McGILL UNIVERSITY

FACULTY OF ENGINEERING

FINAL EXAMINATION

Charles Rok

MATH 271

LINEAR ALGEBRA AND PARTIAL DIFFERENTIAL EQUATIONS

Examiner: Professor C. Roth

Associate Examiner: Professor T. Wihler

Date: Friday December 14, 2007

Time: 9:00 AM- 12:00 PM

TP Will

INSTRUCTIONS

- 1. Please answer all questions in the exam booklets provided.
- 2. This is a closed book examination. No books, crib sheets or lecture notes permitted.
- 3. Calculators are neither permitted nor required.
- 4. Use of a regular and/or translation dictionary is permitted.

This exam comprises the cover page, 2 pages of 6 questions and 1 page of useful information.

Friday December 14, 2007 Time: 9:00 AM - 12:00 PM

1. (11 Marks)

Professor C. Roth

- (a) Obtain <u>carefully</u> the nontrival null space of the operator $\mathcal{L} = \frac{d^4}{dx^4} \alpha^4$, where α is a real positive constant.
- (b) Show that the solution of

$$\frac{d^4y}{dx^4} = \alpha^4 y; y(0) = 0, \ y'(0) = 0, \ y(L) = 0, \ y'(L) = 0$$

is non-trivial provided $\cos \alpha L \cosh \alpha L = 1$.

2. (12 Marks) The circuit below is governed by the following system of differential equations

$$L_1\ddot{Q}_1 + M\ddot{Q}_2 + \frac{Q_1}{C_1} = 0$$

$$M\ddot{Q}_1 + L_2 \ddot{Q}_2 + \frac{Q_2}{C_2} = 0.$$

If $L_1 = L_2 = 5$, $C_1 = C_2 = \frac{1}{8}$, M = 3, $Q_1(0) = 0$, $\dot{Q}_1(0) = 0$, $Q_2(0) = 4$, $\dot{Q}_2(0) = 0$, solve for $Q_1(t)$ and $Q_2(t)$.

3. (18 Marks)

(a) Obtain the general solution of Laplace's equation in polar coordinates with the requirement that the solution be periodic of period 2π , i.e., solve

$$\nabla^2 \psi(r,\theta) = 0; \quad \psi(r,\theta+2\pi) = \psi(r,\theta), \quad \psi_{\theta}(r,\theta+2\pi) = \psi_{\theta}(r,\theta).$$

(b) A very long cylinder of radius α is immersed in a uniform flow parallel to the x-axis with speed V_0 . By having the center of the cylinder at the origin find the effect of the cylinder on the velocity potential <u>and</u> velocity. Assume that the cylinder is perpendicular to the flow.

- 4. (22 Marks) Solve and interpret physically the following diffusion equation boundary value problems:
 - (a) $\psi_t \psi_{xx} = h(x,t)$; $0 < x < \pi, t > 0$

$$(i)\psi_x(0,t) = F(t)$$

$$(ii)\psi_x(\pi,t) = G(t)$$

$$(i)\psi_x(0,t) = F(t)$$
 $(ii)\psi_x(\pi,t) = G(t)$ $(iii)\psi(x,0) = f(x).$

(b)
$$\frac{1}{\alpha^2} \frac{\partial \psi}{\partial t}(r, \varphi, \theta, t) = \nabla^2 \psi(r, \varphi, \theta, t); \ 0 \le r < a, \ 0 \le \varphi \le \pi, \ 0 \le \theta < 2\pi, \ t > 0$$

$$(i)\psi(a,\varphi,\theta,t)=0$$

$$(ii)\psi(r,\varphi,\theta,0)=0$$

5. (23 Marks) Solve the following Poisson's equation boundary value problems and interpret physically:

(a)
$$\nabla^2 \psi(x, y) = -\sin 3y$$
; $0 < x < \pi$, $0 < y < \pi$.

$$0 < x < \pi$$
, $0 < y < \pi$.

(i)
$$\psi(0,y) = 0$$

$$(ii)\psi(\pi, y) = 0,$$

(i)
$$\psi(0,y) = 0$$
, (ii) $\psi(\pi,y) = 0$, (iii) $\psi(x,0) = 1$, (iv) $\psi(x,\pi) = 0$

$$(iv)\psi(x,\pi) = 0$$

(b)
$$\nabla^2 \psi(r, \theta) = -2; \quad 0 \le r < 4, \quad 0 \le \theta < 2\pi.$$

$$(i)\psi(4,\theta)=0.$$

6. (15 Marks) You may assume that the general solution of Laplace's equation in spherical coordinates, i.e., $\nabla^2 \psi(r,\varphi) = 0, 0 \le \varphi \le \pi, \psi$ finite at $\varphi = 0$ and $\varphi = \pi$, is given by $\psi(r,\varphi) = \sum_{n=0}^{\infty} \left[A_n r^n + \frac{B_n}{r^{(n+1)}} \right] P_n(\cos\varphi)$, where P_n are the Legendre polynomials of order n.

Solve
$$\nabla^2 \psi(r, \varphi) = 0$$
, $0 \le \varphi < \pi/2$, $0 \le r < \alpha$,

(i)
$$\psi(r, \pi/2) = 0$$
,

(i)
$$\psi(r, \pi/2) = 0$$
, (ii) $\psi(\alpha, \varphi) = f(\cos \varphi)$ And as a special case $f(\cos \varphi) = \cos^3 \varphi$.

Leave your answer in SIMPLEST terms. Interpret physically.

USEFUL INFORMATION

1.
$$\nabla^2 \psi(r, \theta) = \frac{1}{r} \frac{\partial}{\partial r} \left[r \frac{\partial \psi}{\partial r} \right] + \frac{1}{r^2} \frac{\partial^2 \psi}{\partial \theta^2}.$$

$$2.\nabla \vec{\psi}(r.\theta) = \frac{\partial \psi}{\partial r} \hat{u}_r + \frac{1}{r} \frac{\partial \psi}{\partial \theta} \hat{u}_\theta.$$

3. Laplacian in spherical coordinates

$$\nabla^2 \psi(r, \varphi, \theta) = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \psi}{\partial r} \right) + \frac{1}{r^2 \sin \varphi} \frac{\partial}{\partial \phi} \left(\sin \varphi \frac{\partial \psi}{\partial \varphi} \right) + \frac{1}{r^2 \sin^2 \varphi} \frac{\partial^2 \psi}{\partial \theta^2}.$$

Note: φ is the angle that the position vector makes with the z-axis.

4.
$$\int_{-1}^{1} P_n(x) P_m(x) dx = \frac{2\delta nm}{2n+1}$$
, where $P_n(x)$ and $P_m(x)$ are Legendre polynomials.

$$P_0(x) = 1, P_1(x) = x, P_2(x) = \frac{1}{2}(3x^2 - 1), P_3(x) = \frac{1}{2}(5x^3 - 3x).$$

Good Luck!