(X, \mathcal{A}) denotes a measurable space, (X, \mathcal{A}, μ) a measure space.

MARKS

- (10) 1. Let $(E_k)_{k=1}^{\infty}$ be a sequence of elements of \mathcal{A} . Suppose $\sum_{k=1}^{\infty} \mu(E_k) < +\infty$ and prove that μ -almost all points of X belong only to a finite number of E_k 's.
- (10) 2. State and prove the Lebesgue theorem on convergence in measure of an almost everywhere convergent sequence of functions.
- (10) 3. Let *E* be a Lebesgue measurable subset of \mathbb{R}^n . Prove that $E = G \setminus e$ where *G* is a G_{δ} -set, $m_n(e) = 0$.

(5) 4. Suppose f is a non-negative measurable function on X, $\int_X f d\mu < +\infty(*)$. Prove that

$$\lim_{a\to+\infty}a\mu(\{f>a\})=0\quad(**)\ .$$

Does (**) imply (*)?

(10) 5. Suppose (*) holds (see problem 4). Prove that

$$\lim_{p\downarrow 0}\int\limits_X f^p d\mu = \mu(\{f>0\}) \; .$$

(15) 6. Let $(r_k)_{k=1}^{\infty}$ be an enumeration of all rational points of [0, 1]. Put

$$f_p(x) := \sum_{k=1}^{\infty} \frac{1}{2^k |x - r_k|^p} \ (x \in [0, 1], \ p > 0)$$

 $(1/0 = +\infty)$. Prove that $\int_0^1 f_p dm_1 < +\infty$ if p < 1, $\int_I f_p dm_1 = +\infty$ for any nondegenerate interval $I \subset [0,1]$ if $p \ge 1$, $f_p(x) < +\infty m_1 - \text{a.e.}$ in [0,1] for any p. (Use the inequality $(A_1 + \ldots + A_n)^{\alpha} \le A_1^{\alpha} + A_2^{\alpha} + \ldots + A_n^{\alpha}$ for $0 < \alpha < 1$, $n = 1, 2, \ldots$). **Final Examination**

(15) 7. Put

$$I_{1} = \int_{0}^{1} \left[\int_{1}^{\infty} (e^{-xy} - 2e^{-2xy}) dx \right] dy$$
$$I_{2} = \int_{0}^{\infty} \left[\int_{0}^{1} (e^{-xy} - 2e^{-2xy}) dy \right] dx$$

Prove that all four integrations can be understood in the sense of Lebesgue and give finite results, but $I_1 \neq I_2$. Does it contradict Fubini's theorem?

(10) 8. Let f be a non-negative Lebesgue measurable function on \mathbb{R} . Prove that $\Gamma_f := \{(x, y) \in \mathbb{R}^2 : x \in \mathbb{R}, \ 0 < y < f(x)\}$ is Lebesgue measurable ($\Gamma_f \in \mathcal{A}_2$), and

$$m_2(\Gamma_f) = \int\limits_{\mathbb{R}} f dm_1 \; .$$

- (5) 9. Let f be a non-negative Lebesgue measurable function in \mathbb{R}^2 . Suppose that for m_1 -almost all $x \in \mathbb{R}$, f_x is m_1 -a.e. finite. Prove that for m_1 -almost all $x \in \mathbb{R}$, f^x is m_1 -a.e. finite.
- (10) 10. Let f, g be summable functions on X. Suppose $\mu(X) = 1$ and prove

$$\int\limits_X f d\mu \cdot \int\limits_X g d\mu \leq \int\limits_X f g d\mu$$

if f and g are comonotone, that is $(f(x) - f(y)) \cdot (g(x) - g(y)) \ge 0$ for any $x, y \in X$.

McGILL UNIVERSITY

FACULTY OF SCIENCE

FINAL EXAMINATION

MATHEMATICS 189-355B

ANALYSIS II (PART II)

Examiner: Professor V. Havin Associate Examiner: Professor J.R. Choksi Date: Monday, April 21, 1997 Time: 2:00 P.M. - 5:00 P.M.

INSTRUCTIONS

Solve all problems

This exam comprises the cover and 2 pages of questions.