Department of Mathematics and Statistics McGill University

FINAL EXAMINATION Math354, Honours Analysis 3

Examiner: M. Merkli

Associated Examiner: S. Drury

Date & time: Monday December 12, 2005, 14:00-17:00

Instructions:

- This is a closed-book exam.
- You are allowed to use non-programmable calculators.
- Give detailed and complete solutions.
- Attempt all problems.
- Write your answers in the exam booklet.
- The use of a regular dictionary is allowed.

This exam consists of a cover sheet plus one page containing eight questions.

- 1. [5pt] Let X be a separable metric space and let $Y \subseteq X$. Show that Y is separable as well.
- **2.** [5pt] Let $k:[0,1]\times[0,1]\to\mathbb{R}$ be a continuous function and consider the map $K:C([0,1],\mathbb{R})\to C([0,1],\mathbb{R})$ given by

$$(Kf)(x) = \int_0^1 k(x, y) f(y) dy.$$

Show that any sequence $f_n \in C([0,1],\mathbb{R})$ satisfying $||f_n|| \leq 1$ has a subsequence f_{n_j} with Kf_{n_j} uniformly convergent.

(Suggestion: Use the Ascoli–Arzela theorem.)

- **3.** [6pt] Let X and Y be compact metric spaces. Show that $X \times Y$ is compact in two ways:
 - a) by using sequential compactness,
 - b) by using completeness and total boundedness.
- **4.** [4pt] Let $\{A_n\}$ be a collection of connected subsets of a metric space X, such that $A_n \cap A_{n+1} \neq \emptyset$ for all n. Show that $\bigcup_n A_n$ is connected.
- **5.** [4pt] Let $X = \{(0,0)\} \cup \{(x,\sin(x)\sin(1/x)) \mid 0 < x \le 1\} \subset \mathbb{R}^2$. Is X path-connected? Justify your answer!
- **6.** [5pt] Let $L \in BL(\mathbb{R}^n)$ be an invertible map, and let $g \in C^1(\mathbb{R}^n)$ be such that $||g(x)|| \leq M||x||^2$. Show that f(x) = Lx + g(x) is locally invertible near 0.
- 7. [5pt] Let f be a map of class C^1 on a Banach space X such that f(tx) = tf(x) for all real t and all $x \in X$. Show that f is linear, and in fact that f(x) = Df(0)x.
- 8. [6pt] Show that the system

$$xy^2 + xzu + yv^2 = 3$$
$$u^3yz + 2xv - u^2v^2 = 2$$

has a C^{∞} solution $u(x,y,z),\ v(x,y,z)$ near $(x,y,z)=(1,1,1),\ (u,v)=(1,1).$ Find $\frac{\partial}{\partial y}v(1,1,1).$