McGILL UNIVERSITY FACULTY OF SCIENCE

FINAL EXAMINATION

MATH 255

ANALYSIS 2

Examiner: Professor J. Labute Associate Examiner: Professor R. Vermes Date: Wednesday, April 16, 2003 Time: 2:00 P.M. - 5:00 P.M.

INSTRUCTIONS

Do any SIX questions.

Justify all your statements.

No calculators allowed.

This exam comprises the cover and 1 page with 8 questions.

- 1. Give the definition of Riemann integrability and show that a Riemann integrable function is bounded. Show that a function is Riemann integrable if and only if it satisfies Riemann's condition.
- 2. Show how the Riemann-Stieltjes integral can be used to show that

$$\sum_{n=1}^{\infty} \frac{1}{n^s} = \frac{s}{s-1} - s \int_1^{\infty} \frac{((x))}{x^{s+1}} dx,$$

where ((x)) = x - [x] is the fractional part of x. Show that the series and improper integral converge absolutely and uniformly for $s \ge 1 + \epsilon$ and $s \ge \epsilon$ respectively for any $\epsilon > 0$. What can you deduce about the infinite series and improper integral as functions of s?

- 3. (a) Prove that the set of discontinuities of a Riemann integrable function is of measure zero.
 - (b) If g is Riemann integrable on [a, b] with $m \leq g(x) \leq M$ on [a, b] and f continuous on [m, M], prove that h(x) = f(g(x)) is Riemann integrable.
- 4. (a) If a > 0, show that the sequence $(n^2x^2e^{-nx})_{n\geq 1}$ converges uniformly on $[a,\infty)$ but does not converge uniformly on $[0,\infty)$.
 - (b) Find a sequence of continuous functions f_n on [0,1] which converges to a continuous function f on [0,1] such that

$$\lim_{n\to\infty}\int_0^1 f_n(x)\,dx\neq\int_0^1 f(x)\,dx.$$

5. Show that the series

$$f(x) = \sum_{n=1}^{\infty} \frac{\sin nx}{n^2}$$

converges uniformly on R and that

$$f'(x) = \sum_{n=0}^{\infty} \frac{\cos nx}{n}$$

if x is not an integral multiple of 2π . What can you say about the continuity of f'?

6. Using the Taylor series expansion of $(1-x^2)^{-1/2}$ about x=0, show that

$$\sin^{-1}(x) = x + \frac{1}{2} \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \frac{x^5}{5} + \dots + \frac{1 \cdot 3 \cdot \dots \cdot (2n-1)}{2 \cdot 4 \cdot \dots \cdot 2n} \frac{x^{2n+1}}{2n+1} + \dots$$

for $|x| \leq 1$. What is the radius of convergence of this series? Using a suitable estimate for the remainder of the series for $\sin^{-1}(1)$, estimate how many terms of this series would be sufficient to compute π to three decimal places. How many terms would be sufficient if the series for $\sin^{-1}(1/2)$ were used?

- 7. Define what is meant by compact subset of a metric space. If $f: X \to Y$ is a continuous mapping of metric spaces with X compact, show that f is uniformly continuous. Show also that f(X) is compact.
- 8. Let $S \subset \mathbb{R}$ be compact and let X be the set of continuous real-valued functions on S. Show that X is a metric space with metric

$$d(f,g) = \sup_{x \in S} |f(x) - g(x)|$$

and that this metric space is complete.