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1 Point-SeT TOPOLOGY

Topology is about abstracting openness. It can typically suffice to consider open, closed

sets in R for intuition, but is obviously not all-general.

Definition 1 (Metric Space). A space X equipped with a functiond : X X X — [0, o0) is

called a metric space and 4 a metric or distance if
e dlx,y)=d(y,x) >0
* dx,y)=0 & x=y
e d(x,y)+d(y,z) > d(x,z)

forany x,vy,z € X.
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Definition 2 (Normed Vector Space). A function || - || : X — R defined on a vector space

X over R is a norm if
* |[x][ =0
e ||x]|=0 & x=0
o llc-x|[ = le|[x]l
o llx+yll <llxll+llyll,
forany x,y € X,c € R.

Remark 1. We can naturally extend this to arbitary fields, but seeing as this is a course in

Real Analysis, we won't.

Proposition 1. For a normed vector space (X, || - ||), d(x,y) := ||x — y|| is a metric on X. We

call such a metric the one "induced” by the norm.

Definition 3 (Topological Set). A set X is a topological set if we have a collection 7 of

subsets of X, called open sets, such that
e ge1,X€ET
e For A, € 7 for a in any I (potentially infinite), | J,c; Ax € T
* For A, € 7 for a € | where ] finite, then () ,¢j Aa € T
ie, arbitrary unions of open sets are open, and finite intersections of open sets are open.

Remark 2. Keep R in mind when initially working with these definitions; for instance, the

set A, = (0,2) openin R for any n € N, but (),,ciy An = {0} which is closed.

Remark 3. Complemented each of these requirements gives similar definitions for closed

sets of X.



Definition 4 (Topology on a Metric Space). Asubset A C X openiff Vx € A,3r =r(x) € R,
where r(x) > 0, such that B(x, r(x)) = {y € x : d(x,y) < r(x)} € A. We call such a B an
open ball, and B a closed ball with the same definition replacing the strict inequality with

<.

Remark 4. While many of the spaces we look at our metric spaces that induce a topology as
such, not all topological spaces are metric spaces. Indeed, "metrizability" (ie, equipping

a topological space X with a metric that respects the open sets) is not a trivial activity.

Definition 5 (Equivalence of Metrics). We say two metrics on X are equivalent if they

admit the same topology; a sufficient condition is that, Vx # y € X, 31 < C < oo such

dl(x/}/)

1
that c < By)

< C, then dy, d> equivalent, where C independent of x, y.

0A

|

Definition 6 (x Interior, Boundary, Closure). Let X-topological space, A C X, x € X.
e If JU-open s.t. x € U C A, then we write x € Int(A), the interior of A.
o If IV-open s.t. x € V C AC, then x € Int(A°).
e If VU-open s.t. x e U, UNA#@and UN A€ # @, then x € dA, the boundary of A.

We put A = Int(A) U dA, the closure of A. Equivalently, x € A <= for every open set
U:xelU,UNA#@. Wecall x € A the limit points of A.



Remark 5. The limit point interpretation of the closure can be more intuitive; the points

that we can get "arbitrary close to" are the closure. For instance, (a,b) = [a,b] € R with

the standard topology.

Proposition 2. Let A C X-topological space. Then, Int(A) is open, the largest open set contained
in A, the union of all open sets contained in A, and Int(Int(A)) = Int(A). Also, A closed, the

smallest closed set that contains A, A the intersection of all closed sets that A is contained in, and

A=A
Corollary 1. A open &= A =Int(A) and A closed & A = A
Remark 6. Remark that these are not exclusive, nor indeed the only possibilities.

Definition 7 (Basis). A basis for a topology X with open sets 7 is a collection B C 7 such

that every U € 7 a union of sets in B.

Remark 7. Don’t think about bases for vector spaces in this regard - there is no "minimality"
requirement.

Keep in mind {(a, b) : —c0 < a < b < o0}, a basis of topology on R.
Proposition 3. For a metric space (X, d), {B(x,r): x € X,r > 0} a basis of topology.

Definition 8 (Subspace Topology). For a subset Y C X-topological space, we define the
subspace topology on Y as 1y :={YNU : U € t}.

Definition 9 (* Continuous). For X, Y-topological spaces, a function f : X — Y is contin-

uous iff VV-openinY, f~}(V)-open in X.

Remark 8. One can verify that this is consistent with the ¢ — 6 definition of continuity for

functions on R.

Theorem 1 (Continuity of Composition). If f : X — Y, ¢ : Y — Z continuous, g o f

continuous.

Remark 9. Note how much easier this is to prove via toplogical spaces than the ¢ — 0

definition.



Definition 10 (Product Space). For an index set I and X,, a € I, we define [],¢; X4 as a

product space; I may be finite or infinite.

Proposition 4. A basis for the product space is given by cyliders of the form A = ], Aa X
[Ta ¢ X, for Ay-open in X,, where | C I-finite.

Definition 11 (Compact). A set A C X is compact if every cover has a finite subcover, that
is

n
A C Uua—open = Hay,...,a,} CIst. AC Uua,,.

a€l i=1

Proposition 5. Closed intervals [a, b] compact in R.
Proposition 6. A C R"” compact <= closed and bounded.

Definition 12 (Connected). X is said to not be connected if X = U U V for U,V open,

nonempty, disjoint. If X cannot be written as such, X is said to be connected.
Theorem 2. If X connected and f : X — Y, then f(X) connected in'Y.
Proposition 7. Intervals in R are connected.

Theorem 3 (Intermediate Value Theorem). If X connected, f : X — R continuous, then f
takes intermediate value; if a = f(x),b = f(y) for x,y € X witha < b, then foranya < c <b
Jz e X st f(z)=c.

Theorem 4. For X compact, f : X — Y continuous, f(X) compact in'Y.
Proposition 8. For X compact and f : X — R, f attains both max and min on X.

Definition 13 (Path Connected). A set A C X is path connected if for any x,y € A, 3f :
[a,b] — X continuous such that f(a) = x, f(b) = yf([a,b]) C A.

Theorem 5. Path connected = connected.

For open sets in R", the converse holds too.

Definition 14 (Connected Component, Path Component). For x € X, the connected com-
ponent of x is the largest connected subset of X containing x and the path component of

x is the largest path connected subset of X containing x.
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2 METRIC SPACES

We discuss mostly the metric on {, space and notions of completeness, as well as some

topological results specific to metric spaces, namely compactness.

Definition 15 ({,). For x = (x1,...,x,) € R"and 1 < p < +oo, we define

1
: n
;- Nlxlleo := max i,

n
]y = (Z il
i=1

and similarly, for sequences x = (x1,...,xy,,...),

S ;
o0
Ixllp = (lem’) ;e = stip [,

i=1 =1

and define £, = {x : [|x||, < +oo}. It can be shown that these are well-defined norms on

their respective spaces.

Theorem 6 (Holder, Minkowski’s Inequalities). For x = (x1,...,%n),y = (Y1,-.., Yn) and
p, q such that % + % =1, then

n

Z XilYi

i=1

Holder’s: (x,y) = < lxllpllyllg

and

Minkowski’s: llx +yllp < lxllp +1yllp-
The identical inequalities hold for infinite sequences.

Definition 16 (Completeness). We say a metric space is complete if every Cauchy sequence

converges to a limit point in the space.
Proposition 9. For {x; }nen, £y complete for any 1 < p < +o0.

Proposition 10. Ifp < g, {, C {;.



Definition 17 (Contraction Mapping). For a metric space (X, d), a function f : X — X is

a contraction mapping if there exists 0 < ¢ < 1 such that

d(f(x), f(y)) < c-d(x,y)

for any x,y € X.

Theorem 7. Let (X, d) be a complete metric space, f : X — X a contraction. Then, there exist a
unique fixed point z of f such that f(z) = z; ie lim, e f"(x) = limy o fO fo -0 f(x) =2
forany x € X.

Theorem 8. {, complete.

Remark 10. It can be kind of funky to work with sequences in ¢, since the elements of ¢,

themselves sequences so we have "sequences of sequences".

Definition 18 (Totally bounded). A metric space X is said to be totally bounded if V¢ >
03x1,...,x, € X,n = n(e) such that | JI_; B(x;, €) = X.

Definition 19 (Sequentially compact). A metric space X is said to be sequentially compact

if every sequence has a convergent subsequence.

Theorem 9 (x Equivalent Notions of Compactness in Metric Spaces). Let (X, d) a metric

space. TFAE:
e X compact
* X complete and totally bounded
* X sequentially compact

Remark 11. This is for a metric space, not a general topological space! Hopefully this is

clear because some of the requirements necessitate a distance.



3 DIFFERENTIATION

Definition 20 (Differentiable). f(x) differentiable at c if lim,_, ! (32:{ © exists, and if so
we denote the limit f’(c).
Alternatively, one can view differentiation as a linear map between spaces of differen-

tiable functions.

Theorem 10. Differentiable = continuous.
Proof. Short enough to write the full proof; limy_,.(f(x) — f(c)) = lim,,.(x — c)% =

0-f'(c)=0. O

Theorem 11 (Caratheodory’s). For f : I — R,c € I, f differentiableat c iff 3p : I - R: ¢
continuous at c, f(x) — f(c) = p(x)(x —c).

Sketch. Its worth recalling the definition of ¢ for the forward implication,

f (XJZ:J: © s
P(x) = :
f'(c) X=c
The converse follows by taking limits. O

Remark 12. While not a particularly enlightening result, used in proofs of the chain rule,

etc.

Theorem 12 (Chain Rule). Let f : ] = R, g : I — Rs.t. f(J) € I. If f(x) differentiable at c
and g(y) at f(c), g o f differentiable at c with (g o f)'(c) = §'(f(c)) - f'(c).

Sketch. Apply Caratheodory’s to f at c and g at f(c), and compose. O

Theorem 13 (Rolle’s). Let f : [a,b] — R continuous. If f'(x) exists on (a,b) and f(a) =
f(b)=0,3ce(a,b): f'(c)=0.

Sketch. If constant function, done. Else, assuming function positive, it obtains a maximum,

and thus its derivative 0 at this point. |



Theorem 14 (x Mean Value). Let f continuous on [a, b] and differentiable on (a,b). Then,
dc € (a, b) such that f(b) — f(a) = f'(c)(b —a).

Sketch. Let ¢(x) == f(x)— f(a) — f(?g:i)(a) (x —a). Then ¢(a) = ¢(b) = 0 so applying Rolle’s

dce(a,b):¢'(c)=0=f'(x)- %. The proof is done after rearranging. O

Proposition 11 (L'Hopital’s). If f, g : [a,b] — Rwith f(a) = g(a) =0, g(x) # 0ona < x < b,

f, g differentiable at x = 0 with g’'(a) # 0, then lim,_,,+ % exists and is equal to QEZ;

Remark 13. Other versions exist, but this is certainly one of them.
Theorem 15 (* Taylor’s). Let f € C"([a, b]) such that f"+1(x) exists on (a, b). Let xo € [a, b],

then, for any x € [a,b], Ic between x, xo such that

£(x0)

n!

f"(x0)

- f(n+1)(c)
2!

(x—x0)%+--+ (x —x0) CES] (x —x0)" 1.

f(x) = f(x0)+ f'(x0)(x — x0) +

Corollary 2. Let xo € [a,b]. With the same assumptions as Taylor’s (but in a neighborhood of
xo), with f'(x0) = f"”(x0) = -+ = f" D(xg) = 0and £ (xo) # 0, then

e 1 even; then f has a local minimum at xq if £ (x) > 0 and a local max if £ (xq) < 0.

® 1 odd; neither.

4 INTEGRATION

Its all just rectangles.

Definition 21 (Riemann Integration). Consider an interval (a,b). We call a subdivision
P ={a=xp,x1,...,Xn-1, X, = b} a partition, and % a marked partition if in addition we
are given a point ¢; € (x;, x;+1] for each interval in P.

We put diam() := max!_, |x; — x-1].

We define the Riemann sum S(f, P) = Y f(t)(xi — xi—1), and say that f Riemann
integrable on [a, b] if S(f,P) — L as diam(P) — 0 for any choice of tag t;, and write
f € R(la, b))



More precisely, if Ve > 0, 360 > 0 : diam(P) < 0, then for any t; € [xi, xit1],
|L - S(f, ¢)| < &. We then say the (Riemann) integral of f over [a,b] is L and write
b
/a f(x)dx = L.
Proposition 12. Riemann integrals are unique, linear in f(x), and respect inequalities (if f < g

onfa,b], [ f(x)dx < [ g(x)dx if both in R([a, b]))
Proposition 13 (x). f € R[a,b] = f bounded on [a,b]
Proposition 14 (x Cauchy Criterion for Integrability). f € R[a,b] &= Ve >0,36 > 0:if

P and Q are tagged partitions of [a, b] s.t. diam P < danddiam Q < 6, then|S(f, P) - S(f, Q)| <

€
Remark 14. Ala Cauchy Sequence.

Theorem 16 (Squeeze Theorem). f € R[a,b] & Ve >0,3a,, w: € Rla,b]:a, < f <

b
we and fa (we —ae) < €.

1 xe€
Lemma 1. Let | := [c,d] C [a,b] and ¢j(x) = J be the indicator function of |. Then
0 x¢]

(p]ER[a,b]undfab(p]:d—c.

Remark 15. Helpful for "approximations"; follows by linearity, induction that step functions

(ie sums of indicator functions times constants) are integrable.
Theorem 17 (x Continuous). f continuous on [a,b] = f € R[a, ]

Sketch. Continuity on a closed interval gives uniform continuity and so a "universal 0";
then, for any partition, take the x such that f attains its minimum and maximum, and
define a a,, w, as the sum of indicator functions taking the minimum, maximum of
f respectively on each partition. Then apply the previous theorem and the squeeze

theorem. O

Theorem 18 (Additivity). f € R[a,b] <= f € Rla,c]and f € R[c,b], and fab f(x)dx =
/acf(x)dx+/cbf(x)dx.
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Theorem 19 (* Fundamental Theorem of Calculus). Let F, f : [a,b] — Rand E C [a,b]

a finite set, such that F continuous on [a,b], F'(x) = f(x)Vx € [a,b] \ E, f € R[a,b]. Then
b ” ’ . ’ ”

fa f(x) = F(b) — F(a). We call F the "primitive” of f.

Theorem 20. For f € R[a,b] and any z € [a,b], put F(z) := /az f(x)dX. Then, F continuous
on|a,b].

Theorem 21 (x Fundamental Theorem of Calculus p2). For f € Rla, b] continuous at c, then
F(z) differentiable at c and F'(c) = f(c).

Definition 22 (Lebesgue Measure). We say aset A C R has Lebesgue measure 0iff ¥V ¢ > 0,
A can be covered by a union of intervals Ji such that }; |Jx| < €. We then call A a "null

set.

In particular, any countable set is a null set.

Theorem 22 (* Lebesgue Integrability Criterion). Let f : [a,b] — R be bounded. Then

f € Rla,b] < the set of discontinuities of f has Lebesgue measure 0.
Remark 16. In particular, remark that continuity a stronger requirement than integrability.

Theorem 23 (Composition). If f € R[a, b], ¢ : [c,d] — R continuous and f([a,b]) C [c,d],
then ¢ o f € R[a, b].

Theorem 24 (Integration by Parts). If F, G differentiable [a,b] with f = F’,g = G, and
f,g € Rla,b), then

b

b b
/f(x)G(x)dx:F(x)G(x) —/ F(x)g(x)dx.

Sketch. Uses additivity and the fundamental theorem of calculus. O

Theorem 25 (Taylor’s Theorem, Remainder’s Version). Suppose f’, f”,..., f™ exist on

[a,b] and f**V € R[a,b]. Then

f( a) f”( a) f(”)(a)

f) = fla)+ (b—aP+

b-a)" + Ry,
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where R,, = % /ab f("+1)(t)(b — )" dt.

5 SeoueNces oF FuNcTIONS

A good motivation to keep in mind with the "types" of function-sequence convergence
is to answer the question: when can we exchange limits of derivatives of functions and
derivatives of limits of functions? What about integrals? What about summations (see

next section)? Ie, when does lim,,_, f,(x) = % limy, e fn(x), etc.

Definition 23 (Pointwise, Uniform Convergence). Wesay f, — f pointwiseonEif Vx € E,

fa(x) = f(x)asn — oo.

We say f, — f uniformly on E if Ve > 0,3IN € N such that Vn > N,x € E,
|fu(x) = f(x)] < e.

Remark 17. Pointwise doesn’t care about the "rate of convergence"; as long as each point
converges eventually, we're good. Uniform convergence needs all points to converge "at
the same rate" (so to speak).

2nx 0<x< %

A good example to keep in mind is f, := on [0, 1], which converges

pointwise to 0 but not uniformly.
A good trick for disproving uniform convergence of f, — f is by showing f,(xo)
constant and # f(xo) for all n. For instance, f,(x) := sin(%) — 0 pointwise, but f,(5°) =

1V n so the convergence os not uniform.
Proposition 15. Uniform = pointwise convergence.

Theorem 26. The metric space of continuous functions C([a, b]) complete with respect to doo(f, ) :=

supxe[a,b] |f(X) - g(x)l

Theorem 27 (x Interchange of Limits). Let | € R be a bounded interval such that 3xg € | :

fn(x0) = f(x0). Suppose f,(x) — g(x) uniformly on J. Then, 3f : f,(x) — f(x) uniformly on
J, f (x) differentiable on ], and moreover f,(x) = g(x)Vx € ].

12



Theorem 28 (x Interchange of Integrals). Let f, € R[a, b], f, — f uniformly on [a,b]. Then
f e Rla,b]and fabfn(x)dx — fubf(x)dx

Theorem 29 (Bounded Convergence). Let f, € R[a,b], f» — f € Rla,b] (not necessarily
uniform). Suppose AB > 0s.t. |f,(x)] < BVx € [a,b] and Vn € N, then fabfn - fabf as

n — oo,

Remark 18. This provides a weaker condition, but equivalent result as the previous theo-
rem, although remark now that we need the limit function itself to be in R[a, b], which
was a result, not a necessity, of the previous theorem. In general, uniform continuity very

strong, but leads to helpful results.

Theorem 30 (Dimi’s). If f, € C([a, b]), f.(x) monotone (as a sequence), and f, — f € C([a,b]),
then f, — f uniformly.

6 INFINITE SERIES

Definition 24 (Covergence of Series). Let {x;} € X-normed vector space over R. We say
2;021 xj converges absolutely iff 2]7";1 l|xj]| < +co. In particular, if X = R, then || - || = ||

We say 2}21 xj converges conditionally if 2}21 Xj < +oo, but 2}21 [|xj]] = +oo0.

Proposition 16. Any rearrangement of an absolutely convergent series gives the same sum.
Conversely, the order of summation of a conditionally convergent summation can be rearranged

such as to equal any real number.

Proposition 17 (Absolute Convergence Tests).  ® Comparison Test: let x,,, y, be nonzero

Xn

real sequences and r := lim v
n

. If such a limit exists, then if

(a) r #0, ), x, absolutely convergent <= 3., v, absolutely convergent.

(b) r =0, 3, yn absoltuely convergent = ., x, absolteuly convergent.

* Root Test: if Ar < 1s.t. |xn|1/” < rVn > K-sufficiently large, then ), |x,| converges.

Conwversely, iﬂxnll/ " > 1 for n > K-sufficiently large, 3., x, diverges.
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* Ratio Test: if x, # 0and 30 < r < 1s.t.

Xn+1
Xn

< r for n > K sufficiently large, ', x,

| Xnt
absolutely convergent. Conversely, if | ==

> 1 for n > K sufficiently large, then ), x,

diverges.

e Integral Test: if f(x) > 0 non-increasing/non-decreasing function of x > 1, 3.2, f(k)

converges iff limy_,c flk f(x)dx finite.
* Raube’s Test: let x,, # 0.

Xn+1
Xn

(a) If 3a > 1s.t. < 1-1Vn > K-sufficiently large, then ¥, x, converges abso-

n

lutely.

Xn+1
Xn

(b) If Ja < 1s.t.

> 1-1vVn > K-sufficiently large, 3., xn does not converge

absolutely.

Remark 19. Proofs of these tests aren’t really important (Dima-speaking), but knowing the
conditions in which they apply is.

Proposition 18 (Tests for Non-Absolute Convergence).  ® Alternating Series: if x >

0, Xn+1 < Xy such that lim, e x, = 0, then },,(—1)"x,, converges.

* Dirichlet’s Test: if x, decreasing with limit 0, and the partial sum s, == y1 +--- + Yy, is

bounded, then 3., x,y, converges.

* Abel’s Test: let x,, convergent and monotone, and suppose )., Y, converges. Then ), X, Yy

also converges.

Definition 25 (Convergence of Series of Functions). We say a series ), f,(x) converges
absolutely to some g(x) on E if ), | f,(x)| converges for all x € E.
We say that the convergence is uniform if it is uniform for any x € E, ie Ve > 03N €

Nst Vn>N,x €E, |g(x) -2, fu(x)] < €.

Proposition 19 (Interchanging Integrals and Summations). Suppose for f, : [a,b] — R,
. b o b
2o fu(x) = g(x) uniformly and f, € R[a,b]. Then fa gx) =2, fa fn(x)dx.
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Proposition 20 (Interchanging Derivatives and Summations). Let f, : [a,b] — R, f,3,
2 f (x) converges for some [a,b] and }, f,(x) converges uniformly. Then, there exists some
g :la,b] — R such that ), f, — g uniformly, g differentiable, and ¢’(x) = 3., f,(x), all on
[a, b].

Theorem 31 (x Cauchy Criterion of Series). f,(x) : D — R converges uniformly on D iff
Ve>0,3INst Vm,n>N,}" . filx)<eVxeD.

Proposition 21 (Weierstrass M-Test). If |f.(x)| < M,Vx € D C Rand },, M,, < +oo, then
2o fu(x) converges uniformly on D.

Definition 26 (Power Series). A function of the form f(x) := 77, a,(x — ¢)" is said to be

a power series centered at c.

Put p :=limsup, _, /|ax|, and put

% 0<p<+oo
R::<O p:_|_oo
00 p:O

We call R the radius of convergence of f.

Theorem 32 (*x Cauchy-Hadamard). Let R be the radius of converges of f. Then, f(x) converges
if |x — c| < R, and diverges if |x — c| > R.

Sketch. Apply the root test to the definition of R. O

Remark 20. If |x — c| = R, the theorem is inconclusive, and we need to manually check.
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