Honours Ordinary Differential Equations

Math 325

Friday, April 27th, 2012 Time: 2pm-5pm

Examiner: Prof. A.R. Humphries

Associate Examiner: Prof. N. Sancho

INSTRUCTIONS

- 1. Answer all questions in the exam booklets provided. Start each question on a new page.
- 2. All questions carry equal weight.
- 3. This is a closed book exam. No crib sheets, textbooks or any other aids are permitted.
- 4. Calculators are permitted.
- 5. Use of a regular dictionary is not permitted.
- 6. Use of a translation dictionary is permitted.

This exam comprises the cover page, 2 pages of 6 questions and a table of Laplace Transforms.

1.) (a) Find (in explicit form) the solution y(x) of the initial value problem

$$yy' = 1 - 2x, \quad y(1) = -2.$$

What is the interval of validity of the solution?

(b) Find the general solution y(x) of the fourth order equation

$$y^{(4)} - y = 2e^x$$

2.) Consider the initial value problem

$$y'(x) = f(x, y) = 1 - xy(x), \qquad y(0) = 0,$$

- (a) Let $y_0(x) = 0$ for all $x \in \mathbb{R}$, and find the first two approximations $y_1(x)$, $y_2(x)$, to the exact solution y(x) by Picard iteration.
- (b) Find an approximation to y(1) using the forward Euler method $y_{n+1} = y_n + hf(x_n, y_n)$ with h = 0.5.
- (c) Suppose that the solution can be written as $y(x) = \sum_{n=0}^{\infty} a_n x^n$. Find and state a_0 and a_1 and the recurrence relation used to define general a_n . Hence show that $a_{2n} = 0$ for all $n \ge 1$. Use the ratio test to show that the solution has infinite radius of convergence. (You do *not* have to state an explicit formula for the coefficient a_{2n+1} .)
- 3.) (a) Define the Wronskian $W(f_1, f_2, \ldots, f_n)(x)$ of the functions $f_i(x)$ for $i = 1, \ldots, n$.
 - (b) Show that n-1 times continuously differentiable functions $f_i(x)$ for i = 1, ..., n are linearly independent on any interval I containing x_0 if $W(f_1, f_2, ..., f_n)(x_0) \neq 0$.
 - (c) State a first order differential equation which is satisfied by $W(y_1, y_2, \ldots, y_n)(x)$ whenever y_1, \ldots, y_n are solutions of the nth order differential equation

$$y^{(n)} + \sum_{j=1}^{n} p_j(x) y^{(n-j)} = 0.$$

In the case n = 2, show that $W(y_1, y_2)(x)$ satisfies the first order differential equation that you stated.

(d) Give an example of two functions $y_1(x)$ and $y_2(x)$ which are continuously differentiable and linearly independent on the interval [-1,1], but for which $W(y_1,y_2)(x) = 0$ for all $x \in [-1,1]$. Are $y_1(x)$ and $y_2(x)$ a fundamental set of solutions for any linear differential on the interval [-1,1]?

$$L[y] = xy'' - (1+x)y' + y$$

- (a) Show that $y_1(x) = e^x$ solves the homogeneous problem $L[y_1](x) = 0$.
- (b) Find a second solution $y_2(x)$ which solves $L[y_2](x) = 0$ (with y_2 linearly independent of y_1).
- (c) Let y_1 , y_2 be a fundamental set of solutions to L[y](x) = 0. State (but do not derive) the equations which define a particular solution $y_p(x)$ which solves $L[y_p](x) = g(x)$ when using Variation of Parameters.
- (d) Find the general solution of

$$L[y](x) = x^2 e^{2x},$$

where L[y] is the differential operator defined above.

5.) Consider the differential equation

$$2x^{2}y'' - xy' + (1+x)y = 0.$$

- (a) Define *regular singular point*. Find the regular singular point of the given equation, state the indicial equation and find its roots.
- (b) Find the recurrence relations that define the coefficients of a fundamental set of Frobenius series solutions $y_1(x)$, $y_2(x)$ for $x > x_0$ expanded about the regular singular point x_0 . Letting the first coefficient be 1, find the next three coefficients in each series, and hence state expressions for $y_1(x)$, $y_2(x)$ (You do not need to find an expression for the nth coefficient in each series solution; your expressions will include a sum over terms including the undetermined coefficients).
- (c) Let $y(x) = c_1 y_1(x) + c_2 y_2(x)$, where $y_1(x)$ and $y_2(x)$ were found in (b). (With limits from the right-hand side so $x > x_0$), what are the possible values of $\lim_{x\to x_0} y(x)$ and $\lim_{x\to x_0} y'(x)$?
- 6.) (a) State the definition of the Laplace transform G(s) of the function g(t). Let $\mathcal{U}(t)$ be the Heaviside function, and use the definition of the Laplace transform to show directly that $\mathcal{L}\{\mathcal{U}(t-a)g(t-a)\} = e^{-as}G(s)$ when a > 0.
 - (b) Let y(t) solve

$$y'' + 3y' + 2y = \delta(t - \pi) + \mathcal{U}(t - 2\pi), \qquad y(0) = 1, \quad y'(0) = -1.$$

Find an expression for Y(s), the Laplace transform of y(t).

(c) Find y(t), the solution of the initial value problem stated in (b).

function $f(t)$	Laplace transform $F(s)$
1	$1/s \ (s > 0)$
t^n	$n!/s^{n+1}$ (s > 0)
e^{at}	1/(s-a) (s>a)
$\sin at$	$a/(s^2 + a^2)$ (s > 0)
$\cos at$	$s/(s^2+a^2)$ (s > 0)
$\sinh at$	$a/(s^2 - a^2)$ $(s > a)$
$\cosh at$	$s/(s^2 - a^2)$ $(s > a)$
$e^{-at}f(t)$	F(s+a)
$\mathcal{U}(t-a) \text{ or } \mathcal{U}_a(t) \ (a \ge 0)$	e^{-as}/s $(s>0)$
$\delta(t-a) (a>0)$	e^{-as}
$\mathcal{U}(t-a)f(t-a) \text{ or } \mathcal{U}_a(t)f(t-a)$	$e^{-as}F(s)$
$f^{(n)}(t)$	$s^{n}F(s) - s^{n-1}f(0) - s^{n-2}f'(0) \cdots - f^{(n-1)}(0)$
$(-t)^n f(t)$	$F^{(n)}(s)$
$f * g(t) = \int_0^t f(\tau)g(t-\tau) d\tau$	F(s)G(s)

Table of Laplace Transforms