McGILL UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF MATHEMATICS AND STATISTICS MATH & STAT 189-338A History and Philosophy of Mathematics Final exam

Examiner: M. Barr Associate Examiner: J. Lambek Time: 2:00 P.M.–5:00 P.M. Date: 96–12–18

Fill in your name and student number in the space below.

Family Name: _____

Given Name(s): _____

Student Number: _____

Answer five questions. If you do six, indicate which five you want to have marked. The questions have equal weight.

This is a closed book examination. Calculators are not permitted.

All work is to be done on this examination form. This exam comprises 13 pages, including this cover page.

1	
2	
3	
4	
5	
6	
Tot	

Consider the Fibonacci type sequence u_n given by

$$u_0 = 0, \qquad u_1 = 1, \qquad u_{n+1} = u_n + 6u_{n-1}$$

Find an explicit formula for u_n .

Solve the cubic equation $x^3 + 3x^2 - 3x + 1 = 0$ using Cardano's method.

Suppose x and y are two complex numbers such that xy = 4 and $x^3 = 4(1 + i\sqrt{3})$. What are the possible values of x + y?

Solve the quartic equation

 $x^4 + x^2 + 4x - 3 = 0$

using Ferrari's method. (Hint: the associated cubic equation has an integer solution, which you can find by trial and error.)

- (a) Show that if F is a field and $\sqrt{c} \notin F$ then for any $a, b \in F$, either a = b = 0, or $a + b\sqrt{c}$ has in an inverse in $F[\sqrt{c}]$.
- (b) What goes wrong with the argument when c has a square root in F.

Begin with the fact that $17^2 + 1 = 10 \cdot 29$ to find a representation of 29 as a sum of two squares. The point of this question is not to show that $29 = 2^2 + 5^2$, but to show that you have understood the argument that any prime of the form 4k + 1 is a sum of two squares by carrying it out in a specific case.