MCGILL UNIVERSITY FACULTY OF SCIENCE

Final Examination

MATH 354 HONOURS ANALYSIS 3

Examiner: Professor V. Jaksic Associate Examiner: Professor S. Drury

Thursday December 13, 2007 Time: 2:00 PM to 5:00 PM

Family Name (Please	Print):	
First Name:		*
Student ID#:	76	

INSTRUCTIONS

- 1. Fill in the above clearly.
- 2. Do not tear any pages from this book.
- 3. Write your solutions in a clear, complete and logical way.
- **4.** There are 6 questions worth a total of 80 points. The value of each question is indicated in the margin.
- **5.** This is a closed book examination. No notes, books or calculators are allowed.
- **6.** Use of a regular and or translation dictionary is not permitted.
- **7.** This examination consists 19 pages including this cover page. There are 10 empty pages at the end of this exam. You may use them if you need extra space.

 $\overline{10}$

1. Let (X, d) be a metric space and let A and B be two subsets of X. Prove that $cl(A \cup B) = cl(A) \cup cl(B)$.

10

2. Let (X, d) be a metric space and let A and B be two connected subsets of X such that $A \cap B \neq \emptyset$. Prove that $A \cup B$ is also a connected subset of X.

10

3. Let (X, d) be a connected metric space and let $f: X \mapsto \mathbf{R}$ be a continuous function. Let $a = \inf_{x \in X} f(x)$, $b = \sup_{x \in X} f(x)$. Show that for any $r \in (a, b)$ there exist $x \in X$ such that f(x) = r.

- 4. Let (X, d) be a compact metric space.
 - (a) [10 points] Prove that X is complete.
 - (b) [10 points] Let $f: X \mapsto \mathbf{R}$ be a continuous function. Prove that there exists $x_0 \in X$ such that

$$f(x_0) = \sup_{x \in X} f(x).$$

 $\overline{20}$

Additional page for the Problem 4.

- 20
- 5. Let $l_2(\mathbb{N})$ the vector space of all square summable sequences of real numbers $x=(x_n)_{n=1}^\infty$ equipped with the norm

$$||x|| = \left(\sum_{n=1}^{\infty} x_n^2\right)^{1/2}.$$

- (a) [10 points] Prove that $l_2(\mathbf{N})$ is complete.
- (b) [10 points] Let

$$X = \{x \in l_2(\mathbb{N}) : |x_n| \le 1/n \text{ for all } n\}.$$

Prove that X is a compact subset of $l_2(\mathbf{N})$.

Additional page for the Problem 5.

- $\overline{10}$
- **6.** Let k_1 and k_2 be positive constants and let $X \subset C([0,1])$ be the set of all continuously differentiable functions $f:[0,1] \to \mathbf{R}$ satisfying

$$|f(0)| \le k_1, \qquad \int_0^1 (f'(t))^2 dt \le k_2.$$

Prove that X is bounded and equicontinuous and deduce that cl(X) is a compact subset of C([a,b]).