STUDENT NAME

574000T #

Faculty of Science FINAL EXAMINATION

MATHEMATICS- MATH 315 ORDINARY DIFFERENTIAL EQUATIONS

Examiner: Dr. L. Laayouni

Associate examiner: Prof. Dimitry Jakobson

Wednesday, December 15, 2004

14:00-17:00

INSTRUCTIONS

- 1. The use of books, notes are not allowed for this exam.
- 2. This exam paper may not be removed from the exam room by the student.
- 3. Non-programmable calculators are allowed.
- 4. This exam paper comprises the cover paper, one page of questions and one page containing the table of elementary Laplace transforms.

5. No DICTIONALIES & ANY KIND

Question: 1

Show that the differential equation

$$(3x + \frac{6}{y}) + (\frac{x^2}{y} + 3\frac{y}{x})\frac{dy}{dx} = 0,$$

is not exact and that the function $\mu = xy$ is an integrating factor of this differential equation, then solve it using this integrating factor.

Question: 2

Find the general solution to the initial value problem

$$y'' + 2y' + 2y = e^{-x}\cos(x)$$
, $y(0) = 1$, and $y'(0) = 1$.

Question: 3

Show that the differential equation

$$(x-1)^2y'' + 2(x^2-1)y' + 2y = 0, x > 1,$$

has a regular singular point at x = 1, and find the corresponding indicial equation, then discuss the nature of the two solutions near x = 1.

Question: 4

Use the Laplace transform to determine the solution of the initial value problem

$$y'' + 2y' + 2y = g(t),$$
 $y(0) = 0,$ $y'(0) = 1,$

where the forcing function q(t) is given by

$$g(t) = \begin{cases} t, & t < 3\pi \\ 1, & t \ge 3\pi. \end{cases}$$

Question: 5

Use the improved Euler method with uniform step size h=0.1, to calculate the values of the solution of the initial value problem

$$y' = 2 - t, \qquad y(0) = 1$$

at the points t = 0.1, t = 0.2, t = 0.3, t = 0.4, and t = 0.5.

Elementary Laplace Transforms	
f(t)	$\mathcal{L}(f)$
1	$\frac{1}{s}$, $s > 0$
e^{at}	$\frac{1}{s-a}, s > a$
t^n	$\frac{n!}{s^{n+1}}, s > 0 (n = 0, 1, \ldots)$
$\sin at$	$\frac{a}{s^2 + a^2}, s > 0$
$\cos at$	$\frac{s}{s^2 + a^2}, s > 0$
$e^{at}\sin bt$	$\frac{b}{(s-a)^2 + b^2}, s > a$
$e^{at}\cos bt$	$\frac{s-a}{(s-a)^2+b^2}, s>a$
$\sinh at$	$\frac{a}{s^2 - a^2}, s > a $
$\cosh at$	$\frac{s}{s^2 - a^2}, s > a $
$u_c(t)$	$\frac{e^{-cs}}{s}, s > 0$
$u_c(t)f(t-c)$	$e^{-cs}F(s), s>0$
$e^{ct}f(t)$	F(s-c)
f''(t)	$s^2 \mathcal{L}(f) - sf(0) - f'(0)$
$f^{(n)}(t)$	$s^n F(s) - s^{n-1} f(0) - \cdots f^{(n-1)}(0)$