- 1. (a) Determine the domain of analyticity of f(z) = Log i(z-1).
 - (b) Make suitable branch cuts and define a branch f(z) of $(z^2 + 1)^{1/2}$ that is defined on the real axis and such that f(0) = -1. Find f(-1). Justify your answer.
- 2. Let f(z) be a complex function and $z_0 \in \mathbb{C}$.
 - (a) Define the following concepts:
 - i. z_0 is an isolated singularity of f.
 - ii. z_0 is a removable singularity of f.
 - iii. z_0 is a pole of f.
 - iv. z_0 is an essential isolated singularity of f.
 - (b) Explain how to extend the definitions in (a) to the case $z_0 = \infty$.
- 3. For the following functions f(z) determine the type of singularity at the point z_0 indicated.

(a)
$$f(z) = e^{-1/z} \sin z^2; \ z_0 = 0.$$

(b) $f(z) = \frac{1+z}{1-z}; \ z_0 = \infty.$

(c)
$$f(z) = \text{Log}\frac{z-1}{z+1}; z_0 = 1.$$

(d) $f(z) = \frac{1}{1-\cos z}; z_0 = 0.$

- 4. For the functions f(z) and points z_0 of 3), determine whether f(z) has a Laurent expansion at z_0 . Where possible, find the order and the residue of f at z_0 .
- 5. (a) Suppose f(z) has an isolated singularity at $z_0 \in \mathbb{C}$. Show that the following are the same:

i. the coefficient of $(z - z_0)^{-1}$ in the Laurent expansion of f(z) at z_0 . ii. $\frac{1}{2\pi i} \int_{|z-z_0|=\varepsilon} f(z) dz$ (for $0 < \varepsilon$ sufficiently small).

- (b) Suppose that f(z) has a pole or removable singularity at z_0 . Let $g(z) = \frac{f'(z)}{f(z)}$. Show that $\operatorname{Res}(g(z); z_0)$ is defined and equals the order of f(z) at z_0 .
- 6. Determine the following integrals. Use residues and contour integration where appropriate. Justify your steps.
 - (a) $\int_{|z|=2} \frac{1}{z^2+z+1} dz;$ (b) $\int_0^{2\pi} \frac{\sin\theta}{2+\cos\theta} d\theta;$ (c) $\int_0^\infty \frac{\cos x}{x^2+1} dx.$

McGILL UNIVERSITY

FACULTY OF SCIENCE

FINAL EXAMINATION

MATHEMATICS 189-316A

FUNCTIONS OF A COMPLEX VARIABLE

Examiner: Professor K.P. Russell Associate Examiner: Professor J.C. Taylor Date: Thursday, December 10, 1998 Time: 2:00 P.M. - 5:00 P.M.

This exam comprises the cover and 1 page of questions.