- 1. (i) (5 marks) Define the concept σ -field.
 - (ii) (5 marks) Define the concept *measure* on a σ -field.
 - (iii) (10 marks) Let \mathcal{M} be a σ -field on a set X and μ a measure on (X, \mathcal{M}) . Show that

$$|\mu(A) - \mu(B)| \le \mu(A \triangle B)$$

provided that either $\mu(A) < \infty$ or $\mu(B) < \infty$.

Note: The symbolism $A \triangle B$ denotes $(A \setminus B) \cup (B \setminus A)$, the symmetric difference of A and B.

- 2. Let (X, \mathcal{M}, μ) be a measure space.
 - (i) (5 marks) Give the definition of $\int f(x)d\mu(x)$ for a nonnegative \mathcal{M} -measurable function f on X in terms of the integral of nonnegative \mathcal{M} -measurable simple functions on X.

Let f be a nonnegative \mathcal{M} -measurable function on X satisfying $\int f(x)d\mu(x) < \infty$.

- (ii) (5 marks) For t > 0, prove the inequality $\mu(\{x; f(x) > t\}) \le \frac{1}{t} \int f(x) d\mu(x)$.
- (iii) (5 marks)
- $\begin{array}{l} \text{Show that } \lim_{t\to\infty}t\mu(\{x;f(x)>t\})=0.\\ \text{Show that } \lim_{t\to0+}t\mu(\{x;f(x)>t\})=0. \end{array}$ (iv) (5 marks)

- 3. Let (X, \mathcal{M}, μ) be a measure space and f be a nonnegative \mathcal{M} -measurable function on X satisfying $\int f(x)d\mu(x) = 1$.
 - (i) (5 marks) State the Dominated Convergence Theorem.
 - (ii) (5 marks) Find

$$\lim_{n \to \infty} \int n \ln\left(1 + \frac{f(x)}{n}\right) d\mu(x).$$

- State Fatou's Lemma. (iii) (5 marks)
- (iv) (5 marks) Find

$$\lim_{n \to \infty} \int n \ln\left(1 + \sqrt{\frac{f(x)}{n}}\right) d\mu(x).$$

- 4. (i) (5 marks) State carefully Tonelli's Theorem on the integration of nonnegative functions.
 - (ii) (5 marks) Explain how the formula

$$\sum_{p=0}^{\infty} \sum_{q=0}^{\infty} a_{p,q} = \sum_{q=0}^{\infty} \sum_{p=0}^{\infty} a_{p,q}$$

can be obtained from Tonelli's Theorem in case $a_{p,q} \ge 0$ for all p and q.

(iii) (10 marks) Evaluate $\int_0^\infty \left(\frac{\sin(x)}{x}\right)^2 dx$. You may use the formulæ

$$x^{-2} = \int_0^\infty e^{-xt} t dt \quad (\forall x > 0) \quad \text{and} \quad \frac{2}{t(t^2 + 4)} = \int_0^\infty e^{-xt} (\sin(x))^2 dx \quad (\forall t > 0)$$

without justification.

- 5. Let (X, \mathcal{M}, μ) be a measure space.
 - (i) (4 marks) State Hölder's inequality for measurable functions on (X, \mathcal{M}, μ) .
 - (ii) (4 marks) State Minkowski's inequality for measurable functions on (X, \mathcal{M}, μ) .
 - (iii) (4 marks) Define the space $L^p(X, \mathcal{M}, \mu)$ for $1 \leq p < \infty$ and write down the corresponding norm.
 - (iv) (8 marks) Suppose that $f, g \in L^1(X, \mathcal{M}, \mu)$ and that $||f + g||_1 = ||f||_1 + ||g||_1$. Show that $\overline{fg} \ge 0$ (μ -almost everywhere).
- 6. Let H be a Hilbert space and M a closed linear subspace of H.
 - (i) (3 marks) What is meant by the orthogonal complement of M in H.
 - (ii) (2 marks) What is meant by the orthogonal projection operator from H to M.

Now let $H = L^2(\mathbb{R}, \mathcal{L}, \mu)$ where \mathcal{L} is the Lebesgue σ -field and μ is Lebesgue measure. For each of the following closed subspaces M describe as explicitly as you can the orthogonal projection operator from H to M.

- (iii) (5 marks) $M = \{f; f \in H, f \text{ vanishes off } [0,1]\}.$
- (iv) (5 marks) $M = \{f; f \in H, f(x) = f(-x), \mu a.a. x \in \mathbb{R}\}.$
- (v) (5 marks) $M = \{f; f \in H, f \text{ is } \mu \text{a.e. constant on each interval } [n, n+1], n \in \mathbb{Z}\}.$

- 7. (i) (5 marks) Write down the formula for the Dirichlet kernel D_N on \mathbb{T} .
 - (ii) (5 marks) How is the Dirichlet kernel related to the Fourier partial sum $S_N f$ of a function f?.
 - (iii) (5 marks) Show that

$$f(t) - S_N f(t) = \frac{1}{2\pi} \int_0^{2\pi} D_N(s) \Big(f(t) - f(t-s) \Big) ds$$

(iv) (5 marks) Show that there is an absolute constant C (independent of N) such that

$$||f - S_N f||_{\infty} \le C ||f'||_{\infty}$$

for all continuously differentiable functions f on \mathbb{T} and all N = 1, 2, ...

Note: f' denotes the derivative of f.

* * * * *

FACULTY OF SCIENCE

FINAL EXAMINATION

MATHEMATICS 189-355B

Analysis III

Examiner: Professor S. W. Drury Associate Examiner: Professor K. N. GowriSankaran Date: Monday, April 29, 2002 Time: 2:00 P.M. – 5:00 P.M.

INSTRUCTIONS

Attempt six questions for full credit.

This is a closed book examination. Write your answers in the booklets provided. All questions are of equal weight, each is alloted 20 marks.

This exam comprises the cover and 3 pages of questions.