1. Define:

- (a) (i) the sequence of functions (f_n) converges uniformly on S to a function $f : S \to \mathbf{R}$;
	- (ii) the infinite series $\sum_{n=1}^{\infty}$ $n=1$ f_n converges uniformly on S .
	- (b) Let f be a bounded function defined on $[a, b]$, $(-\infty < a < b < \infty)$. Define:
		- (i) Upper (Darboux) sum $U(P)$ of f with respect to the partition P of [a, b];
		- (ii) Upper and lower (Darboux) integrals \int^b a fdx and \int^b a fdx respectively;
		- (iii) f is integrable on $[a, b]$.

2. (a) Prove the comparison test: Let $\sum_{n=0}^{\infty}$ $n=1$ a_n and $\sum_{n=1}^{\infty}$ $n=1$ b_n be two series of non negative terms. If $a_n \leq b_n$ for $n \geq N$ and $\sum_{n=1}^{\infty}$ $n=1$ b_n converges, so does \sum^{∞} $n=1$ a_n ; if the series \sum^{∞} $n=1$ a_n is divergent, so does \sum^{∞} $n=1$ b_n .

(b) Show that
$$
\sum_{n=1}^{\infty} \frac{1}{n} \log \left(1 + \frac{1}{n} \right)
$$
 is convergent.

3. (a) Let $\sum_{n=1}^{\infty}$ $n=1$ a_n be a convergent series. If $0 < b_{n+1} \leq b_n$ for $n \in \mathbb{N}$, prove that $\sum_{n=1}^{\infty}$ $n=1$ $a_n b_n$ is convergent.

(b) Suppose that
$$
\sum_{n=1}^{\infty} \frac{a_n}{n^p}
$$
 is convergent. Show that $\sum_{n=1}^{\infty} \frac{a_n}{n^q}$ is convergent if $q > p$.

- 4. Let $A \subset \mathbb{R}$, suppose that $f_n : A \to \mathbb{R}$, and $|f_n(x)| \leq M_n$ for $x \in A$, $n \in \mathbb{N}$. If $\lim_{n\to\infty}f_n=f$ uniformly on A, prove that:
	- (a) (i) f is bounded on A ; (ii) $|f_n(x)| \leq M$ for all $n \in \mathbb{N}$ and $x \in A$.
	- (b) If $g : \mathbb{R} \to \mathbb{R}$ is continuous, the sequence of the composite functions $(g \circ f_n)(x) = g(f_n(x)), \; n \in \mathbb{N}$, converges uniformly to $g \circ f$ on A.

- 5. (a) Suppose that $f_0 : [0, a] \to \mathbb{R}$ is continuous. If $f_n(x) := \int^x$ 0 $f_{n-1}(t)dt, \ 0 \leq x \leq a,$ prove that (f_n) , $n \in \mathbb{N}$, converges uniformly to the zero function on $[0, a]$.
	- (b) If $f(x) = \sum_{n=0}^{\infty}$ $n=1$ $(-1)^{n+1}$ ¹ $\frac{1}{\sqrt{n}}$ Arctan $\frac{x}{4}$ $\frac{a}{\sqrt{n}}$, show that $\sum_{n=1}^{\infty}$ $n=1$ $(-1)^{n+1} \frac{1}{n+x^2} = f'(x).$

(Theorems used in your argument should be fully stated.)

- 6. (a) State and prove Abel's limit theorem.
	- (b) Justify the formula

$$
\int_0^1 \frac{t^{p-1}}{1+t^q} dt = \sum_{k=0}^\infty (-1)^k \frac{1}{p+kq},
$$

where p and q are positive integers.

- 7. (a) State a condition equivalent to the Riemann integrability of a bounded function defined on a closed and bounded interval $[a, b]$, $(a < b)$.
	- (b) Prove that every continuous function defined on $[a, b]$ is Riemann integrable.
- 8. (a) Let f be continuous on [0, 1]. If $g_n(x) = f(x^n)$ for $n \in \mathbb{N}$, show that

$$
\lim_{n \to \infty} \int_0^1 g_n(x) dx = f(0).
$$

(b) Let f be Riemann integrable and g be continuous on [a, b], $(a < b)$. If $g' = f$ for $x \in (a, b)$ prove that \int^b a $fdx = g(b) - g(a).$

FACULTY OF SCIENCE

FINAL EXAMINATION

MATHEMATICS 189-255B

ANALYSIS II

Examiner: Professor R. Vermes Date: Wednesday, April 30, 1997
Associate Examiner: Professor J.R. Choksi Time: 2:00 P.M. - 5:00 P.M. Associate Examiner: Professor J.R. Choksi

This exam comprises the cover and 2 pages of questions.