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INSTRUCTIONS

1. Please answer all the eight questions.

2. This is a closed book exam.

3. Calculators are not permitted.

4. A tqble of Laplace transforms is supplied.

5. Translation dictionaries are permitted.

This exam booklet consists of this cover page, 8 péges of questions and 2
blank pages
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1. Solve the differential equation:

;34 2uy
2zy + 2?2
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2. By finding integrating factor of the form xPy? solve the initial value problem

2 .
(3 — 202%y)dz + (=2 — 122%)dy = 0 with the initial condition y(1) = 2.
y .
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3. Solve the differential equation:

2%y +2y(y)* = 1.
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4. Find the general solution of

oy — 2xy + 2y = x5,
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5. Find the general solution y(z) of

y @ — 6y + 9y = 2.
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6. (a) Find the Laplace transform of the following functions:

. nt, 0<t<m
@ f(t)z{:fﬁ(t_ﬂ), tsn
(ii) ¢{t) = f;TCOS(2T)€4(t_T) dr

(a) Find the inverse Laplace transform of the function: F(s) = %
(b) Use Laplace Transform to find the solution of the initial value problem:

o — 2 +5y=348(t—1),y(0)=0,4(0)=0

Table of Laplace Transforms
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|
g (=01
. )
sin at R
s
cosat o
sinh at 2 i e
cosh at o i >
. e—CLS
taft) -
5(t — a) e
(1) sL(f) — f(0)
f(t) s*L(f) — sf(0) — f{0)
e™ f(t) F(s—a)
w()f(t—a) | . e¥F(s)




Final Exam, Math 315, Crdinary Differential Equations, Fall 2009

Blank page(1)



Final Exam, Math 315, Ordinary Differential Equations, Fall 2009

7. Solve the following equation by means of a power series about the point z = 0.,

y' —y=0.
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8. Using Frobenius method, a non trivial solution of the differential equation
2.1 P2 1
vy +ay' 4 (o7 = Py =0
has the form 1 = 2" X3 (@, 2™,

~(a) Show that z = 0 is a regular singular point.
(b) Find the indicial equation and its roots.
(c) Find the recurrence relation for the coeflicients

(c) Solve the recurrence relation for the coefficients using the large root (ry) of
the indicial equation. ' : :
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