McGILL UNIVERSITY FACULTY OF SCIENCE

FINAL EXAMINATION

MATH 315

ORDINARY DIFFERENTIAL EQUATIONS

Examiner: Professor J.J Xu Date: Thursday December 8,2005.

Associate Examiner: Lahcen Laayouni Time: 9:00 am - 12:00pm

INSTRUCTIONS

Answer all questions in the exam booklets provided.

This is a closed book exam

Faculty standard calculators are permitted.

A table of Laplace Transforms has been provided.

DICTION PRIÈ ARE ALLOWED

EXAM is PRINTED DOUBLE-510ED

This exam comprises the cover, 2 pages of 7 questions and 1 page of tables.

1. (10 pts) Find the general solutions for each of the following equations in its definition interval:

(i)

$$x\frac{\mathrm{d}y}{\mathrm{d}x} - y = \sqrt{9x^2 + y^2};$$

(ii)

$$x^{2}ydx + y(x^{3} + e^{-3y}\sin y)dy = 0;$$

2. (5 pts) Given a family of curves $\{C\}$ with the function

$$y = \frac{1}{x^2 + c}.$$

Find the equation of orthogonal trajectories to $\{C\}$.

3. (15 pts) Find the general solutions for each of the following equations:

(a)

$$(D-1)(D^2+4)^2y = xe^{2x} - 2\sin 2x;$$

(b)

$$x^2y'' + 4xy' + 2y = \cos x \quad (x > 0),$$

(use the method of variation of parameters).

4. (15pts) Given the following equation

$$(x-2)^2y'' + (x-2)e^xy' + \frac{4}{x}y = 0,$$

- (a) Classify each singular point of the given equation as regular or irregular;
- (b) Derive the indicial equation for each regular singular point;

Final Examination

MATH 315

December 8, 2005

- (c) For each regular singular point, determine which of the following occurs without solving the equation:
 - (i) all solutions are bounded near the point;
 - (ii) there is a non-zero solution, but not all solutions are bounded near the point;
 - (iii) there is no non-zero solution bounded near the point.
- 5. (20pts) Given the equation

$$x^2y'' + xy' - (2+x)y = 0,$$

- (a) Show that x = 0 is a regular singular point of the given equation;
- (b) Determine the recurrence formula for the coefficients in the Frobenius series expansion of the solution near x = 0;
- (c) Find the first four terms of two linearly independent solutions: $\{y_1, y_2\}$ on the interval $(0, \infty)$.
- 6. (20pts)
 - (a) Find the Laplace transform of the following function:

$$f(t) = 2e^{3t}\sin t + 4e^{-t}\cos 3t;$$

(b) Sketch the given function; express it in terms of the unit step function then determine its Laplace transform.

$$f(t) = \begin{cases} t, & 0 \le t < 1, \\ 1, & 1 \le t < 3, \\ e^{t-3}, & t \ge 3. \end{cases}$$

(c) Find the inverse Laplace transforms of the following functions:

(i)
$$F(s) = \frac{2s+3}{s(s^2-2s+5)}$$
, (ii) $F(s) = \frac{e^{-s}(s+6)}{s^2+9}$.

7. (15pts) Solve the following IVP's with the Laplace transform method:

$$y'' + 3y' + 2y = 10u_{\pi/4}(t)\sin\left(t - \frac{4}{\pi}\right), \quad y(0) = 1, \ y'(0) = 0;$$

LAPLACE TRANSFORM TABLE

f(t)	$\mathcal{L}f(s) = \int_0^\infty f(t)e^{-st}dt$	$f(t) \mathcal{L}f(s) = \int_0^\infty f(t)e^{-st}dt$
$t^n,\ n\in\mathbb{N}$	$\frac{n!}{s^{n+1}}, \Re s > 0$	$u_a(t), \ a>0$ $\dfrac{e^{-as}}{s}, \ \Re s>0$
1	s^{-1} , $\Re s > 0$	$u_a(t)g(t-a), \ a>0$ $e^{-as}\mathcal{L}g(s)$
t	$s^{-2}, \Re s > 0$	$e^{at}g(t)$ $\mathcal{L}g(s-a)$
$t^{ u}, \ u > -1$	$\frac{\Gamma(\nu+1)}{s^{\nu+1}}, \Re s > 0$	$g(ct), c > 0$ $\frac{1}{c}\mathcal{L}g\left(\frac{s}{c}\right)$
e^{at}	$(s-a)^{-1}, \Re s > a$	$\delta_a(t) = \delta(t-a), \ a>0$ $e^{-as}, \ \Re s>0$
$\sin(\omega t)$	$\frac{\omega}{s^2 + \omega^2}, \ \Re s > 0$	$f * g(t) = \int_0^t f(t - u)g(u)du \qquad \mathcal{L}f(s)\mathcal{L}g(s)$
$\cos(\omega t)$	$\frac{s}{s^2+\omega^2}, \Re s>0$	$f^{(n)}(t), n \in \mathbb{N}$ $s^{n} \mathcal{L} f(s) - \sum_{k=0}^{n-1} s^{n-k-1} f^{(k)}(0)$
$e^{at}\sin(\omega t)$	$\frac{\omega}{(s-a)^2+\omega^2}, \ \Re s>a$	$rac{df}{dt}(t)$ $s\mathcal{L}f(s)-f(0)$
$e^{at}\cos(\omega t)$	$\frac{s-a}{(s-a)^2+\omega^2}, \ \Re s>a$	$\frac{d^2f}{dt^2}(t) s^2\mathcal{L}f(s) - sf(0) - f'(0)$
$t^n e^{at}, \ n \in \mathbb{N}$	$\frac{n!}{(s-a)^{n+1}}, \Re s > a$	$t^n f(t), \ n \in \mathbb{N}$ $(-1)^n \frac{d^n \mathcal{L} f}{ds^n}(s)$