McGILL UNIVERSITY

FACULTY OF SCIENCE

FINAL EXAMINATION

MATH 315

ORDINARY DIFFERENTIAL EQUATIONS

Examiner: Professor J. Hurtubise

Associate Examiner: Professor G. Schmidt

Date: Monday December 11, 2006

Time: 2:00PM - 5:00PM

INSTRUCTIONS

- 1. Please answer all questions in the exam booklets provided.
- 2. This is a closed book exam.
- 3. Calculators are not permitted.
- 4. Use of a regular and/or translation dictionary is not permitted.
- 5. This exam comprises the cover page, and 1 page of questions and 1 page of the table of Elementary Laplace Transforms.

MATH 315, FINAL EXAMINATION

December 11th, 2006

1. Solve the following differential equations, with initial conditions, if given:

a. (10 pts)
$$y' = \frac{x^2 + 3y^2}{2xy}$$
 $y(1) = 1$

b. (10 pts)
$$(x+2)\sin(y)dx + x\cos(y)dy = 0$$

c. (10 pts)
$$y'' + 4y' + 4y = x^{-2}e^{-2x}$$

d. (10 pts)

$$\begin{pmatrix} y_1' \\ y_2' \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ 3 & -2 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$

 $\begin{pmatrix} y_1'\\y_2' \end{pmatrix} = \begin{pmatrix} 2 & -1\\3 & -2 \end{pmatrix} \begin{pmatrix} y_1\\y_2 \end{pmatrix}$ e. (10 pts) $y''' - y'' - y' + y = 2e^{-x} + 3$, given that one solution of the homogeneous equation is $y = e^x$.

f. (10 pts) (3x+1)y'' - (9x+6)y' + 9y = 0, given that $y_1(x) = e^{3x}$ is a solution.

2. Solve in a series centred at x = 0. You must first decide whether to use a regular power series or a Frobenius series. Discuss the radius of convergence of the solutions.

a. (10 pts) $y'' - 2xy' + \lambda y = 0$, where λ is a constant.

b. (10 pts) $2x^2y'' + 3xy' + (2x^2 - 1)y = 0$

3. a. (5 pts) Compute the inverse Laplace transform of

$$\frac{2(s-1)e^{-2s}}{s^2 - 2s + 2}$$

b. (5 pts) Compute the Laplace transform of the square wave f

$$f(x) = 1 + \sum_{k=1}^{\infty} (-1)^k u_k(x)$$

c. (10 pts) Solve the initial value problem

$$y'' + 2y' + 2y = cos(x) + \delta(x - \pi/2), \quad y(0) = 0, \ y'(0) = 0$$

Solve the same problem, but with initial conditions y(0) = 1, y'(0) = 0.

TABLE 6.2.1 Elementary Laplace Transforms		
$f(t) = \mathcal{L}^{-1}\{F(s)\}$	$F(s) = \mathcal{L}\{f(t)\}\$	Notes
1. 1	$\frac{1}{s}$, $s > 0$	Sec. 6.1; Ex. 4
$2. e^{at}$	$\frac{1}{s-a}$, $s>a$	Sec. 6.1; Ex. 5
3. t^n ; $n = \text{positive integer}$	$\frac{n!}{s^{n+1}}, \qquad s > 0$	Sec. 6.1; Prob. 27
4. t^p , $p > -1$	$\frac{\Gamma(p+1)}{s^{p+1}}, \qquad s > 0$	Sec. 6.1; Prob. 27
5. sin <i>at</i>	$\frac{a}{s^2 + a^2}, \qquad s > 0$	Sec. 6.1; Ex. 6
6. cos <i>at</i>	$\frac{s}{s^2 + a^2}, \qquad s > 0$	Sec. 6.1; Prob. 6
7. sinh <i>at</i>	$\frac{a}{s^2 - a^2}, \qquad s > a $	Sec. 6.1; Prob. 8
8. cosh <i>at</i>	$\frac{s}{s^2 - a^2}, \qquad s > a $	Sec. 6.1; Prob. 7
9. $e^{at} \sin bt$	$\frac{b}{(s-a)^2 + b^2}, \qquad s > a$	Sec. 6.1; Prob. 13
10. $e^{at}\cos bt$	$\frac{s-a}{(s-a)^2+b^2}, \qquad s>a$	Sec. 6.1; Prob. 14
11. $t^n e^{at}$, $n = positive integer$	$\frac{n!}{(s-a)^{n+1}}, \qquad s > a$	Sec. 6.1; Prob. 18
12. $u_c(t)$	$\frac{e^{-cs}}{s}, \qquad s > 0$	Sec. 6.3
$13. u_c(t) f(t-c)$	$e^{-cs}F(s)$	Sec. 6.3
$14. e^{ct} f(t)$	F(s-c)	Sec. 6.3
15. f(ct)	$\frac{1}{c}F\left(\frac{s}{c}\right), \qquad c > 0$	Sec. 6.3; Prob. 19
$16. \int_0^t f(t-\tau)g(\tau) d\tau$	F(s)G(s)	Sec. 6.6
17. $\delta(t-c)$	e^{-cs}	Sec. 6.5
$18. f^{(n)}(t)$	$s^n F(s) - s^{n-1} f(0) - \dots - f^{(n-1)}(0)$	Sec. 6.2
$19. \left(-t\right)^n f(t)$	$F^{(n)}(s)$	Sec. 6.2; Prob. 28