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Final Examination MATH 255 : April 16, 2003

1. Give the definition of Riemann integrability and show that a Riemann integrable function is bounded.
Show that a function is Riemann integrable if and only if it satisfies Riemann’s condition.

2. Shbw how the Riemann—Stielfjes integral can be used to show that
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where ((z)) = z — [z] is the fractional part of 2. Show that the series and improper integral converge
absolutely and uniformly for s > 1+ € and s > € respectively for any ¢ > 0. What can you deduce
about the infinite series and improper integral as functions of s?

3. (a) Prove that the set of discontinuities of a Riemann integrable function is of measure zero.

(b) If g is Riemann integrable on [a,b] with m < g(z) < M on [a,b] and f continuous on [m, M],
prove that h(z) = f(g(z)) is Riemann integrable.

4. (a) If a > 0, show that the sequence (n?z%¢™"%),>; converges uniformly on [a,c0) but does not
converge uniformly on [0, c0).

(b) Find a sequence of continuous functions f, on [0, 1] which converges to a continuous function f
on [0, 1] such that -
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5. Show that the series
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if z is not an integral multiple of 2r. What can you say about the continuity of f'?

6. Using the Taylor series expansion of (1 — z2)~'/2 about z = 0, show that
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for |z| < 1. What is the radius of convergence of this series? Using a suitable estimate for the remainder

of the series for sin™!(1), estimate how many terms of this series would be sufficient to compute 7 to
three decimal places. How many terms would be sufficient if the series for sin~!(1/2) were used?
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7. Define what is meant by compact subset of a metric space. If f : X — Y is a continuous mapping of
metric spaces with X compact, show that f is uniformly continuous. Show also that f(X) is compact.

8. Let S C R be compact and let X be the set of continuous real-valued functions on S. Show that X is
a metric space with metric

d(f,9) = sup|f(z) — g(z)|
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and that this metric space is complete.




