FACULTY OF SCIENCE

FINAL EXAMINATION

MATHEMATICS MATH 355

Analysis 4

Associate Examiner: Professor K. N. GowriSankaran Time: 2: 00 pm. – 5: 00 pm.

Examiner: Professor S. W. Drury Date: Wednesday, April 18, 2007

INSTRUCTIONS

Attempt six questions for full credit.

This is a closed book examination. Write your answers in the booklets provided. All questions are of equal weight, each is alloted 20 marks.

This exam has 7 questions and 10 pages

- 1. (i) (4 points) Define the concepts field and σ -field.
	- (ii) (2 points) Define the concept of premeasure on a field and measure on a σ -field.
	- (iii) (2 points) Define the concept of outer measure.
	- (iv) (4 points) State the Carathéodory Extension Theorem.
	- (v) (8 points) If μ is a premeasure on a field $\mathcal F$ of subsets of X and μ^* is the outer measure it

defines on X by the equation $\mu^*(A) = \inf \sum_{k=1}^{\infty}$ $j=1$ $\mu(A_j)$ where the infimum is taken over all possible sequences of sets $A_j \in \mathcal{F}$ such that $A \subseteq \bigcup_{j=1}^{\infty} A_j$, show that for any subsets A and B of X that $\mu^*(A \cup B) + \mu^*(A \cap B) \leq \mu^*(A) + \mu^*(B).$

Solution:

(i) Let X be a set. Then a collection $\mathcal F$ of subsets of X is a field if and only if

- (a) $X \in \mathcal{F}$.
- (b) $A \in \mathcal{F} \Longrightarrow X \setminus A \in \mathcal{F}$.
- (c) $A \in \mathcal{F}, B \in \mathcal{F} \Longrightarrow A \cup B \in \mathcal{F}.$

Let X be a set. Then a collection F of subsets of X is a σ -field if and only if

- (a) $X \in \mathcal{F}$.
- (b) $A \in \mathcal{F} \Longrightarrow X \setminus A \in \mathcal{F}$.
- (c) $A_k \in \mathcal{F}$ for $k \in K$, K countable $\Longrightarrow \bigcup_{k \in K} A_k \in \mathcal{F}$.

(ii) We now define the concept of a measure (premeasure) on a σ -field (field) $\mathcal F$ of subsets of X as a function $\mu : \mathcal{F} \longrightarrow [0, \infty]$ such that

- (a) $\mu(\emptyset) = 0$.
- (b) $\mu\left(\bigcup_{k\in K} A_k\right) = \sum_{k\in K} \mu(A_k)$ whenever K is a countable index set and A_k are pairwise disjoint subsets of X with $A_k \in \mathcal{F}$ and $\bigcup_{k \in K} A_k \in \mathcal{F}$.

Note: Tragically many students defined a premeasure as a finitely additive set function. This is incorrect.

- (iii) An outer measure θ on a set X is a map $\theta : \mathcal{P}_X \longrightarrow [0,\infty]$ with the following properties
- (a) $\theta(\emptyset) = 0$.
- (b) If $A \subseteq B \subseteq X$, then $\theta(A) \leq \theta(B)$.
- (c) $\theta\left(\bigcup_{j=1}^{\infty} A_j\right) \leq \sum_{j=1}^{\infty} \theta(A_j).$

(iv) Let μ be a premeasure on a field $\mathcal F$ of subsets of X. Let $\mathcal G$ be the σ -field generated by $\mathcal F$. Then there exists a measure ν on G which agrees with μ on F.

(v) The easiest way is to use the Carathéodory Extension Theorem. Let the extension be (X, \mathcal{G}, ν) . Then clearly we have $\mu^*(A) = \inf_{A \subseteq G \in \mathcal{G}} \nu(G)$, an equivalent way of rewriting the definition of μ^* a posteriori. Now given $\epsilon > 0$ we can find $P, Q \in \mathcal{G}$ such that $A \subseteq P, B \subseteq Q, \nu(P) < \mu^*(A) + \epsilon$ and $\nu(Q) < \mu^*(B) + \epsilon$

From the three identities

$$
\nu(P \cup Q) = \nu(P \setminus Q) + \nu(P \cap Q) + \nu(Q \setminus P),
$$

$$
\nu(P) = \nu(P \setminus Q) + \nu(P \cap Q),
$$

$$
\nu(Q) = \nu(P \cap Q) + \nu(Q \setminus P).
$$

we get

$$
\nu(P) + \nu(Q) = \nu(P \setminus Q) + \nu(P \cap Q) + \nu(P \cap Q) + \nu(Q \setminus P) = \nu(P \cup Q) + \nu(P \cap Q).
$$

But $A \cup B \subseteq P \cup Q$ and $A \cap B \subseteq P \cap Q$ so that

$$
\mu^{\star}(A \cup B) + \mu^{\star}(A \cap B) \le \nu(P \cup Q) + \nu(P \cap Q) = \nu(P) + \nu(Q) < \mu^{\star}(A) + \mu^{\star}(B) + 2\epsilon.
$$

Letting $\epsilon \downarrow 0$ gives the desired result.

2. Let (X, \mathcal{M}, μ) be a measure space.

(i) (5 points) Under what conditions can one define $\int f(x) d\mu(x)$ for a signed M-measurable function f on X? In this case give the definition in terms of the integral of nonnegative \mathcal{M} measurable functions on X.

Let g be a nonnegative M-measurable function on X satisfying $\int g(x)d\mu(x) < \infty$.

(ii) (5 points) Prove Tchebychev's inequality $\mu({x; g(x) > t}) \leq \frac{1}{t}$ t $\int g(x) d\mu(x)$ for $t > 0$.

(iii) (10 points) Let $\mu(X) = 1$ and let f be a signed M-measurable function such that $\int f d\mu = 0$ and $\int f^2 d\mu = 1$. Show that $\mu({x; f(x) > s}) \leq \frac{1}{1 + \frac{1}{s}}$ $\frac{1}{1+s^2}$ for $s > 0$.

Hint: Consider $g(x) = (sf(x) + 1)^2$.

Solution:

(i) The integral is only defined in case $\int |f| d\mu < \infty$. In this case, we define

$$
f_{+}(x) = \begin{cases} f(x) & \text{if } f(x) \ge 0, \\ 0 & \text{otherwise.} \end{cases} \quad \text{and} \quad f_{-}(x) = \begin{cases} -f(x) & \text{if } f(x) \le 0, \\ 0 & \text{otherwise.} \end{cases}
$$

In this way, we see that $f_+ \geq 0$, $f_-\geq 0$ and $f = f_+ - f_-\dots$. Now, it is clear that $f_{\pm} \leq |f|$ and that $\int f_{\pm}d\mu < \infty$. The definition $fd\mu = \int f_{+}d\mu - \int f_{-}d\mu$ makes sense as the difference of two finite nonnegative numbers.

(ii) Let $A = \{x; g(x) > t\}$, then $A \in \mathcal{M}$. Since g is nonegative and $g \geq t \mathbb{1}_A$, it follows that

$$
\int g d\mu \ge \int t \mathbb{1}_A d\mu = t\mu(A)
$$

as required.

(iii) Using the hypotheses we have

$$
\int g d\mu = \int (sf+1)^2 d\mu = s^2 \int f^2 d\mu + 2s \int f d\mu + \mu(X) = s^2 + 1
$$

But g is nonnegative and $f(x) > s \Longrightarrow g(x) > (s^2 + 1)^2$, so taking $t = (s^2 + 1)^2$, we get

$$
\mu({x; f(x) > s}) \le \frac{s^2 + 1}{(s^2 + 1)^2} = \frac{1}{s^2 + 1}
$$

- 3. (i) (5 points) State the Monotone Convergence Theorem.
	- (ii) (5 points) State the Dominated Convergence Theorem.

(iii) (10 points) Find $\lim_{n\to\infty} n \int_0^\infty$ 0 1 $\frac{1}{1+x^4}\sin\left(\frac{x}{n}\right)$ n dx . In answering the question you may use the inequality $|\sin(u)| \le \min(1, |u|)$. Otherwise, justify all steps and for full credit simplify your answer as much as possible.

Solution:

(i) If f_n, f are nonnegative measurable functions and if $f_n \uparrow f$ pointwise, then $\int f_n d\mu \uparrow \int f d\mu$.

(ii) Let f_n be a sequence of measurable functions and suppose that $f_n \longrightarrow f$ pointwise. Further suppose that there is a (nonnegative) function g such that $|f_n| \leq g$ pointwise for every $n \in \mathbb{N}$. If $\int g d\mu < \infty$, then necessarily

$$
\int f_n d\mu \underset{n\to\infty}{\longrightarrow} \int f d\mu.
$$

(iii) From the given inequality, $n\vert$ $\sin\left(\frac{x}{x}\right)$ n $\left|\int_0^{\infty} 1 \right| \leq x$ for $x \geq 0$ and we know from L'Hôpital's Rule that $n \sin \left(\frac{x}{x}\right)$ n $\rightarrow x \text{ as } n \rightarrow \infty.$ Letting $f_n(x) = n \frac{1}{1+x}$ $\frac{1}{1+x^4}\sin\left(\frac{x}{n}\right)$ n we can take $f(x) = g(x) = \frac{x}{1+x}$ $1 + x^4$ in the Dominated Convergence Theorem. The value of the limit is

$$
\int_0^\infty \frac{x}{1+x^4} dx = \int_0^\infty \frac{\frac{1}{2}u}{1+u^2} du = \frac{\pi}{4}.
$$

- 4. (i) (5 points) Let (X, \mathcal{S}) and (Y, \mathcal{T}) be measurable spaces. Define $\mathcal{S} \otimes \mathcal{T}$.
- If X is a metric space, we denote \mathcal{B}_X , its Borel σ -field.

(ii) (15 points) Prove in detail that $\mathcal{B}_{\mathbb{R}} \otimes \mathcal{B}_{\mathbb{R}} = \mathcal{B}_{\mathbb{R}^2}$.

Solution:

(i) A measurable rectangle is a subset of $X \times Y$ of the form $S \times T$ with $S \in \mathcal{S}$ and $T \in \mathcal{T}$. We define $S \otimes T$ to be the smallest σ -field containing the measurable rectangles.

(ii) To see that $\mathcal{B}_{\mathbb{R}^2} \subseteq \mathcal{B}_{\mathbb{R}} \otimes \mathcal{B}_{\mathbb{R}}$, recall that every open subset of \mathbb{R}^2 is a countable union of open rectangles $J \times K$ where J, K are open intervals in R. This shows that every open subset of \mathbb{R}^2 lies in the σ -field $\mathcal{B}_{\mathbb{R}} \otimes \mathcal{B}_{\mathbb{R}}$. The inclusion now follows from the definition of $\mathcal{B}_{\mathbb{R}^2}$. The other direction is easier, but more involved. One starts from

$$
A, B \text{ open } \Longrightarrow A \times B \text{ open } \Longrightarrow A \times B \in \mathcal{B}_{\mathbb{R}^2}.
$$

Now let A be a fixed open set then clearly

 ${B; B \subseteq \mathbb{R}, A \times B \in \mathcal{B}_{\mathbb{R}^2}}$ is a σ -field on \mathbb{R} containing the open sets.

It follows that

A open, B borel $\implies A \times B \in \mathcal{B}_{\mathbb{R}^2}$.

Then, fix B borel the clearly

 ${A; A \subseteq \mathbb{R}, A \times B \in \mathcal{B}_{\mathbb{R}^2}}$ is a σ -field on \mathbb{R} containing the open sets.

We may deduce that

 A, B borel $\implies A \times B \in \mathcal{B}_{\mathbb{R}^2}$.

Finally, since $\mathcal{B}_{\mathbb{R}^2}$ is a σ -field, $\mathcal{B}_{\mathbb{R}} \otimes \mathcal{B}_{\mathbb{R}} \subseteq \mathcal{B}_{\mathbb{R}^2}$.

- 5. (i) (5 points) State Tonelli's Theorem.
	- (ii) (5 points) State Fubini's Theorem.
	- (iii) (10 points) Starting from the identity

$$
\int_0^\infty e^{-sx} \sin(ux) dx = \frac{u}{u^2 + s^2}
$$

valid for $s > 0$ and $u \in \mathbb{R}$, show that

$$
\int_0^\infty e^{-sx} \frac{1 - \cos(tx)}{x} dx = \frac{1}{2} \ln(s^2 + t^2) - \ln(s)
$$

provided that $s > 0$ and $t \in \mathbb{R}$. *Hint:* \int_0^t 0 $\sin(ux)du =$ $1 - \cos(tx)$ \overline{x} .

Solution:

(i) Let (X, \mathcal{S}, μ) and (Y, \mathcal{T}, ν) be σ -finite measure spaces. Let $f : X \times Y \longrightarrow [0, \infty]$ be $S \otimes \mathcal{T}$ measurable. Then $\varphi(x) = \int f(x, y) d\nu(y)$ and $\psi(y) = \int f(x, y) d\mu(x)$ define nonnegative measurable functions on (X, \mathcal{S}) and (Y, \mathcal{T}) respectively and

$$
\int \varphi(x) d\mu(x) = \int f(x, y) d(\mu \times \nu)(x, y) = \int \psi(y) d\nu(y).
$$

(ii) Let (X, \mathcal{S}, μ) and (Y, \mathcal{T}, ν) be σ -finite measure spaces. Let $f : X \times Y \longrightarrow \mathbb{R}$ be $\mathcal{S} \otimes \mathcal{T}$ measurable. Suppose that one of the three quantities

$$
\int \int |f(x,y)| d\nu(y) d\mu(x) = \int |f| d(\mu \times \nu) = \int \int |f(x,y)| d\mu(x) d\nu(y).
$$

is finite (they are all equal by Tonelli's Theorem). Then

$$
\varphi(x) = \int f(x, y) d\nu(y)
$$
 and $\psi(y) = \int f(x, y) d\mu(x)$

almost everywhere (w.r.t μ and ν respectively) define measurable functions on (X, \mathcal{S}) and (Y, \mathcal{T}) respectively, the integrals being absolutely convergent at almost every point, and

$$
\int \varphi(x) d\mu(x) = \int f(x, y) d(\mu \times \nu)(x, y) = \int \psi(y) d\nu(y),
$$

where these integrals also make sense as absolutely convergent integrals.

(iii) Since $t \mapsto \frac{1}{2}\ln(s^2 + t^2) - \ln(s)$ and $t \mapsto 1 - \cos(tx)$ are even functions, there is no loss in assuming that $t \geq 0$.

Assuming that Fubini's Theorem can be applied, we have

$$
\int_0^\infty e^{-sx} \frac{1 - \cos(tx)}{x} dx = \int_0^\infty \int_0^t e^{-sx} \sin(ux) du dx
$$

$$
= \int_0^t \int_0^\infty e^{-sx} \sin(ux) dx du
$$

$$
= \int_0^t \frac{u}{u^2 + s^2} du
$$

$$
= \frac{1}{2} \ln(s^2 + t^2) - \ln(s)
$$

To justify, the measure spaces are certainly σ -finite, the integrand $(x, u) \mapsto e^{-sx} \sin(ux)$ is continuous and hence Borel and we have

$$
\int_0^t \int_0^\infty |e^{-sx}\sin(ux)|dx du \le \int_0^t \int_0^\infty e^{-sx}dx du = \frac{t}{s} < \infty
$$

for $s > 0$.

6. Let $\mathcal L$ be the Lebesgue σ -field on $[0,\infty]$ and $d\mu(x) = e^{-x}dx$. Consider the linear subspace M of $H = L^2([0,\infty], \mathcal{L}, \mu)$ consisting of equivalence classes of functions that are periodic a.e. with period 2π , i.e.

$$
f(x + 2\pi) = f(x) \text{ a.a. } x \in [0, \infty[
$$

(i) (4 points) Show that M is itself an L^2 space over a smaller σ -field than \mathcal{L} .

(ii) (4 points) Deduce that M is a *closed* linear subspace of H . What fact are you using here? (iii) (4 points) Show that for $f, q \in H$,

$$
\langle f, g \rangle = \sum_{k=0}^{\infty} e^{-2k\pi} \int_0^{2\pi} \overline{f(x + 2k\pi)} g(x + 2k\pi) e^{-x} dx
$$

(iv) (4 points) Show that the closed linear span of the functions $x \mapsto e^{inx}$ as n runs over all integers is the whole of M. What fact are you using here?

(v) (4 points) For an arbitrary member f of H, let h be its orthogonal projection on M. Show that

$$
h(x) = (1 - e^{-2\pi}) \sum_{k=0}^{\infty} e^{-2k\pi} f(x + 2k\pi),
$$

for almost all x in $[0, 2\pi]$ (and extended by periodicity for other values of x). Solution:

(i) Let G be the σ -field of Lebesgue measurable subsets of $[0,\infty]$ that are a.e. periodic with period 2π . Then it is routine to check that $\mathcal G$ is a σ -field and that $M = L^2([0,\infty[, \mathcal G, \mu)$.

(ii) Since M is an L^2 space, it is complete and hence is closed in any metric space that contains it isometrically, such as $L^2([0,\infty[,\mathcal{L},\mu)).$

(iii)

$$
\langle f, g \rangle = \int_0^\infty \overline{f(x)} g(x) e^{-x} dx
$$

$$
= \sum_{k=0}^\infty \int_{2k\pi}^{2(k+1)\pi} \overline{f(x)} g(x) e^{-x} dx
$$

by splitting up the range of integration and using Dominated Convergence,

$$
= \sum_{k=0}^{\infty} \int_0^{2\pi} \overline{f(x+2k\pi)} g(x+2k\pi) e^{-x-2k\pi} dx
$$

by changing variables in each of the inner integrals

$$
= \sum_{k=0}^{\infty} e^{-2k\pi} \int_0^{2\pi} \overline{f(x+2k\pi)} g(x+2k\pi) e^{-x} dx
$$

(iv) The trigonometric system $e_n(x) = e^{inx}$ (for $n \in \mathbb{Z}$) is an orthonormal basis for $L^2([0, 2\pi], \mathcal{L}, dx/2\pi)$ and so its closed linear span is the whole of $L^2([0, 2\pi], \mathcal{L}, dx/2\pi)$. However, continuing from (iii) above, we have for $f \in M$

$$
||f||_H^2 = \frac{1}{1 - e^{-2\pi}} \int_0^{2\pi} |f(x)|^2 e^{-x} dx
$$

So

$$
C_1 \frac{1}{2\pi} \int_0^{2\pi} |f(x)|^2 dx \le ||f||_H^2 \le C_2 \frac{1}{2\pi} \int_0^{2\pi} |f(x)|^2 dx
$$

for suitable C_1, C_2 satisfying $0 < C_1 < C_2 < \infty$. Thus the restriction mapping $f \mapsto f|_{[0,2\pi]}$ is a one-to-one linear map of M onto $L^2([0, 2\pi], \mathcal{L}, dx/2\pi)$. Furthermore on M the metric coming from H and the metric coming from $L^2([0, 2\pi], \mathcal{L}, dx/2\pi)$ are equivalent and have the same convergent sequences and therefore the same closed sets. It follows that M is also the closed linear span of $e_n(x) = e^{inx}$ (for $n \in \mathbb{Z}$) in the metric coming from H.

Note: The set of functions $x \mapsto e^{inx}$ as n runs over all integers is not an orthonormal basis of M.

(v) Let $g \in M$. Then $g \perp f - h$ or

$$
0 = \sum_{k=0}^{\infty} e^{-2k\pi} \int_0^{2\pi} \overline{g(x)} \Big(f(x + 2k\pi) - h(x) \Big) e^{-x} dx
$$

using the periodicity of g and h. Applying Fubini's Theorem, we get

$$
0 = \int_0^{2\pi} \overline{g(x)} \left(\left(\sum_{k=0}^\infty e^{-2k\pi} f(x + 2k\pi) \right) - \frac{1}{1 - e^{-2\pi}} h(x) \right) e^{-x} dx.
$$

Fubini's Theorem is valid since g, h and $x \mapsto \sum_{n=1}^{\infty}$ $_{k=0}$ $e^{-2k\pi}|f(x+2k\pi)|$ are all L^2 functions on $[0,2\pi]$

and the integrand is therefore dominated by a nonnegative L^1 function by the Cauchy–Schwarz Inequality. (Dominated convergence can also be used here). Finally, since q is arbitrary, we find

$$
h(x) = (1 - e^{-2\pi}) \sum_{k=0}^{\infty} e^{-2k\pi} f(x + 2k\pi),
$$

for almost all x in $[0, 2\pi]$.

7. Consider the trigonometric polynomials P_m and Q_m defined for nonnegative integers m inductively as follows

$$
P_0(t) = Q_0(t) = 1
$$
 and $P_{m+1}(t) = P_m(t) + e^{i2^m t} Q_m(t)$, $Q_{m+1}(t) = P_m(t) - e^{i2^m t} Q_m(t)$

(i) (5 points) Show that $P_1(t) = 1 + e^{it}$, $Q_1(t) = 1 - e^{it}$, $P_2(t) = 1 + e^{it} + e^{2it} - e^{3it}$ and $Q_2(t) = 1 + e^{it} - e^{2it} + e^{3it}.$

(ii) (5 points) Show that $P_m(n) = 0$ if $n < 0$ or if $n \geq 2^m$ and that $P_m(n) = 1$ or -1 otherwise.

(iii) (5 points) Show that $|P_{m+1}(t)|^2 + |Q_{m+1}(t)|^2 = 2(|P_m(t)|^2 + |Q_m(t)|^2)$ and deduce first that $|P_m(t)|^2 + |Q_m(t)|^2 = 2^{m+1}$ for all t and then that sup $\sup_t |P_m(t)| \leq 2^{\frac{m+1}{2}}.$

(iv) (5 points) Show that $\int_{0}^{2\pi}$ $\boldsymbol{0}$ $|P_m(t)|^2 dt = 2^{m+1}\pi.$

Note: This question had a small error which has been corrected in this version. Solution:

(i) According to the definitions, $P_1 = P_0 + e^{it} Q_0 = 1 + e^{it}$, $Q_1 = P_0 - e^{it} Q_0 = 1 - e^{it}$, $P_2 = P_1 + e^{2it} Q_1 = 1 + e^{it} + e^{2it} - e^{3it}$ and $Q_2 = P_1 - e^{2it} Q_1 = 1 + e^{it} - e^{2it} + e^{3it}$.

(ii) Proof by induction using the induction hypothesis that

- $\widehat{P_m}(n) = 0$ if $n < 0$ or if $n \geq 2^m$ and that $\widehat{P_m}(n) = 1$ or -1 otherwise.
- $\tilde{Q}_m(n) = 0$ if $n < 0$ or if $n \geq 2^m$ and that $\tilde{Q}_m(n) = 1$ or -1 otherwise.

which clearly starts correctly. We have

$$
\widehat{P_m}(n) = \widehat{P_{m-1}}(n) + \widehat{Q_{m-1}}(n - 2^{m-1})
$$

$$
\widehat{Q_m}(n) = \widehat{P_{m-1}}(n) - \widehat{Q_{m-1}}(n - 2^{m-1})
$$

and we check using the induction hyothesis that P (respectively Q) satisfies

$$
\widehat{P_m}(n) = \begin{cases}\n0 & \text{if } n < 0 \text{ since } \widehat{P_{m-1}}(n) = \widehat{Q_{m-1}}(n-2^{m-1}) = 0, \\
\pm 1 & \text{if } 0 \le n < 2^{m-1} \text{ since } \widehat{P_{m-1}}(n) = \pm 1, \widehat{Q_{m-1}}(n-2^{m-1}) = 0, \\
\pm 1 & \text{if } 2^{m-1} \le n < 2^m \text{ since } \widehat{P_{m-1}}(n) = 0, \widehat{Q_{m-1}}(n-2^{m-1}) = \pm 1, \\
0 & \text{if } n \ge 2^m \text{ since } \widehat{P_{m-1}}(n) = \widehat{Q_{m-1}}(n-2^{m-1}) = 0,\n\end{cases}
$$

(iii) We have

$$
|P_{m+1}(t)|^2 + |Q_{m+1}(t)|^2
$$

= $|P_m(t) + e^{i2^m t} Q_m(t)|^2 + |P_m(t) - e^{i2^m t} Q_m(t)|^2$
= $|P_m(t)|^2 + |Q_m(t)|^2 + 2\Re(\overline{P_m(t)}e^{i2^m t} Q_m(t)) + |P_m(t)|^2 + |Q_m(t)|^2 - 2\Re(\overline{P_m(t)}e^{i2^m t} Q_m(t))$
= $2(|P_m(t)|^2 + |Q_m(t)|^2)$

and a simple induction argument gives the required conclusion. Since $|P_m(t)|^2 + |Q_m(t)|^2 = 2^{m+1}$, it follows that $|P_m(t)|^2 \le 2^{m+1}$ for all t and hence $|P_m(t)| \le 2^{\frac{m+1}{2}}$.

(iv) From the Plancherel Theorem, $\int_{0}^{2\pi}$ 0 $|P_m(t)|^2 dt = 2\pi \sum$ n∈Z $\left|\widehat{P_m}(n)\right|$ $2^2 = 2^{m+1}\pi$, from (ii) above.

$$
\star\qquad\quad\star\qquad\quad\star\qquad\quad\star\qquad\quad\star
$$