1. Let $E \subset \mathbb{R}$ be a bounded, Lebesgue measurable set. Given $\varepsilon > 0$, show that there is an open set G and a compact set C with

- (a) $C \subseteq E \subseteq G$
- (b) $m(G \setminus C) < \varepsilon$.

Hence show that for any Lebesgue measurable subset E of \mathbb{R}

$$m(E) = \sup\{m(C) : C \text{ compact}, \ C \subseteq E\} = \inf\{m(G) : G \text{ open}, \ G \supseteq E\}.$$

2. Let (X, S, μ) be a measure space, $f \geq 0$, measurable on X. If $\nu_f(E) = \int_E f d\mu$, we know that $\mu(E) = 0$ implies $\nu_f(E) = 0$. If f is integrable on X prove the stronger statement that given $\varepsilon > 0$ there exists $\delta > 0$ such that $\mu(E) < \delta$ implies $\nu_f(E) < \varepsilon$.

3. Find $\lim_{n\to\infty} \int_0^\infty n \sin\left(\frac{x}{n}\right) [x(1+x^2)]^{-1} dx$. [Justify carefully all interchanges of limits.]

4. State the theorems of Fubini and of Fubini-Tonnelli on the integration of functions measurable with respect to the product of two σ -finite measure spaces (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) . Show that

$$\int_0^1 \left\{ \int_0^1 \frac{x^2 - y^2}{(x^2 + y^2)^2} dy \right\} dx \neq \int_0^1 \left\{ \int_0^1 \frac{x^2 - y^2}{(x^2 + y^2)^2} dx \right\} dy$$

although both sides exist. $\left[\underline{\text{Hint}} \colon \frac{\partial}{\partial y} \left(\frac{y}{x^2 + y^2} \right) = \frac{x^2 - y^2}{(x^2 + y^2)^2} . \right]$

What does Fubini's theorem then tell you?

- 5. (a) State Hölder's inequality. Let (X, S, μ) be a finite measure space with $\mu(X) = 1$, and $f \in L^p$ for some $p, 1 . Use Hölder's inequality to show that <math>f \in L^1$ and $||f||_1 \le ||f||_p$.
 - (b) If f_n , $f \in L^p(X, S, \mu)$, g_n , $g \in L^q(X, S, \mu)$, $1 , <math>q = \frac{p}{p-1}$, and $f_n \to f$ in L^p , $g_n \to g$ in L^q show that

$$f_n g_n \to fg \text{ in } L^1 \text{ and } \int_Y f_n g_n d\mu \to \int_Y fg d\mu.$$

6. Let (X, S, μ) be a measure space, (ϕ_n) , $n \in \mathbb{N}$ an orthonormal sequence in $L^2(X, S, \mu)$, and $(c_n) \in \ell^2$.

State the Riesz-Fischer theorem for (ϕ_n) and (c_n) . Now for each $n \in \mathbb{N}$, put $s_n = \sum_{\substack{j=1 \ \infty}}^n c_j \phi_j$

and $\gamma_n = \sum_{j=n}^{\infty} |c_j|^2$. If (n_i) , $i \in \mathbb{N}$ is a strictly increasing subsequence of \mathbb{N} such that $\sum_{i=1}^{\infty} \gamma_{n_i}$ converges, show that (s_{n_i}) converges a.e. μ as $i \to \infty$.

[Hint: Use the Riesz-Fischer Theorem to identify the limit, and then, together with the sum form of the Monotone Convergence Theorem to show that (s_{n_i-1}) converges a.e. μ as $i \to \infty$. A similar, but simpler argument shows that $c_n \phi_n \to 0$ a.e. μ as $n \to \infty$.]

- 7. Prove or disprove the following, i.e. if the statement is true, give a proof, if it is false give a counterexample.
 - (a) Every Lebesgue measurable set of strictly positive Lebesgue measure contains a non-empty open interval.
 - (b) If f is an integrable function on a measure space (X, S, μ) , then $\{x : |f(x)| \neq 0\}$ is a countable union of sets of finite measure.
 - (c) The sequence $\{e^{inx}: n=0,1,2,\cdots\}$ is complete in $L^2[-\pi,\pi]$.

McGILL UNIVERSITY FACULTY OF SCIENCE

FINAL EXAMINATION

MATHEMATICS 189-355B

ANALYSIS IV

Examiner: Professor J.R. Choksi Date: Wednesday, April 28, 1999 Associate Examiner: Professor I. Klemes Time: 2:00 P.M. - 5:00 P.M.

<u>INSTRUCTIONS</u>

Calculators not allowed.

Attempt any 6 (SIX) questions.

All questions carry equal marks.

This exam comprises the cover and 2 pages of questions.