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1. (i) (10 marks) State and prove the Cauchy–Schwarz inequality

(ii) (10 marks) Let a1, a2, . . . , an be positive numbers. By writing a1 = (a1a
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2. (i) (6 marks) Describe Riemann’s Criterion for Integrability.
(ii) (7 marks) If f is a Riemann Integrable function on [0, 1] show that the function

|f | defined by |f |(x) = |f(x)| is also Riemann Integrable on [0, 1].
(iii) (7 marks) Let

g(x) =


0 if x is irrational,

1
q

if x =
p

q
in lowest terms with p and q integers.

Is g Riemann Integrable on [0, 1]? Justify your answer.

3. (i) (5 marks) Let f(x) = ex2
∫ x

0

e−t2dt. How is it possible to assert on theoretical

grounds that f has a power series expansion about x = 0 with infinite radius?
(ii) (5 marks) Show that f ′(x) = 1 + 2xf(x).
(iii) (5 marks) Find the power series expansion of f about x = 0 as far as the term

in x7.
(iv) (5 marks) Use the ratio test to verify that the radius of the series you have

found is indeed infinite.

4. For each of the following sequences of functions defined on R determine (a) if a point-
wise limit exists everywhere on R, (b) if a uniform limit exists on each bounded subset
of R and (c) if a uniform limit exists on R.

(i) (7 marks) fn(x) =
(
1 +

x

n

)n

.

(ii) (6 marks) fn(x) =
x

1 + nx2
.

(iii) (7 marks) fn(x) = cos(nx2).

Justify your answers.
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5. Let an > 0 and
∞∑

n=1

an < ∞. For each of the following statements, either provide a

proof that the statement necessarily holds, or an example of a specific instance where
it does not.

(i) (7 marks)
∞∑

n=1

n2a3
n < ∞.

(ii) (7 marks) lim inf
n→∞

an+1

an
≤ 1.

(iii) (6 marks)
∞∑

n=1

an

1 + a2
n

< ∞.

6. (i) (6 marks) State the Fundamental Theorem of Calculus.
(ii) (7 marks) Let g and h be two differentiable functions such that

• g(0) = h(0)

• g′(x) ≤ h′(x) for x > 0

Show that g(x) ≤ h(x) for x ≥ 0.

(iii) (7 marks) Suppose that f is a differentiable function such that f(0) = 0 and
0 < f ′(x) ≤ 1 for all x > 0. Show that for x ≥ 0∫ x

0

(
f(t)

)3

dt ≤
( ∫ x

0

f(t)dt
)2

.

Hint: Apply (ii) twice (at least).

? ? ? ? ?
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