McGILL UNIVERSITY

FACULTY OF SCIENCE

FINAL EXAMINATION

MATH 316

COMPLEX VARIABLES

Examiner: Professor K. GowriSankaran Associate Examiner: Professor R. Vermes Date: Wednesday December 9, 2009. Time: 9:00 a.m. - 12:00 p.m.

INSTRUCTIONS

- 1. Please answer questions in the exam booklets provided.
- 2. This is closed book exam.
- 3. Calculators are not permitted.
- 4. Dictionaries are not permitted.

This exam comprises the cover page, and 1 pages of 7 questions.

1. Suppose f is an entire function. Prove that

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \left(|f(z)|^2\right) = 4 \, |f'(z)|^2.$$

- 2. Locate all the singular points of
 - (a) $\sin(z+\frac{1}{z})$

and

(b)
$$\frac{z}{e^z - 1}$$
.

Determine the nature of the singular points. Find the residue at each of the singularities.

- 3. (a) State the theorem of Liouville.
 - (b) Suppose f is an entire function and $|f(z)| \ge K > 0$ for all z in the plane. Prove $f \equiv \text{constant}$.
- 4. Prove that $z^6 + 7z + 1 = 0$ has six rootes inside |z| = 2, five of which lie in $1 \le |z| \le 2$.
- 5. Use residue calculus to evaluate $\int_0^\infty \frac{(\cos x)^2}{1+x^2} dx$. Justify your steps.
- 6. Find the bilinear transformation T such that T(-1)=0, T(i)=1 and $T(1)=\infty$. Find the image of the region given by |z-1|<2 and |z+1|<2 under T.
- 7. Use an appropriate Bromwich contour to find the inverse Laplace transformation of $\frac{1}{s^2 + s + 1}$. Justify your steps.