Final Examination

- 1. Evaluate $\iint_D (x^4 y^4) dA$, where D is the part of the first quadrant with $1 \le x^2 y^2 \le 3, \qquad 2 \le xy \le 3.$
- 2. Find the coordinates of the centroid of the region inside the sphere $x^2 + y^2 + z^2 = a^2$, outside the cone $x^2 + y^2 = b^2 z^2$, and above the *xy*-plane.
- 3. Let C be the curve that goes from (-1,0) to (0,1) along the graph of $y = 1 x^2$, and then from (0,1) to (1,0) along the graph of y = 1 - x. Compute $\int_C y dx - x dy$.
- 4. Find the area of that part of the surface $z = 2x^2 + 3xy 2y^2$ that is inside the cylinder $25x^2 + 25y^2 = 3$.

5. (a) If
$$\vec{F} = \frac{2x\vec{\imath} + 2y\vec{\jmath} + 2z\vec{k}}{(x^2 + y^2 + z^2)^{3/2}}$$
, compute div $\vec{F}((x, y, z) \neq (0, 0, 0))$

- (b) If \vec{F} is as in part (a), and S is the spherical surface $x^2 + y^2 + z^2 = a^2$ with normal directed outward, compute $\iint_{S} \vec{F} \cdot \hat{N} dS$.
- (c) If \vec{F} is as in part (a), and S is the surface of the cube $-1 \le x \le 1$, $-1 \le y \le 1, \ 1 \le z \le 3$ with normal directed outward, compute $\iint_{S} \vec{F} \cdot \hat{N} dS$.
- 6. Let $\vec{F} = y^3 \vec{i} 2z^3 \vec{j} + x^3 \vec{k}$. If *C* is the curve of intersection of $x^2 + y^2 + z^2 = 1$ and z = x, directed counterclockwise when viewed from above, compute $\int_C \vec{F} \cdot d\vec{r}$ using Stokes's theorem.
- 7. The equations

$$xyuv = -2$$

$$x^{2} + 2y^{2} + 3u^{2} + 4v^{2} - uv = 17$$

define u, v as functions of x, y in the neighbourhood of the point x = 1, y = -1, u = 2, v = 1. Find $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$ in the neighbourhood of that point.

8. Use the method of Lagrange multipliers to find the maximum value of z on the intersection of $x^2 + 2y^2 + 3z^2 = 1$ and x + y + z = 0.

FACULTY OF ENGINEERING

FINAL EXAMINATION

MATHEMATICS 189-265B

ADVANCED CALCULUS

Examiner: Professor D. Sussman Associate Examiner: Professor J.J. Xu Date: Friday, April 18, 1997 Time: 9:00 A.M. - 12:00 Noon

INSTRUCTIONS

Calculators Not Permitted

This exam comprises the cover and 1 page of questions.