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1. Do all work in space provided. Should more space be needed, an additional
examination booklet will be provided.
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3. This is a closed book examination.
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No calculators. Do all work in space provided.

1. (5 marks) Solve 3y = r-e
y+e¥
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2. (5 marks) Solve ydz + (2zy — e #)dy =0
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2 392
3. (5 marks) Solve y = %ﬂsy‘?’;

2zy

Hint: Observe that the function F(z,y) =

is homogeneous.
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4. (10 marks) Given that y = e® is a solution of (z — 1)y" —zy/ +y = 0,
find a second linearly independent solution to the differential equation.
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5. (10 marks) Solve y(®) — 2" + y = ge®
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6. (15 marks) Solve y” + y = cos®z using variation of parameters.
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7. (15 marks) Using Laplace transforms, solve
Y+ 2y + 2y = cos(t) + §(t — 7/2)

with initial conditions y(0) = 0,%/(0) = 0.
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8. Consider the linear transformation T4 : R® — R® defined by

x x
Tal vy | =A]| v | where A=
z z

relative to the standard basis.
(a) (4 marks) Find a basis for ker(A).
(b) (2 marks) Find a basis for the rowspace of A.
(c) (2 marks) Find a basis for the column space of A.

[
[
O =



Math263 Final Examination Friday Dec. 7th, 2007 2:00pm.

9. (i) (4 marks) Determine the eigenvalues of

A=

R o
T o R
O Mo

(ii) (3 marks) As well, determine bases for the corresponding eigenspaces.
(iii) (2 marks) Hence display an ordered basis of eigenvectors.

(iv) (2 marks) Finally, display the matrix of the linear transformation
associated with A relative to the ordered basis of eigenvectors supplied
in part (iii).
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For the continuation of question 9.
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10. (15 marks) Using matrix methods (eigenvalues, etc) find the general
solution of the following non-homogeneous system

= (3 3)xe () e (39)
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