McGILL UNIVERSITY FACULTY OF SCIENCE FINAL EXAMINATION

MATHEMATICS 189-355B Analysis II

Examiner: Prof. C. Herz

Associate Examiner: Prof. J. Choksi

Tuesday, April 18, 1995

2:00-5:00 PM

<u>Instructions</u>: Answer all 6 questions. No calculators permitted.

This exam comprises this cover and one page.

- 1. Let $(X_n) \subset L^2(\mathcal{M}, \mu)$ be an orthogonal sequence with $||X_n||_2 \leq 1$ for all n. Prove that $\frac{X_1 + \cdots + X_n}{n}$ converges to 0 in measure.
- 2. Let \mathcal{M} be a σ -algebra with largest element X. Suppose $(\mu_n; n \in \mathbb{N})$ is a sequence of countably-additive measures on \mathcal{M} with $0 \leq \mu_n(E) \leq \mu_{n+1}(E)$ for all $E \in \mathcal{M}$. Put $\mu = \lim_{n \to \infty} \mu_n$ and suppose that $\mu(X) < \infty$. Prove that μ is a countably-additive measure.
- 3. Let (\mathcal{M}, μ) be an arbitrary measure algebra. Assume 1 and <math>p' = p/(p-1). Suppose $(f_n) \subset L^p(\mathcal{M}, \mu)$ and $(g_n) \subset L^{p'}(\mathcal{M}, \mu)$. Suppose $f_n \to f$ in the L^p -norm and $g_n \to g$ in the $L^{p'}$ -norm. Show that $\lim_{n \to \infty} \|f_n g_n fg\|_1 = 0$ and $\int_X f_n g_n d\mu \to \int_X fg d\mu$.
- 4. Find the value of $\lim_{n\to\infty}\int_0^n (1+x/n)^n e^{-2x} dx$ and prove the result.
- 5. Suppose that $f \in L^1(\mathcal{M}, \mu)$. Prove that given $\epsilon > 0$ there exists $\delta > 0$ such that $\int_E |f| \, d\mu < \epsilon \text{ whenever } E \in \mathcal{M} \text{ and } \mu(E) < \delta.$
- 6. Let W^t be the Gauss-Weierstrass kernel, $W^t(x) = (2\pi t)^{-1/2} \exp(-x^2/2t)$. Assume that $\int_{-\infty}^{\infty} W^t(x) dx = 1$ for t = 1. Show that this holds for all t > 0. Prove that if $f: \mathbb{R} \to \mathbb{R}$ is a continuous function of compact support then $W^t \star f$ converges uniformly to f as $t \to 0$ where \star designates convolution. Prove that if $f \in L^p(\mathbb{R})$, $1 , then <math>\lim_{t \to \infty} \|W^t \star f\|_p = 0$.