FACULTY OF SCIENCE

FINAL EXAMINATION

MATHEMATICS 255

Honours Analysis 2

Examiner: Professor I. Klemes

Associate Examiner: Professor D. Jakobson

Date: Friday, 13 April, 2007

Time: 2pm-5pm

INSTRUCTIONS

Calculators are not permitted.

This is a closed book examination.

Answer all 6 questions, in the examination booklets.

Keep this exam paper.

1. (10 points) If f is a bounded function on [a, b] and P and Q are partitions of [a, b], prove that there is a partition R of [a, b] such that R satisfies both of the following inequalities:

$$L(P, f) \le L(R, f)$$
 and $U(R, f) \le U(Q, f)$.

- 2. (15 points) Let $f:[a,b] \to \mathbb{R}$ be a bounded function.
 - (a) Define the oscillation $\omega_f(x)$ of f at a point x.
 - (b) Prove that f is continuous at x_0 if and only if $\omega_f(x_0) = 0$.
- 3. (15 points)
 - (a) Define the concept "set of measure zero" and prove that any subset of a set of measure zero is a set of measure zero.
 - (b) State Lebesgue's Criterion for Riemann integrability.
 - (c) Let $f:[a,b] \to [0,\infty)$ be an integrable function such that $\{x \in [a,b] \mid f(x) > 0\}$ is not a set of measure zero. Prove that $\int_a^b f > 0$.
- 4. (10 points)
 - (a) Give an example of a continuous $F:[0,1]\to\mathbb{R}$ such that F'(x) exists at all points $x\in[0,1]$ except $x=\frac{1}{2}$.
 - (b) If $F:[0,1] \to \mathbb{R}$ is continuous, $f:[0,1] \to \mathbb{R}$ is integrable, and F'(x) = f(x) at all points $x \in [0,1]$ except $x = \frac{1}{3}$ and $x = \frac{2}{3}$, prove that $\int_0^1 f = F(1) F(0)$. (You may assume the first fundamental theorem of calculus.)
- 5. (10 points)
 - (a) Define "open set" and "closed set" in \mathbb{R} .
 - (b) Show that the union of any family of open sets is open and that the intersection of any family of closed sets is closed.
- 6. (10 points)
 - (a) State the Weierstrass M-Test.
 - (b) Fix r > 0 and let $D = [r, \infty)$. Prove that the function f defined by

$$f(x) = \sum_{n=1}^{\infty} \frac{\sin(3^n x)}{n^2 x^2 + 1}, \quad (x \in D)$$

is continuous on D.