McGILL UNIVERSITY FACULTY OF SCIENCE FINAL EXAMINATION

MATHEMATICS 189-355B ANALYSIS II (PART II)

Examiner: Professor V. Havin

Associate Examiner: Professor J.R. Choksi

Date: Friday, April 19, 1996

Time: 2:00 - 5:00 p.m.

Instructions: Solve all problems

This examination paper comprises this cover and 2 pages of questions

Marks:

- (10) 1. Suppose ν is a shift invariant measure, $\operatorname{dom}\nu = \mathcal{A}_d$ (= the Lebesgue σ -algebra in \mathbf{R}^d), $\nu\underbrace{([0,1)\times\cdots\times[0,1))}_d=1$. Prove that $\nu=m_d$ (= Lebesgue measure in \mathbf{R}^d).
- (10) 2. Suppose $A \in \mathcal{A}_1$, $A \subset [0,1]$, $0 < y < m_1(A)$. Prove that there is a Lebesgue measurable $B \subset A$ such that $m_1(B) = y$. (Consider the function $x \mapsto m_1(A \cap [0,x])$, $0 \le x \le 1$).
- (10) 3. Suppose E_1, E_2, E_3 are Lebesgue measurable subsets of [0, 1], and any $x \in [0, 1]$ belongs to at least two of E_j . Prove that one of E_j satisfies the inequality $m_1(E_j) \geq \frac{2}{3}$. (Look at χ_{E_j}).
- (20) 4. Let f be a function continuous on [a, b] and differentiable at any point of (a, b). Prove that if f' is bounded, then $f(b) f(a) = \int_a^b f' dm_1$.
- (10) 5. Let (X, A, μ) be a measure space, μ(X) < +∞, (f_n)_{n=1}[∞] a sequence in L⁰(X, μ) (= a.e. finite measurable functions), f ∈ L⁰(X, μ). Prove that the following are equivalent:
 (A) f_n ^μ → f: (B) any subsequence (f_{nk})_{k=1}[∞] (n₁ < n₂ < ···) contains a subsubsequence (f_{nk})_{ℓ=1}[∞] (k₁ < k₂ < ···) such that f_{nkℓ} → f a.e.
- (10) 6. Suppose $\mu(X) < +\infty$, $p \ge 1$, $(f_n)_{n=1}^{\infty}$ is a sequence in $L^p(X, \mu)$, $\sum_{n=1}^{\infty} ||f_n||_p < +\infty$.

 Prove that $\sum_{n=1}^{\infty} f_n(x)$ absolutely converges a.e., $\sum_{n=1}^{\infty} f_n \in L^p(X, \mu)$, and $||\sum_{n=1}^{\infty} f_n||_p \le \sum_{n=1}^{\infty} ||f_n||_p$.

- (10) 7. Let $(f_n)_{k=1}^{\infty}$ be a sequence of non-negative functions, $f_n \in L^1(X, \mu)(n = 1, 2, \cdots)$, $f \in L^1(X, \mu)$.

 Prove that if $f_n \xrightarrow[n \to \infty]{} f$ a.e. and $\int\limits_X f_n d\mu \xrightarrow[n \to \infty]{} \int\limits_X f d\mu$, then $\| f_n f \|_1 \xrightarrow[n \to \infty]{} 0$. (Hint: $(f f_n)_+ \leq f$). Is it true if we drop the non-negativity assumption?
- (10) 8. Suppose $f, g \in L^1(X, \mu)$. Put $F(x, y) := f(x)g(y)(x, y \in X)$. Prove that $F \in L^1(X \times X, \mu \otimes \mu)$, and

$$\int\limits_{X\times X}Fd(\mu\otimes\mu)=\int\limits_Xfd\mu\cdot\int\limits_Xgd\mu.$$

- (10) 9. Suppose $f_n \in L^1(X,\mu)(n=1,\cdots)$, $\sup_n |f_n| \in L^1(X,\mu)$. Prove that the following are equivalent:
 - (A) $f_n \xrightarrow[n\to\infty]{\mu} 0$; (B) $||f_n||_1 \xrightarrow[n\to\infty]{0}$.