Last Name:
First Name:
McGill ID:

McGILL UNIVERSITY

FACULTY OF SCIENCE

FINAL EXAMINATION

MATH 315

Ordinary Differential Equations

Examiner:Dr.M. Alakhrass

Associate Examiner: Professor GowriSankaran

Date: Dec 10, 2009. Time: 9-12 am

INSTRUCTIONS

- 1. Please answer all the eight questions.
- 2. This is a closed book exam.
- 3. Calculators are not permitted.
- 4. A table of Laplace transforms is supplied.
- 5. Translation dictionaries are permitted.

This exam booklet consists of this cover page, 8 pages of questions and 2 blank pages

1. Solve the differential equation:

$$y' = \frac{3y^2 + 2xy}{2xy + x^2}.$$

2. By finding integrating factor of the form x^py^q solve the initial value problem

$$(3-20x^2y)dx + (\frac{2x}{y}-12x^3)dy = 0$$
 with the initial condition $y(1) = 2$.

 $3. \,$ Solve the differential equation:

$$2y^2y'' + 2y(y')^2 = 1.$$

4. Find the general solution of

$$x^2y'' - 2xy' + 2y = x^3e^x.$$

5. Find the general solution y(x) of

$$y^{(4)} - 6y^{(3)} + 9y'' = x.$$

6. (a) Find the Laplace transform of the following functions:

(i)
$$f(t) = \begin{cases} \sin t, & 0 \le t < \pi; \\ \sin(t - \pi), & t \ge \pi \end{cases}$$
(ii)
$$g(t) = \int_0^t \tau \cos(2\tau) e^{4(t - \tau)} d\tau$$

- (a) Find the inverse Laplace transform of the function: $F(s) = \frac{(s-2)e^{-s}}{s^2-4s+3}$
- (b) Use Laplace Transform to find the solution of the initial value problem:

$$y'' - 2y' + 5y = \delta(t - 1), y(0) = 0, y'(0) = 0$$

Table of Laplace Transforms	
$f(t)$ for $t \ge 0$	$F(s) = \mathcal{L}(f)$
t^n	$\frac{n!}{s^{n+1}} \ (n=0,1,\ldots)$
$\sin at$	$rac{a}{s^2+a^2}$
$\cos at$	$\frac{s}{s^2 + a^2}$
$\sinh at$	$\frac{a}{s^2 - a^2}$
$\cosh at$	$\frac{s}{s^2 - a^2}$
$u_a(t)$	$\frac{e^{-as}}{s}$
$\delta(t-a)$	e^{-as}
f'(t)	$s\mathcal{L}(f) - f(0)$
f''(t)	$s^2 \mathcal{L}(f) - sf(0) - f'(0)$
$e^{at}f(t)$	F(s-a)
$u_a(t)f(t-a)$	$e^{-as}F(s)$

Blank page(1)

7. Solve the following equation by means of a power series about the point x = 0.

$$y'' - y = 0.$$

8. Using Frobenius method, a non trivial solution of the differential equation

$$x^2y'' + xy' + (x^2 - \frac{1}{4})y = 0$$

has the form $y_1 = x^r \sum_{n=0}^{\infty} a_n x^n$.

- (a) Show that x = 0 is a regular singular point.
- (b) Find the indicial equation and its roots.
- (c) Find the recurrence relation for the coefficients
- (c) Solve the recurrence relation for the coefficients using the large root (r_1) of the indicial equation.

Blank page(2)