- 1. (20 marks) Give definitions of contraction mapping, iterated function system, Hausdorff metric, and explain, giving examples, how an iterated function system gives rise to a fractal.
- 2. (20 marks) Describe the Deterministic Fractal Drawing Algorithm and the Randomized Fractal Drawing Algorithm and explain how and why each one works.
- 3. (20 marks) Find the fixed points, determine their stability and sketch the phase space for each of the following:
 - (a) The discrete dynamical system given by $f(x) = x^2 x + 1/2$.
 - (b) The continuous dynamical system $x^1 = x^2 3x + 2$.
- 4. (20 marks) For the system of differential equations

$$x' = y^2 - x$$
$$y' = x^2 - y$$

- (a) find the fixed points and determine their stability.
- (b) Show that for $0 < x_0 = y_0 < 1$, there is a solution (x(t), y(t)) satisfying

$$x(t) = y(t) \text{ for all } t$$

$$x(0) = x_0 = y_0 = y(0)$$

$$\lim_{\substack{t \to \infty \\ t \to -\infty}} x(t) = \lim_{\substack{t \to -\infty \\ t \to -\infty}} y(t) = 0$$

- (c) Draw the phase space.
- $5.\ (20\ \mathrm{marks})\ \mathrm{A}$ fractal curve is generated as follows:

Write down a corresponding IFS consisting of two maps, and compute the fractal dimension of the curve in two ways.

6. (20 marks)

- (a) Describe the construction of the Cantor Set $\mathcal C$ and list its properties.
- (b) Define chaos for a discrete dynamical system.
- (c) Show that the dynamical system

$$f(x) = 3x \mod 1$$
 $x \in \mathcal{C}$

is chaotic.

McGILL UNIVERSITY

FACULTY OF SCIENCE

FINAL EXAMINATION

MATHEMATICS 189-322A/382A

DYNAMICAL SYSTEMS, FRACTALS & CHAOS

Examiner: Professor R. Rigelhof Date: Wednesday, December 15, 1999

Time: 9:00 A.M. - 12:00 Noon.

INSTRUCTIONS

Calculators are not permitted. Students in 189-322A may do any FIVE questions. Students in 189-382A must answer ALL questions.

This exam comprises the cover and two pages of questions.