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Mathematics 355 : Final Examination

e Each question is worth 10 points.
e No calculators are permitted.

e Please show all your work.

1. Assume that f(z,y) and £ f(z, y) are both continous functions on Rx R and let [a,0] c R
be any finite interval. Show that, . '

a b b9
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Justify ea& step ydur argument carefully.

2. Let a > 0 and f(z) be a continuous function on [—a, a]. Compute the limit
a

lim N2 /
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e N2 £ (z)dz.
Justify each step of your argument carefully. (Hint: Make a change of variables in the
integral). '

3. Let (X, F; ) be a measure space, A and B be measurable subsets of X and S(A, B) =
(A~ B)U(B — A). Show that, if u(S(4, B)) = 0, then, for every nonnegative measurable

function f, :
[ fau=[ fau.

4. Let B" := {2 € R"|z| < 1} be the unit ball in Cartesian n-space with v, := Volume (B").
Show that

1 a—
Up = 20p_1 - / (1 - 12)" dt.
0
Justify each step of your argument carefully. (Hint: Use Fubini’s theorem.)

5. Let x[-1,1) be the indicator function of the interval [—1,1] (ie. its characteristic function).

~.(i) Compute Xi—1,1(¥)-
(ii) Use the Plancherel formula to compute
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