m−1(n− 2m−1)

and we check using the induction hyothesis that P (respectively Q) satisfies

P̂m(n) =


0 if n < 0 since P̂m−1(n) = Q̂m−1(n− 2m−1) = 0,

±1 if 0 ≤ n < 2m−1 since P̂m−1(n) = ±1, Q̂m−1(n− 2m−1) = 0,

±1 if 2m−1 ≤ n < 2m since P̂m−1(n) = 0, Q̂m−1(n− 2m−1) = ±1,

0 if n ≥ 2m since P̂m−1(n) = Q̂m−1(n− 2m−1) = 0,

(iii) We have

|Pm+1(t)|2 + |Qm+1(t)|2

=
∣∣Pm(t) + ei2mtQm(t)

∣∣2 +
∣∣Pm(t)− ei2mtQm(t)

∣∣2
= |Pm(t)|2 + |Qm(t)|2 + 2<

(
Pm(t)ei2mtQm(t)

)
+ |Pm(t)|2 + |Qm(t)|2 − 2<

(
Pm(t)ei2mtQm(t)

)
= 2
(
|Pm(t)|2 + |Qm(t)|2

)
and a simple induction argument gives the required conclusion. Since |Pm(t)|2 + |Qm(t)|2 = 2m+1,

it follows that |Pm(t)|2 ≤ 2m+1 for all t and hence |Pm(t)| ≤ 2
m+1

2 .

(iv) From the Plancherel Theorem,

∫ 2π

0

|Pm(t)|2dt = 2π
∑
n∈Z

∣∣∣P̂m(n)
∣∣∣2 = 2m+1π, from (ii) above.

? ? ? ? ?
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