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1. (10pts) Given the equation
2y(y + 22°)dz + x(4y + 32%)dy = 0.

(a) Show that this is not an exact equation,

(b) Determine the values of the constants o and 3, such that p(z,y) = z*y?
is an integrating factor for this equation;

(c) By using the integral factor found above, derive the general solution of the
equation.

2. (5pts) Perform the phase line analysis for the the following autonomous equa-
tion:

dy
—Z =y(y—1)*(y — 3),
| 3 V- -3
and determine that

e its equilibrium states;

e the type of each equilibrium state,

e the stability property of each equilibrium state,

e sketch the integral curves in the physical plane (¢,y), based on the above
phase line analysis without solving the equation.

3. (15pts) Find the general solution for the following equations:
(a) (D? = 2D+ 2)%(D? — 1)y = 0;
(b) (D? + 4)y = 16z cos 2z;

4. (15pts)
(a) Find all values of « for which all solutions of

)
z2y" + azy' + 3Y = 0

approach to zero as z — co.
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(b) Find the general solution for the following equations by using the method
of variation of parameters:

’y" — 4dzy' + 6y = z*sinz, (x> 0).

5. (15pts)

Given the following equation

1
2y + §(x +sinz)y +y =0,

(a) Find all the regular singular points

(b) Derive the indicial equation and the exponents at the singularity for each
regular singular point;

(c) Determine whether the given equation has a solution that is bounded near
the regular singular point, has all solutions bounded near the regular sin-
gular point, or has no non-zero solution bounded near the regular singular
point.

6. (10pts) Given the equation
2zy" +y + 2y =0,
(a) Show that z = 0 is a regular singular point of the given equation and give

the roots of the indicial equation;

(b) Determine the recurrence formula for the coefficients in the Frobenius series
expansion of the solution near x = 0;

(c) Find at least the first four terms of two linear independent solutions:
y1(2), y2 ().
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. (10pts) (Choose one from two problems. You may get bonus points, if you
solved two.) Find the Laplace transform of the following functions:

(a)

f(t) =4cos’bt, (b constant);

(b)
0, 0<t<1
=<t 1<t<?
0, t>2.

. (10pts) (Choose one from two problems. You may get bonus points, if you
solved two.) Find the inverse Laplace transform of the following functions:

(a)

25+ 3
Fls) = (s =2)(s2+1)’
(b) | 2,—4s
F(s) = Sée— 1

. (10pts) Solve the following IVP’s with the Laplace transform method:

y" 4+ 4y = sint — uy, (¢) sin(t — 27), y(0) =0, 3'(0) = 0.
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