McGILL UNIVERSITY FACULTY OF SCIENCE

FINAL EXAMINATION

MATHEMATICS 189-355B

ANALYSIS IV

Examiner: Professor J.R. Choksi

Associate Examiner: Professor S.W. Drury

Date: Friday, April 24, 1998

Time: 2:00 P.M. - 5:00 P.M.

INSTRUCTIONS

CALCULATORS NOT PERMITTED.
Attempt any six (6) questions.
All questions carry equal marks.

This exam comprises the cover and 2 pages of questions.

- 1. For any subset $E \subseteq \mathbb{R}$ and $a \in \mathbb{R}$, let $E + a = \{x + a : x \in E\}$. Let m^* denote Lebesgue outer measure, and m Lebesgue measure. Prove that
 - (a) E + a is Borel if and only if E is Borel.
 - (b) $m^*(E+a) = m^*(E)$, all $E \subseteq \mathbb{R}$, $a \in \mathbb{R}$.
 - (c) E + a is Lebesgue measurable if and only if E is Lebesgue measurable, and then m(E + a) = m(E).
- 2. Let (X, S, μ) be a measure space and $\{f_n\}$ $n \in \mathbb{N}$, a sequence of non-negative measurable functions on (X, S, μ) . State the monotone convergence theorem and Fatou's lemma for the sequence $\{f_n\}$. Assuming the monotone convergence theorem, prove Fatou's lemma. Using Fatou's lemma prove the following:

If f, f_n , $n \in \mathbb{N}$ are non-negative integrable functions on (X, S, μ) such that $f_n \to f$ a.e. and $\int\limits_X f_n d\mu \to \int\limits_X f d\mu$, prove that for all $E \in S$, $\int\limits_E f_n d\mu \to \int\limits_E f d\mu$.

- 3. Compute $\lim_{n\to\infty} \int_0^1 \frac{1+nx^2}{(1+x^2)^n} dx$, justifying any interchanges in orders of limits.
- 4. Let (X, \mathcal{A}, μ) , (Y, \mathcal{B}, ν) be finite measure spaces, λ the product measure on $\mathcal{A} \otimes \mathcal{B}$. Show that the set of functions of the form

$$\sum_{j=1}^{n} f_j(x)g_j(y), f_j \in L^2(\mu), g_j \in L^2(\nu) \ j = 1, \dots, n, \ n \in \mathbb{N},$$

is dense in $L^2(\lambda)$.

[<u>Hint</u>: First show that characteristic functions of sets in $\mathcal{A}\otimes\mathcal{B}$ can be approximated by such functions.]

5. Let $\{f_n\}$, $\{g_n\}$ be two complete orthonormal sequences in $L^2([0,1])$, one dimensional Lebesgue measure). Show that the set of functions

$$\{h_{n,m}(x,y)=f_m(x)g_n(y):n,m\in\mathbb{N}\}$$

is a complete orthonormal sequence in $L^2([0,1] \times [0,1]$, two-dimensional Lebesgue measure).

[Hint: You may use question 4 above, even if you have not done it!]

6. Let $\{n_k\}$ be an increasing sequence of positive integers and E the (Lebesgue measurable) set of all x in $(-\pi, \pi)$ such that the sequence $\{\sin n_k x\}$ converges. Show that m(E) = 0 where m is Lebesgue measure.

[<u>Hint</u>: If A is any measurable subset of E, then $\int_A \sin n_k x dx \to 0$ as $k \to \infty$, but $\int_A (\sin n_k x)^2 dx \to \frac{1}{2} m(A)$.]

- 7. Prove or disprove the following. (i.e. if the statement is true, give a proof, if it is false give a counterexample.)
 - (a) Every non-empty Borel set in R is either (a) an at most countable union of non-degenerate intervals or (b) an at most countable union of sets consisting of one point or (c) a finite or countable union of sets of types (a) and (b).
 - (b) If (X, \mathcal{A}, μ) , (Y, \mathcal{B}, ν) are σ -finite measure spaces, λ is the product measure on $\mathcal{A} \otimes \mathcal{B}$, f(x, y) is measurable λ and the repeated integral

$$\int\limits_X \left\{\int\limits_Y |f(x,y)|\nu(dy)\right\}\mu(dx)<\infty,$$

then f is integrable λ .

(c) If $\{f_n\}$, $n \in \mathbb{N}$ is an orthonormal sequence in $L^2(X, S, \mu)$ and for all $f \in L^2$, $||f||^2 = \sum_{n=1}^{\infty} |(f, f_n)|^2$ then $\{f_n\}$ is complete in L^2 .