# McGILL UNIVERSITY

## **FACULTY OF SCIENCE**

## **FINAL EXAMINATION**

## MATHEMATICS 189-255B

# ANALYSIS II

Examiner: Professor D. Jakobson Associate Examiner: Professor S. Drury Date: Monday, April 29, 2002 Time: 2:00 P.M. - 5:00 P.M.

## **INSTRUCTIONS**

Answer all questions. Each question is worth 20 points.

This exam comprises the cover and 2 pages of questions.

#### FINAL EXAM

Do all the problems. Every problem is worth 20 points.

Problem 1. Establish the convergence/divergence for the series whose nth term is given by

a) (6 points.)  $(n!)^2/(2^{n^2})$ .

b) (7 points.)  $2^n \cdot n!/(n^n)$  and  $3^n \cdot n!/(n^n)$ .

c) (7 points.)

$$\left(\frac{1\cdot 3\cdot \ldots \cdot (2n-1)}{2\cdot 4\cdot \ldots \cdot (2n)}\right)^p$$
,  $p=1$  and  $p=3$ .

Problem 2. Determine whether the following sequences of functions converge uniformly or pointwise (or neither) in the regions indicated. Determine the pointwise limits (where they exist); are the limiting functions continuous/differentiable, (in the latter case, do the derivatives converge uniformly)?

a) (7 points.)

$$f_n(x) = \begin{cases} \frac{\sin nx}{nx}, & x \neq 0 \\ 1, & x = 0. \end{cases}$$

b) (6 points.)  $f_n(x) = x^2/(3 + 2nx^2)$  for  $x \in [0, 1]$ . c) (7 points.)  $f_n(x) = e^{-nx}/n$  for  $x \in [0, \infty)$ .

**Problem 3.** Let  $n_1 < n_2 < n_3 < \dots$  be the numbers that don't use the digit 7 in their decimal expansion. Prove that

$$\sum_{k=1}^{\infty} \frac{1}{n_k}$$

converges.

Problem 4. Suppose that both the series

$$F(x) = \sum_{n=0}^{\infty} f^{(n)}(x)$$

and the series

$$G(x) = \int_0^x f(t_1)dt_1 + \int_0^x dt_1 \int_0^{t_1} f(t_2)dt_2 + \dots$$

converge uniformly on some interval. What can you say about the function represented by the series H(x) := F(x) + G(x)?

Problem 5.

a) (5 points.) State the Lebesgue's integrability criterion.

b) (5 points.) Define sets of measure 0 (null sets) in R.

- c) (5 points.) Prove that if  $g:[a,b] \to [c,d]$  is Riemann integrable on [a,b], and if f is continuous on [c,d], then h(x) := f(g(x)) is also Riemann integrable on [a,b].
- d) (5 points.) Give an example of a Riemann integrable function f on [0, 1] such that sgn(f(x)) is not Riemann integrable.

#### Problem 6.

- a) (10 points.) Let  $a_n$  be a sequence of real numbers such that  $\sum a_n^2$  converges. Prove that  $\sum (|a_n|/n)$  also converges.
- b) (10 points.) Let  $a_1 \geq a_2 \geq a_3 \geq \ldots \geq 0$  be a monotone decreasing sequence of nonnegative numbers, and let  $\sum_{n=1}^{\infty} a_n$  converge. Prove that

 $\lim_{n\to\infty}na_n=0.$