- 1. (16 marks) Solve the following \underline{two} problems:
 - (a) $\nabla^2 \psi(x, y, t) = \frac{1}{\alpha^2} \frac{\partial \psi}{\partial t}(x, y, t)$ (b) $\nabla^2 \psi(x, y) = -q(x, y)$ for $0 < x < \pi, \ 0 < y < \pi$, with (i) $\psi(x, 0) = 0$, (ii) $\psi(x, \pi) = 0$, (iii) $\psi_x(0, y) = 0$, (iv) $\psi_x(\pi, y) = 0$ in <u>both</u> cases.
 - (c) Give physical interpretations in both cases.
- 2. (14 marks) Solve

$$\nabla^2 \psi(r, z) = 0; \qquad 0 \le r < b, \ 0 < z < \pi$$

(i) $\psi(r, 0) = 0,$ (ii) $\psi(r, \pi) = f(r),$ (iii) $\psi(b, z) = g(z).$

3. (11 marks) Find the potential distribution in the region below:

<u>Hint</u>: Solve $\nabla^2 \psi(r, \theta) = 0$, 1 < r < e, $0 < \theta < \pi$. (i) $\psi(r, 0) = 0$, (ii) $\psi(1, \theta) = 0$, (iii) $\psi(e, \theta) = 0$, (iv) $\psi(r, \pi) = f(r)$.

Please leave your answer in <u>simplest</u> form.

4. (15 marks) A solid sphere of radius b is cooling into a medium of temperature β° . There is a constant heat generation at the rate Q. The initial temperature is f(r). Find the temperature at any point inside the sphere after time t.

Please leave your answer in <u>simplest</u> form.

Hint: Solve
$$\frac{1}{\alpha^2} \frac{\partial \psi}{\partial t} - \nabla^2 \psi = \frac{Q}{K}; \ 0 \le r < b, \ t > 0.$$

(i) $\left[\frac{\partial \psi}{\partial r}\right]_{r=b} = h[T_0 - \psi(b, t)]$ where h is a positive constant.
(ii) $\psi(r, 0) = f(r),$ (iii) $\psi(r, t)$ is finite for $r = 0.$

- 5. Consider a cube of sides "a" with the x, y, z axes coinciding with the three intersecting edges of the cube.
 - (a) (4 marks) Find the moments and products of inertia.
 - (b) (10 marks) Find the principal moments of inertia and the directions of the principal axes.
 - (c) (2 marks) Find the angle, and indicate how to obtain the axis (without performing detailed calculation for the latter), from the $[\hat{i}, \hat{j}, \hat{k}]$ basis to the principal basis of inertia.
- 6. (a) (11 marks) Solve the system of differential equations

$$\dot{x}_1 = \frac{1}{2}x_1 - \frac{1}{8}x_2; \quad x_1(0) = 2$$

 $\dot{x}_2 = 2x_1 - \frac{1}{2}x_2; \quad x_2(0) = 3$

by using the exponential matrix method.

- (b) Write down Green's matrix for the system and discuss briefly its significance.
- 7. (12 marks) Solve

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{4}{t^2} & \frac{4}{t} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} t \\ 4 \end{bmatrix}; t \ge 1$$

with $X(1) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$

Good Luck!

Final Examination

McGILL UNIVERSITY

FACULTY OF ENGINEERING

FINAL EXAMINATION

MATHEMATICS 189-266B

LINEAR ALGEBRA & BOUNDARY VALUE PROBLEMS

Examiner: Professor C. Roth Associate Examiner: Professor N.G.F. Sancho Date: Monday, April 17, 2000 Time: 9:00 A.M. - 1:00 P.M.

INSTRUCTIONS

Faculty Standard Calculators are permitted.

This exam comprises the cover, 2 pages of questions and one page of useful information.