- 1. A metric space (X, ρ) is said to be <u>locally compact</u> if for every $x \in X$, there exists an open set U_x , with $x \in U_x$ and \overline{U}_x compact. Prove that (i) \mathbb{R}^n is locally compact, and (ii) ℓ^1 is not locally compact.
- 2. Let (X, ρ) be a metric space with at least 2 distinct points. Show that there exists a non constant continuous function $X \to \mathbb{R}$. If further X is connected, show that X must be uncountable.
- 3. (a) Define what is meant by a connected component of a metric space (X, ρ) . If $E \subset X$ is non-empty, open, closed and connected, show that E is a component.
 - (b) If (X, ρ) is a connected metric space, f : X → Y is a continuous map, show that f(X) is connected.
 Show that the circle T = {(x, y) ∈ ℝ² : x² + y² = 1} is not homeomorphic to the closed interval [0, 1].
- 4. (a) State the Ascoli-Arzela theorem on the relative compactness of sets of continuous functions on a compact metric space.
 - (b) Let $\alpha > 0$, M > 0 be fixed; let

 $E = \{ f \in C([0,1]) : |f(x)| \le M, |f(x) - f(y)| \le M |x - y|^{\alpha}, \forall x, y \in [0,1] \}.$

Show that E is relatively compact in C[0, 1].

- (c) Give an example of a countable infinite set of functions on a closed, bounded interval, which is neither equicontinuous nor uniformly bounded.
- 5. (a) State the Stone-Weierstrass theorem for real-valued functions on a compact metric space.
 - (b) For any bounded closed interval in \mathbb{R} , let $\mathcal{P}[a, b]$ denote the real vector space of real-valued polynomials defined on [a, b].

If $f:[a,b]\times [c,d]\to \mathbb{R}$ is continuous, show that f can be uniformly approximated by functions of the form

$$g_1(x)h_1(y) + \dots + g_k(x)h_k(y), k \in \mathbb{N}, \ g_j \in \mathcal{P}[a, b], \ h_j \in \mathcal{P}[c, d], \ j = 1, \dots, k; \ x \in [a, b], \ y \in [c, d].$$

- 6. (a) State the inverse and implicit function theorems.
 - (b) Let $\underline{f}:\mathbb{R}^2 \to \mathbb{R}^2$ be the map $\underline{f}(x,y) = (u,v)$ with u = x, v = xy. Find $\underline{f'}$, and determine at what points (x, y) the map \underline{f} is locally one to one. Is the map one to one on all of \mathbb{R}^2 ? Find the image under \underline{f} of the rectangle $\{(x,y): 1 \le x \le 2, 0 \le y \le 2\}$.
 - (c) Under what conditions do the equations

$$F(x, y, z) = 0,$$
 $G(x, y, z) = 0$

determine x, y as functions x = f(z), y = g(z) of z, near a point (x_0, y_0, z_0) which satisfies these two equations? Apply this to the functions

$$F(x, y, z) = z^{2} + xy - a, \quad G(x, y, z) = z^{2} + x^{2} - y^{2} - b,$$

where $a, b \in \mathbb{R}$ and are constant. Compute f'(x) and g'(z) for these functions, and a point (x_0, y_0, z_0) which satisfies the equations as well as the conditions you have found.

- 7. Prove or disprove each of the following: If the statement is true give a proof, if it is false, give a counter example.
 - (a) If F is closed, $F \subseteq \mathbb{R}$, F uncountable then the interior $F^{\circ} \neq \emptyset$.
 - (b) If X is compact, $f: X \to Y$ is continuous, then f(X) is compact.
 - (c) $\{\sin nx : n \in \mathbb{N}\}\$ is equicontinuous on $[0, 2\pi]$.

McGILL UNIVERSITY

FACULTY OF SCIENCE

SUPPLEMENTAL/DEFERRED EXAMINATION

MATHEMATICS 189-354A

ANALYSIS III

Examiner: Professor J.R. Choksi Associate Examiner: Professor S.W. Drury Date: Tuesday, May 4, 1999 Time: 9:00 A.M. - 12:00 Noon.

INSTRUCTIONS

NO CALCULATORS ARE PERMITTED. All questions carry equal marks. Attempt any 6 (SIX) questions.

This exam comprises the cover and 2 pages of questions.