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1 Notation

F denotes an arbitrary field; in section 6 we will restrict F to either R or C. Upper case

𝑈,𝑉,𝑊 will typically denote vector spaces, lower case Greek letters 𝛼, 𝛽, 𝛾 bases, and

lower case 𝑎, 𝑏, 𝑐 scalars from F. A subscript (eg 𝐼𝑉 , 0F) denote "where" an element comes

from (eg identity on 𝑉 , zero on F), but will often be omitted.

𝑀𝑚×𝑛(F) ..= {𝑚 × 𝑛 matrices with entries in F}; if 𝑚 = 𝑛 we denote 𝑀𝑛(F). GL𝑛(F) ..=

{𝐴 ∈ 𝑀𝑛(F) : 𝐴 invertible } ⊆ 𝑀𝑛(F).
F[𝑡]𝑛 ..= {𝑎0 + 𝑎1𝑡 + · · · + 𝑎𝑛𝑡

𝑛 : 𝑎𝑖 ∈ F}.
Important (purely subjectively) results are highlighted with ★ for their use in proofs

and other results.
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2 Vector Spaces, Linear Relations

Definition 1 (Vector Space). A vector space𝑉 defined over a fieldF is an abelian group with

respect to an addition operation + with identity element 0 ≡ 0𝑉 , and with an additional

scalar multiplication from the field such that for 𝑢, 𝑣 ∈ 𝑉 and 𝑎, 𝑏 ∈ F,

1. 1 · 𝑣 = 𝑣; 1 ∈ F (identity)

2. 𝑎 · (𝑏 · 𝑣) = (𝛼 · 𝛽)𝑣 (associativity of multiplication)

3. (𝑎 + 𝑏)𝑣 = 𝑎𝑣 + 𝑏𝑣 (distribution of scalar addition over scalar multiplication)

4. 𝑎(𝑢 + 𝑣) = 𝑎𝑢 + 𝑎𝑣 (distribution of scalar multiplication over vector addition)

To follow, unless otherwise specified, take 𝑉 to be an arbitrary vector space.

Proposition 1. 0F · 𝑣 = 0𝑉 ; −1 · 𝑣 = −𝑣; 𝑎 · 0𝑉 = 0𝑉 , 𝑎 ∈ F.

Definition 2 (Subspace). 𝑊 ⊆ 𝑉 , such that 𝑊 nonempty and 𝑊 closed under vector

addition and scalar multiplication.

Definition 3 (Linear Combination, Span, Spanning Sets). A linear combination of vectors

𝑣𝑖 ∈ 𝑆 for some set 𝑆 ⊆ 𝑉 is a summation 𝑎1𝑣1 + · · · + 𝑎𝑛𝑣𝑛 for scalars 𝑎𝑖 ∈ F.
Define Span({𝑣1, . . . , 𝑣𝑛}) ..= {𝑎1𝑣1 + · · · + 𝑎𝑛𝑣𝑛 : 𝑎𝑖 ∈ F}.
We say a set 𝑆 spans 𝑉 if Span(𝑆) = 𝑉 ; we say 𝑆 minimally spanning if �𝑣 ∈ 𝑆 : 𝑆 \ {𝑣}

spanning.

Proposition 2. For any set 𝑆 ⊆ 𝑉 , Span(𝑆) is a subspace, and moreover the smallest subspace

containing 𝑆 (ie, any other subspace containing 𝑆 must also contain Span(𝑆)).

Sketch. Use the linearity definition of Span(𝑆) on any other subspace containing 𝑆. □

Definition 4 (Linear Independence). A set 𝑆 ⊆ 𝑉 is linearly independent if there is no

nontrivial linear combinations equal to 0𝑉 ; conversely, 𝑆 is linearly dependent if such a

linear combination exists. Symbolically, letting 𝑆 ..= {𝑣1, . . . , 𝑣𝑛}

𝑆 linearly independent ⇐⇒ (
∑
𝑖

𝑎𝑖𝑣𝑖 = 0 ⇐⇒ 𝑎𝑖 ≡ 0)
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𝑆 linearly dependent ⇐⇒ ∃𝑎′𝑖𝑠, not all zero s.t.
∑
𝑖

𝑎𝑖𝑣𝑖 = 0

Remark 1. Recall the 𝑎𝑖’s from a field, so they have inverses unless equal to zero. A

common proof technique is to assume one is nonzero, hence has an inverse, and derive a

contradiction.

Definition 5 (Maximal Independence). A set 𝑆maximally independent if it is independent,

and �𝑣 ∈ 𝑉 s.t. 𝑆 ∪ {𝑣} still independent.

Theorem 1. For 𝑆 ⊆ 𝑉 , 𝑆 minimally spanning ⇐⇒ 𝑆 linearly independent and spanning

⇐⇒ 𝑆 maximally linearly independent ⇐⇒ every 𝑣 ∈ 𝑉 equals a unique linear combination

of vectors in 𝑆.

Definition 6 (Basis). If any (hence all) of the above requirements holds, we say 𝑆 a basis

for 𝑉 .

Lemma 1 (Steinitz Substitution). Let𝑌 ⊆ 𝑉 be independent and 𝑍 ⊆ 𝑉 (finite) spanning. Then

|𝑌 | ⩽ |𝑍 | and ∃𝑍′ ⊆ 𝑍 : |𝑍′| = |𝑍 | − |𝑌 |, and 𝑌 ∪ 𝑍′ still spanning.

Theorem 2. If 𝑉 admits a finite basis, any two bases are equinumerous.

In such a case, we define dim(𝑉) ..= |𝛽 | for any basis 𝛽 for 𝑉 , and put dim(𝑉) = ∞ if 𝑉 does

not admit a finite basis.

Sketch. Immediate corollary of Steinitz Substitution. □

Corollary 1 (★). For 𝑉 finite dimensional, any independent set 𝐼 can be completed to a basis 𝛽 for

𝑉 such that 𝐼 ⊆ 𝛽.

Remark 2. Other than the general definitions and equivalent notions of a basis, this corol-

lary is certainly the most important from this section, and is used extensively in proofs to

follow.
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3 Linear Transformations

Throughout this section, assume 𝑉,𝑊 are vector spaces and 𝑇, 𝑆 linear

transformations unless specified otherwise.

Definition 7 (Linear Transformation). A function 𝑇 : 𝑉 → 𝑊 is a linear transformation if

it respects the vector space structures, namely 𝑇(𝑎𝑣1 + 𝑣2) = 𝑎𝑇(𝑣1) + 𝑇(𝑣2) for any 𝑎 ∈ F,
𝑣1, 𝑣2 ∈ 𝑉 .

We let 𝐼𝑉 : 𝑉 → 𝑉, 𝑣 ↦→ 𝑣 be the identity transformation. We sometimes call a

transformation from a vector space to itself a linear operator.

Proposition 3. 𝑇(0) = 0

Theorem 3 (★). Linear transformations are completely determined by their effects on a basis; if

𝑇0(𝑣𝑖) = 𝑇1(𝑣𝑖) for every 𝑣𝑖 ∈ 𝛽 for a basis 𝛽 of 𝑉 , then 𝑇0 ≡ 𝑇1.

Sketch. Define a transformation as mapping 𝑣 ..= 𝑎1𝑣1 + · · · + 𝑎𝑛𝑣𝑛 ↦→ 𝑎1𝑤1 + · · · + 𝑎𝑛𝑤𝑛 for

arbitrary 𝑤𝑖 ∈ 𝑊 . Show that this is linear, and uniquely determined. □

Definition 8 (Isomorphism). An isomorphism of vector spaces 𝑉,𝑊 is a linear transfor-

mation 𝑇 : 𝑉 → 𝑊 that admits a linear inverse 𝑇−1. We write 𝑉 � 𝑊 in this case.

Proposition 4. 𝑇 isomorphism ⇐⇒ 𝑇 linear and bĳection.

Theorem 4 (★). If dim(𝑉) = 𝑛, 𝑉 � F𝑛 . Moreover, every 𝑛-dimensional vector spaces are

isomorphic.

Sketch. Define a transformation that maps 𝑣𝑖 ↦→ 𝑒𝑖 where 𝑣𝑖 basis vectors for𝑉 and 𝑒𝑖 basis

vectors for F𝑛 . Show that this is a linear bĳection. □

Definition 9 (Kernel, Image). For 𝑇 : 𝑉 → 𝑊 , and put

Ker(𝑇) ..= {𝑣 ∈ 𝑉 : 𝑇(𝑣) = 0} = 𝑇−1{0} ⊆ 𝑉

Im(𝑇) ..= {𝑇(𝑣) : 𝑣 ∈ 𝑉} = 𝑇(𝑉) ⊆ 𝑊
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Proposition 5. Ker(𝑇), Im(𝑇) subspaces of𝑉 ,𝑊 resp; hence, put nullity(𝑇) ..= dim(Ker(𝑇)), rank(𝑇) ..=

dim(Im(𝑇)).

Proposition 6. For 𝑇 : 𝑉 → 𝑊 and 𝛽 a basis for 𝑉 , 𝑇(𝛽) spans Im(𝑊); hence, 𝑇(𝛽) spans 𝑊

⇐⇒ 𝑇 surjective.

Proposition 7 (★). Let 𝑇 : 𝑉 → 𝑊 ; 𝑇 injective ⇐⇒ Ker(𝑇) = {0} (or, "is trivial") ⇐⇒
𝑇(𝛽) independent for any 𝛽-basis for 𝑉 ⇐⇒ 𝑇(𝛽) independent for some 𝛽-basis for 𝑉 .

Remark 3. The second criterion in particular gives a usually quicker way to check injectivity.

Theorem 5 (★ Dimension Theorem). For dim(𝑉) < ∞, nullity(𝑇) + rank(𝑇) = dim(𝑉)

Sketch. Direct proof follows by constructing a basis for Ker(𝑇), completing it to a basis for

𝑉 , taking 𝑇(𝛽) and noticing the number of redundant vectors.

Alternatively, the first isomorphism theorem gives that 𝑉/Ker(𝑇) � Im(𝑇) and thus

dim(𝑉/Ker(𝑇)) = dim(𝑉) − dim(Ker(𝑇)) = dim(Im(𝑇)) where the second equality needs

some proof. □

Corollary 2. Let dim(𝑉) = dim(𝑊) = 𝑛. Then 𝑇 : 𝑉 → 𝑊 injective ⇐⇒ surjective ⇐⇒
rank(𝑇) = 𝑛.

Theorem 6 (First Isomorphism Theorem). 𝑉/Ker(𝑡) � Im(𝑇)

Definition 10 (Homomorphism Space). Put Hom(𝑉,𝑊) ..= {𝑇 : 𝑉 → 𝑊} for𝑇 linear. This

is a vector space under the natural operations endowed by the linearity of the transforms

themselves, ie (𝑎𝑇1 + 𝑇2)(𝑣) ..= 𝑎 · 𝑇1(𝑣) + 𝑇2(𝑣).

Theorem 7. Let 𝛽, 𝛾 be bases for 𝑉,𝑊 resp. Then {𝑇𝑣,𝑤 : 𝑣 ∈ 𝛽, 𝑤 ∈ 𝛾} where

𝑇𝑣,𝑤(𝑣′) =


𝑤 𝑣′ = 𝑣

0 𝑣′ ≠ 𝑣

a basis for Hom(𝑉,𝑊).
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Corollary 3. dim(Hom(𝑉,𝑊)) = dim(𝑉) · dim(𝑊)

Sketch. A counting game. □

For any discussion of linear transformations represented with matrices, assume 𝑉,𝑊

finite dimensional.

Definition 11 (★Matrix representation of a linear operator). Let dim(𝑉) = 𝑛, dim(𝑊) = 𝑚.

For a basis 𝛽 ..= {𝑣1, . . . , 𝑣𝑛} of 𝑉 and 𝛾 ..= {𝑤1, . . . , 𝑤𝑚} and 𝑇 : 𝑉 → 𝑊 , put

[𝑇]𝛾𝛽 ..=

©­­­­«
| |

[𝑇(𝑣1)]𝛾 · · · [𝑇(𝑣𝑛)]𝛾
| |

ª®®®®¬
∈ 𝑀𝑚×𝑛(F),

where, if 𝑇(𝑣𝑖) = 𝑎1𝑤1 + · · · + 𝑎𝑚𝑤𝑚 , we put [𝑇(𝑣𝑖)]𝛾 =

©­­­­«
𝑎1
...

𝑎𝑛

ª®®®®¬
. We call this the coordinate

vector of 𝑇(𝑣𝑖) in base 𝛾.

Proposition 8. Let 𝑛 = dim(𝑉) and let 𝐼𝛽 : 𝑉 → F𝑛 , 𝑣 ↦→ [𝑣]𝛽. This is an isomorphism.

Theorem 8 (★). Let 𝑇 : 𝑉 → 𝑊 , 𝛽, 𝛾 bases for 𝑉,𝑊 respectively. The following diagram

commutes:
•𝑉 •𝑊

•F𝑛 •F𝑚

𝑇

𝐼𝛽 𝐼𝛾

𝐿[𝑇]𝛾𝛽

ie 𝐼𝛾 ◦ 𝑇 = 𝐿[𝑇]𝛾𝛽
◦ 𝐼𝛽, where 𝐿𝐴(𝑣) ..= 𝐴 · 𝑣.

Moreover, Hom(𝑉,𝑊) → 𝑀𝑚×𝑛(F), 𝑇 ↦→ [𝑇]𝛾𝛽 an isomorphism.

Remark 4. This theorem is quite powerful (and has a pretty diagram): any 𝑚 × 𝑛 matrix

corresponds to a linear transformation between 𝑛- and 𝑚-dimensional spaces, and con-

versely, any such linear transformation can be represented as a matrix. It also allows us to

"be a little clever" with our definitions of matrix operations.
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Definition 12. For 𝐴 ∈ 𝑀𝑚×𝑛 , 𝐵 ∈ 𝑀ℓ×𝑚(F), define 𝐵 · 𝐴 ..= [𝐿𝐵 ◦ 𝐿𝐴].

Corollary 4. Matrix multiplication associative.

Sketch. Indeed, as function composition is. □

Corollary 5. For 𝑇 : 𝑉 → 𝑊 , 𝑆 : 𝑊 → 𝑈 and bases 𝛼, 𝛽, 𝛾 for 𝑉,𝑊,𝑈 resp., [𝑆 ◦ 𝑇]𝛾𝛼 =

[𝑆]𝛾𝛽 · [𝑇]𝛽𝛼

Corollary 6. For 𝐴 ∈ 𝑀𝑛(F), 𝐿𝐴 invertible ⇐⇒ 𝐴 invertible in which case 𝐿−1
𝐴

= 𝐿𝐴−1 .

Definition 13 (𝑇-invariant subspace). Let 𝑇 : 𝑉 → 𝑉 ; 𝑊 ⊆ 𝑉 𝑇-invariant if 𝑇(𝑊) ⊆ 𝑊 .

Proposition 9. Im(𝑇𝑛) 𝑇-invariant for any 𝑛 ∈ N ie 𝑉 ⊇ Im(𝑇) ⊇ Im(𝑇2) ⊇ · · · ⊇ Im(𝑇𝑛) ⊇
· · · .

Similarly, Ker(𝑇𝑛)𝑇-invariant for any 𝑛 ∈ N, ie {0} ⊆ Ker(𝑇) ⊆ Ker(𝑇2) ⊆ · · · ⊆ Ker(𝑇𝑛) ⊆
· · · .

Definition 14 (Nilpotent). 𝑇 : 𝑉 → 𝑉 nilpotent if 𝑇𝑛 = 0 for some 𝑛 ∈ N.

Proposition 10. If 𝑇 : 𝑉 → 𝑉 nilpotent, 𝑇dim(𝑉) = 0.

Sketch. Nilpotent =⇒ ∃𝑘 : 𝑇 𝑘 = 0. If 𝑘 ⩽ dim(𝑉) this is clear. If 𝑘 > dim(𝑉), use

proposition 9. □

Definition 15 (Direct Sum). For 𝑊0,𝑊1 ⊆ 𝑉 , we write 𝑉 = 𝑊0 ⊕𝑊1 if 𝑊0 ∩𝑊1 = {0𝑉} and

𝑉 = 𝑊0 +𝑊1, and say 𝑉 the direct sum of 𝑊0,𝑊1.

Theorem 9 (Fitting’s Lemma). For𝑉 finite dimensional and a linear transformation𝑇 : 𝑉 → 𝑉 ,

we can decompose 𝑉 = 𝑈 ⊕𝑊 such that 𝑈,𝑊 𝑇-invariant, 𝑇𝑈 nilpotent and 𝑇𝑊 an isomorphism.

Sketch. Using proposition 9 and the finite dimensions, remark that ∃𝑁 such that 𝑊 ..=

Im(𝑇𝑁 ) = Im(𝑇𝑁+1) and 𝑈 ..= Ker(𝑇𝑁 ) = Ker(𝑇𝑁+1). Proceed. □

Definition 16 (Dual Space). Let 𝑉∗ ..= Hom(𝑉, F).

Proposition 11. For 𝑉 finite dimensional, dim(𝑉∗) = dim(𝑉); moreover 𝑉∗ � 𝑉 .
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Sketch. Follows directly from the more general corollary 3, or, more instructively, by

considering the dual basis: □

Proposition 12. Let 𝑉 finite dimensional. For a basis 𝛽 ..= {𝑣1, . . . , 𝑣𝑛} for 𝑉 , the dual basis

𝛽∗ ..= { 𝑓1, . . . , 𝑓𝑛}, where 𝑓𝑖(𝑣 𝑗) ..= 𝛿𝑖 𝑗 ..=


1 𝑖 = 𝑗

0 𝑖 ≠ 𝑗

a basis for 𝑉∗.

Definition 17. For each 𝑥 ∈ 𝑉 , define 𝑥̂ ∈ 𝑉∗∗ by 𝑥̂ : 𝑉∗ → F, 𝑥̂( 𝑓 ) ..= 𝑓 (𝑥).
For 𝑆 ⊆ 𝑉 , put 𝑆̂ ..= {𝑥̂ : 𝑥 ∈ 𝑆}.

Theorem 10 (★). 𝑥 ↦→ 𝑥̂, 𝑉 ↦→ 𝑉∗∗ a linear injection, and in particular, an isomorphism if 𝑉

finite dimensional.

Moreover, 𝑉∗∗ = 𝑉̂ .

Sketch. Isomorphism also follows directly from 𝑉∗∗ � 𝑉∗ (being the dual of the dual) and

� being an equivalence relation. □

Definition 18 (Annihilator). For 𝑆 ⊆ 𝑉 a set, 𝑆⊥ ..= { 𝑓 ∈ 𝑉∗ : 𝑓 |𝑆 = 0}.

Proposition 13. 𝑆⊥ a subspace of 𝑉∗, 𝑆1 ⊆ 𝑆2 ⊆ 𝑉 =⇒ 𝑆⊥
1 ⊇ 𝑆⊥

2 .

Theorem 11. If 𝑉 finite dimensional and 𝑈 ⊆ 𝑉 a subspace, (𝑈⊥)⊥ = 𝑈̂ .

Definition 19 (Transpose). For 𝑇 : 𝑉 → 𝑊 , define 𝑇𝑡 : 𝑊 ∗ → 𝑉∗, 𝑔 ↦→ 𝑔 ◦ 𝑇, ie 𝑇𝑡(𝑔)(𝑣) =
𝑔(𝑇(𝑣)).

Proposition 14. (1) 𝑇𝑡 linear, (2) Ker(𝑇𝑡) = (Im(𝑇))⊥, (3) Im(𝑇𝑡) = (Ker(𝑇))⊥, and (4) if 𝑉,𝑊

finite and 𝛽, 𝛾 bases resp, then ([𝑇]𝛾𝛽 )𝑡 = [𝑇𝑡]𝛽
∗

𝛾∗ , where 𝐴𝑡 represents the typical matrix transpose.

Sketch. Remark that (1), (2), (3) hold for infinite dimensional spaces; (2) is fairly clear, but

the converse direction of (3) is a little tricky. (4) is just a pain notationally. □

Theorem 12. Let 𝑉 finite dimensional and 𝑈 ⊆ 𝑉 a subspace. Then (1) dim(𝑈⊥) = dim(𝑉) −
dim(𝑈) and (2) (𝑉/𝑈)∗ � 𝑈⊥ by the map 𝑓 ↦→ 𝑓𝑈 , 𝑓𝑈 : 𝑉 → F, 𝑣 ↦→ 𝑓 (𝑣 +𝑈).

Sketch. For (1), construct a basis for 𝑈 , complete it, then take the basis and "stare". □
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Corollary 7. 𝑇𝑡 injective ⇐⇒ 𝑇 surjective; if 𝑉,𝑊 finite dimensional, 𝑇𝑡 surjective ⇐⇒ 𝑇

injective.

Definition 20 (Matrix Rank, C-Rank, R-Rank). For 𝐴 ∈ 𝑀𝑚×𝑛(F), define rank(𝐴) ..=

rank(𝐿𝐴), c-rank(𝐴) ..= size of maximally independent subset of columns {𝐴(1), . . . , 𝐴(𝑛)},
and r-rank(𝐴) ..= the same definition but for rows.

Proposition 15. rank(𝐴) = c-rank(𝐴) = r-rank(𝐴)

Sketch. First equality should be clear; second follows either from remarking that rank(𝐴) =
rank(𝐴𝑡) = r-rank(𝐴), or by using tools of the next section. □

4 Elementary Matrices; Determinant

Proposition 16. For 𝐴 ∈ 𝑀𝑚×𝑛(F), 𝑏 ∈ Im(𝐿𝐴), the set of solutions to 𝐴®𝑥 = ®𝑏 is precisely the

coset ®𝑣 + Ker(𝐿𝐴) where ®𝑣 ∈ F𝑛 such that 𝐴®𝑣 = ®𝑏.

Proposition 17. If 𝑚 < 𝑛 and 𝐴 ∈ 𝑀𝑚×𝑛(F), there is always a nontrivial solution to 𝐴®𝑥 = ®0.

Definition 21 (Elementary Row/Column Operations). For 𝐴 ∈ 𝑀𝑚×𝑛(F), an elementary

row (column) operation is one of

1. interchanging two rows (columns) of 𝐴

2. multiplying a row (column) by a nonzero scalar

3. adding a scalar multiple of one row (column) to another.

Remark each operation is invertible.

Definition 22 (Elementary Matrix). An elementary matrix 𝐸 ∈ 𝑀𝑛(F) is one obtained from

𝐼𝑛 by a elementary row/column operation.

Proposition 18. Elementary matrices are invertible.
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Proposition 19. Let 𝑇 : 𝑉 → 𝑊, 𝑆 : 𝑊 → 𝑊 and 𝑅 :→ 𝑉 where 𝑉,𝑊 finite dimensional, and

𝑆, 𝑅 invertible. Then rank(𝑆 ◦ 𝑇) = rank(𝑇) = rank(𝑇 ◦ 𝑅).
In the language of matrices, if 𝐴 ∈ 𝑀𝑚×𝑛(F), 𝑃 ∈ GL𝑚(F), 𝑄 ∈ GL𝑛(F), then rank(𝑃𝐴) =

rank(𝐴) = rank(𝐴𝑄).

Proposition 20. For any two bases 𝛼, 𝛽 for 𝑉 , there exists a 𝑄 ∈ GL𝑛(F) such that [𝑇]𝛼𝑄 =

𝑄[𝑇]𝛽.
Conversely, for any 𝑄 ∈ GL𝑛(F), there exists bases 𝛼, 𝛽 for 𝑉 such that 𝑄 = [𝐼]𝛽𝛼.

Corollary 8 (★). Elementary matrices preserve rank.

Sketch. Elementary matrices are invertible by proposition 18, so directly apply proposi-

tion 19. □

Theorem 13 (Diagonal Matrix Form). Every matrix 𝐴 ∈ 𝑀𝑛(F) can be transformed into a

matrix 
𝐼𝑟 0𝑟×(𝑛−𝑟)

0(𝑛−𝑟)×(𝑟) 0(𝑛−𝑟)×(𝑛−𝑟)


via row, column operations. Moreover, rank(𝐴) = 𝑟.

Sketch. By induction. Not very enlightening proof. □

Corollary 9. For each 𝐴 ∈ 𝑀𝑛(F), there exist 𝑃, 𝑄 ∈ GL𝑛(F) such that 𝐵 ..= 𝑃𝐴𝑄 of the form

above.

Corollary 10. Every invertible matrix a product of elementary matrices.

Definition 23 ((r)ref). A matrix is said to be in row echelon form (ref) if

1. All zero rows are at the bottom, ie each nonzero row is above each zero row;

2. The first nonzero entry (called a pivot) of each row is the only nonzero entry in its

column;

3. The pivot of each row appears to the right of the pivot of the previous row.
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If all pivots are 1, then we say that 𝐵 is in reduced row echelon form (rref).

Theorem 14. There exist a sequence of row operations 1., 3., to bring any matrix to ref; there

exists a sequence of row operations of type 2. to bring a ref matrix to rref. We call such operations

"Gaussian elimination".

Theorem 15. Applying Gaussian elimination to the augmented matrix (𝐴|𝑏) → (𝐴̃|𝑏) in rref,

then 𝐴𝑥 = 𝑏 has a solution ⇐⇒ rank(𝐴̃|𝑏) = rank(𝐴̃) = ♯ non-zero rows of 𝐴̃.

Corollary 11. 𝐴𝑥 = 𝑏 ⇐⇒ if (𝐴|𝑏) in ref, there is no pivot in the last column.

Lemma 2. Let 𝐵 be the rref of 𝐴 ∈ 𝑀𝑚×𝑛(F). Then, (1) ♯ non-zero rows of 𝐵 = rank(𝐵) =

rank(𝐴) =: 𝑟, (2) for each 𝑖 = 1, . . . , 𝑟, denoting 𝑗𝑖 the pivot of the 𝑖th row, then 𝐵(𝑗𝑖) = 𝑒𝑖 ∈ F𝑚 ;

moreover, {𝐵(𝑗1), . . . , 𝐵(𝑗𝑟)} linearly independent, and (3) each column of 𝐵 without a pivot is in

the span of the previous columns.

Corollary 12. The rref of a matrix is unique.

Remark 5. See here for a "thorough" derivation of the determinant. It won’t be repeated

here.

Definition 24 (Multilinear). We say a function 𝛿 : 𝑀𝑛(F) → F is multilinear if it is linear

in every row ie

𝛿

©­­­­­­­­­«

®𝑣1
...

𝑐 ®𝑥 + ®𝑦
...

®𝑣𝑛

ª®®®®®®®®®¬
= 𝑐 · 𝛿

©­­­­­­­­­«

®𝑣1
...

𝑐 ®𝑥
...

®𝑣𝑛

ª®®®®®®®®®¬
+ 𝛿

©­­­­­­­­­«

®𝑣1
...

®𝑦
...

®𝑣𝑛

ª®®®®®®®®®¬
Proposition 21. For 𝛿 : 𝑀𝑛(F) → F, if 𝐴 has a zero row, then 𝛿(𝐴) = 0.

Definition 25 (Alternating). A multilinear form 𝛿 : 𝑀𝑛(F) → F called alternating if

𝛿(𝐴) = 0 for any matrix 𝐴 with two equal rows.

Proposition 22. Let 𝛿 : 𝑀𝑛(F) → F be alternating and multilinear; then if 𝐵 obtained from 𝐴 by

swapping two rows 𝛿(𝐵) = −𝛿(𝐴).

11
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Proposition 23. A multilinear 𝛿 : 𝑀𝑛(F) → F is alternating iff 𝛿(𝐴) = 0 for every matrix 𝐴

with two equal consecutive rows.

Proposition 24. If 𝛿 : 𝑀𝑛(F) → F be an alternating multilinear form. Then for 𝐴 ∈ 𝑀𝑛(F),

𝛿(𝐴) =
∑
𝜋∈𝑆𝑛

𝐴1𝜋(1)𝐴2𝜋(2) · · ·𝐴𝑛𝜋(𝑛)𝛿(𝜋𝐼),

where 𝜋𝐼𝑛 ..=

©­­­­«
− 𝑒𝜋(1) −

...

− 𝑒𝜋(𝑛) −

ª®®®®¬
.

Definition 26 (sgn). Denote sgn(𝜋) ..= (−1)♯𝜋 where ♯𝜋 ..= parity of 𝜋 ≡ number of inver-

sions by 𝜋.

Corollary 13. If 𝛿 : 𝑀𝑛(F) → F be an alternative multilinear form. Then for 𝐴 ∈ 𝑀𝑛(F),

𝛿(𝐴) =
∑
𝜋∈𝑆𝑛

sgn(𝜋)𝐴1𝜋(1)𝐴2𝜋(2) · · ·𝐴𝑛𝜋(𝑛)𝛿(𝐼).

Moreover, 𝛿 uniquely determined by its value on 𝐼𝑛 .

Definition 27 (★ Determinant). Let 𝛿 : 𝑀𝑛(F) → F be the unique normalized (𝛿(𝐼𝑛) = 1)

alternating multilinear form, ie det(𝐴) ..=
∑

𝜋∈𝑆𝑛 sgn(𝜋)𝐴1𝜋(1) · · ·𝐴𝑛𝜋(𝑛).

Lemma 3. Let 𝛿 : 𝑀𝑛(F) → F be an alternating multilinear form. Then for any 𝐴 ∈ 𝑀𝑛(F) and

an elementary matrix 𝐸, then 𝛿(𝐸𝐴) = 𝑐 · 𝛿(𝐴) for some non-zero scalar 𝑐.

In particular, if 𝐸 swaps 2 rows, then 𝑐 = −1; if 𝐸 multiplies a row by a scalar 𝑐, 𝑐 = 𝑐; if 𝐸

adds a scalar multiple of one row to another, 𝑐 = 1.

Theorem 16. For 𝐴 ∈ 𝑀𝑛(F), det(𝐴) = 0 ⇐⇒ 𝐴 noninvertible.

Sketch. Follows from lemma 3 by writing 𝐴′ = 𝐸1 · · ·𝐸𝑘𝐴 where 𝐴′ in rref and applying

det. □

Theorem 17. det(𝐴𝐵) = det(𝐴)det(𝐵) for any 𝐴, 𝐵 ∈ 𝑀𝑛(F).
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Sketch. Consider two cases, where 𝐴 either invertible or not. In the former, write 𝐴 as a

product of elementary matrices and apply lemma 3. □

Corollary 14. det
(
𝐴−1) = (det(𝐴))−1 for any 𝐴 ∈ GL𝑛(F).

Corollary 15. det
(
𝐴𝑡

)
= det(𝐴) for any 𝐴 ∈ 𝑀𝑛(F).

5 Diagonalization

Motivation to keep in mind: linear transformations are icky. How can we represent

them more simply on particular subspaces? Namely, scalar multiplication is the

simplest linear transformation (verify that is indeed linear) - can we pick subspaces

such that 𝑇 becomes scalar multiplication on these subspaces?

Definition 28 (Linearly Independent Subspaces). For 𝑉1, . . . , 𝑉𝑘 ⊆ 𝑉 , we say {𝑉1, . . . , 𝑉𝑘}
linearly independent if 𝑉𝑖 ∩

∑
𝑗≠𝑖 𝑉𝑗 = {0𝑉} and call 𝑉1 ⊕ · · · ⊕ 𝑉𝑘 a direct sum.

Definition 29 (Diagnolizable). We say 𝑇 : 𝑉 → 𝑉 is diagnolizable if there exists 𝑉𝑖’s such

that 𝑉 =
⊕𝑘

𝑖=1 𝑉𝑖 and 𝑇 |𝑉𝑖 is multiplication by a fixed scalar 𝜆𝑖 ∈ F.

Definition 30 (Eigenvalue/vector). For a linear operator 𝑇 : 𝑉 → 𝑉 and 𝜆 ∈ F, we call 𝜆

an eigenvalue if there exists a nonzero vector 𝑣 such that 𝑇(𝑣) = 𝜆𝑣; we call such a 𝑣 an

eigenvector.

Remark 6. 𝑣 must be nonzero! This is important for proofs to go forward.

Definition 31 (Eigenspace). For an eigenvalue 𝜆 of 𝑇 : 𝑉 → 𝑉 , let Eig𝑉(𝜆) ..= {𝑣 ∈ 𝑉 :

𝑇𝑣 = 𝜆𝑣} be the eigenspace of 𝑇 corresponding to 𝜆.

Proposition 25. Eig𝑉(𝜆) a subspace of 𝑉 .

Proposition 26. Trace and determinant are conjugation-invariant; ie for 𝐴, 𝐵 ∈ 𝑀𝑛(F), if there

exists 𝑄 ∈ GL𝑛(F) such that 𝐴𝑄 = 𝑄𝐵, tr(𝐴) = tr(𝐵) and det(𝐴) = det(𝐵).
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Definition 32 (Trace, Determinant of Transformation). For 𝑇 : 𝑉 → 𝑉 where 𝑉 finite

dimensional, put tr(𝑇) ..= tr(𝑇) ..= tr
(
[𝑇]𝛽

)
and det(𝑇) ..= det

(
[𝑇]𝛽

)
for some/any basis for

𝑉 .

Remark 7. This is well-defined; [𝑇]𝛼 , [𝑇]𝛽 are conjugate for any two bases 𝛼, 𝛽.

Proposition 27 (★). 𝑇 diagonalizable ⇐⇒ there exists a basis 𝛽 for 𝑉 such that [𝑇]𝛽𝛽 diagonal

⇐⇒ there is a basis for 𝑉 consisting of eigenvectors for 𝑇

Proposition 28. 𝐴 diagonalizable iff ∃𝑄 ∈ GL𝑛(F) such that 𝑄−1𝐴𝑄 diagonal, with the columns

of 𝑄 eigenvectors of 𝐴.

Proposition 29. (1) 𝑣 ∈ 𝑉 an eigenvector of 𝑇 with eigenvalue 𝜆 ⇐⇒ ∈ Ker(𝜆𝐼 −𝑇), (2) 𝜆 ∈ F
an eigenvalue ⇐⇒ 𝜆𝐼 − 𝑇 not invertible ⇐⇒ det(𝜆𝐼 − 𝑇) = 0.

Definition 33 (Characteristic polynomial). For 𝑇 : 𝑉 → 𝑉 , put 𝑝𝑇(𝑡) = det(𝑡𝐼𝑉 − 𝑇). For

𝐴 ∈ 𝑀𝑛(F), put 𝑝𝐴(𝑡) ..= det(𝑡𝐼𝑛 − 𝐴).

Proposition 30 (★). 𝑝𝑇(𝑡) = 𝑡𝑛 − tr(𝑇)𝑡𝑛−1 + · · · + (−1)𝑛 det(𝑇), ie 𝑝𝑇 a polynomial of degree 𝑛

and · · · some polynomials of degree 𝑛 − 2.

Corollary 16. 𝑇 : 𝑉 → 𝑉 has at most 𝑛 distinct eigenvalues.

Proposition 31. For eigenvalues𝜆1, . . . ,𝜆𝑘 and corresponding eigenvectors 𝑣1, . . . , 𝑣𝑘 , {𝑣1, . . . , 𝑣𝑘}
linearly independent. Moreover, the eigenspaces Eig𝑇(𝜆𝑖) are linearly independent.

Definition 34 (Geometric, Algebraic Multiplicity). For an eigenvalue 𝜆 of 𝑇 : 𝑉 → 𝑉 , put

𝑚𝑔(𝜆) ..= dim(Eig𝑇(𝜆))

and call it the geometric multiplicity of 𝜆, and

𝑚𝑎(𝜆) ..= max{𝑘 ⩾ 1 : (𝑡 − 𝜆)𝑘 |𝑝𝑇(𝑡)}

and call it the algebraic multiplicity of 𝑇.
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Proposition 32. If 𝑇 : 𝑉 → 𝑉 has eigenvalues 𝜆1, . . . ,𝜆𝑘 ,
∑𝑘

𝑖=1 𝑚𝑔(𝜆𝑖) ⩽ 𝑛; moreover,∑𝑘
𝑖=1 𝑚𝑔(𝜆𝑖) = 𝑛 ⇐⇒ 𝑇 diagonalizable.

Proposition 33. 𝑚𝑔(𝜆) ⩽ 𝑚𝑎(𝜆) for any 𝜆.

Sketch. To prove this, you need to use the fact that the characteristic polynomial of 𝑇

restricted to any 𝑇-invariant subspace of 𝑉 divides the characteristic polynomial of 𝑇. □

Definition 35. A polynomial 𝑝(𝑡) ∈ F[𝑡] splits over F if 𝑝(𝑡) = 𝑎(𝑡 − 𝑟1) · · · (𝑡 − 𝑟𝑛) for some

𝑎 ∈ F, 𝑟𝑖 ∈ F.

Remark 8. For an eigenvalue 𝜆 of 𝑇 : 𝑉 → 𝑉 ,
∑𝑘

𝑖=1 𝑚𝑎(𝜆𝑖) = 𝑛

Theorem 18 (★ Main Criterion of Diagonalizability). 𝑇 diagonalizable iff 𝑝𝑇(𝑡) splits and

𝑚𝑔(𝜆) = 𝑚𝑎(𝜆) for each eigenvalue 𝜆 of 𝑇.

Definition 36 (𝑇-cyclic subspace). For 𝑇 : 𝑉 → 𝑉 and any 𝑣 ∈ 𝑉 , the 𝑇-cyclic subspace

generated by 𝑣 is the space Span({𝑇𝑛(𝑣) : 𝑣 ∈ N}).

Lemma 4. For 𝑉 finite dimensional, let 𝑣 ∈ 𝑉 and 𝑊 ..= 𝑇-cyclic subspace generated by 𝑣. Then

(1) {𝑣, 𝑇(𝑣), . . . , 𝑇 𝑘−1(𝑣)} is a basis for 𝑊 where 𝑘 ..= dim(𝑊) and (2) if 𝑇 𝑘(𝑣) = 𝑎0𝑣 + 𝑎1𝑇(𝑣) +
· · · + 𝑎𝑘−1𝑇

𝑘−1(𝑣), then 𝑝𝑇𝑊 (𝑡) = 𝑡𝑘 − 𝑎𝑘−1𝑡
𝑘−1 − · · · − 𝑎1𝑡 − 𝑎0.

Sketch. For (2), write down [𝑇𝑊 ]𝛽 where 𝛽 as in part (1). □

Theorem 19 (★Cayley-Hamilton). 𝑇 satisfies its own characteristic polynomial, namely 𝑝𝑇(𝑇) ≡
0.

6 Inner Product Spaces

All vector spaces in this section should be assumed to be inner product spaces, and all

fields F ∈ {C,R}.

Definition 37 (Inner Product). A function ⟨., .⟩ : 𝑉 × 𝑉 → F is called an inner product if

for 𝑢, 𝑣, 𝑤 ∈ 𝑉 , 𝛼 ∈ F,
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• ⟨𝑣 + 𝑤, 𝑢⟩ = ⟨𝑣, 𝑢⟩ + ⟨𝑤, 𝑢⟩

• ⟨𝛼𝑢, 𝑣⟩ = 𝛼⟨𝑢, 𝑣⟩

• ⟨𝑢, 𝑣⟩ = ⟨𝑣, 𝑢⟩

• ⟨𝑢, 𝑢⟩ ⩾ 0 and ⟨𝑢, 𝑢⟩ = 0 ⇐⇒ 𝑢 = 0.

We call 𝑉 equipped with such a function an inner product space. Given an inner product,

we can define an associated norm | |𝑣 | | ..=
√
⟨𝑣, 𝑣⟩, 𝑣 ∈ 𝑉 , and call vectors 𝑢 such that | |𝑢 | |

unit; any vector can be "normalized" to a unit by 𝑣̃ ..= | |𝑣 | |−1 · 𝑣.

Remark 9. Requirement 3 also gives us that ⟨𝑢, 𝑢⟩ always real.

Proposition 34 (Properties of Inner Products). For 𝑢, 𝑣, 𝑤 ∈ 𝑉 , 𝛼 ∈ F, ⟨𝑢, 𝑣 + 𝑤⟩ =

⟨𝑢, 𝑣⟩ + ⟨𝑢, 𝑤⟩, ⟨𝑢, 𝛼𝑣⟩ = 𝛼⟨𝑢, 𝑣⟩, | |𝛼𝑣 | | = |𝛼 | | |𝑣 | |, and ⟨𝑣, 0𝑉⟩ = ⟨0𝑉 , 𝑣⟩ = 0.

Definition 38 (Orthogonal). 𝑢, 𝑣 ∈ 𝑉 orthogonal if ⟨𝑢, 𝑣⟩ = 0; we write 𝑢 ⊥ 𝑣.

We say a set 𝑆 ⊆ 𝑉 orthogonal if vectors in 𝑆 are pair-wise orthogonal, and if in

addition each are units, we say 𝑆 orthonormal.

We say a set 𝑆 ⊆ 𝑉 orthogonal to a vector 𝑣 ∈ 𝑉 if 𝑣 ⊥ 𝑠 ∀ 𝑠 ∈ 𝑆.

Theorem 20 (Pythagorean). If 𝑢 ⊥ 𝑣, then | |𝑢 | |2 + ||𝑣 | |2 = | |𝑢+ 𝑣 | |2; in particular | |𝑢 | |, | |𝑣 | | ⩽
| |𝑢 + 𝑣 | |.

Definition 39. For 𝑢 a unit, put proj𝑢(𝑣) ..= ⟨𝑣, 𝑢⟩ · 𝑢.

Proposition 35. For any 𝑣 ∈ 𝑉, 𝑢-unit, 𝑣 − proj𝑢(𝑣) ⊥ 𝑢.

Proposition 36. For any 𝑥, 𝑦 ∈ 𝑉 , |⟨𝑥, 𝑦⟩| ⩽ | |𝑥 | | | |𝑦 | | and | |𝑥 + 𝑦 | | ⩽ | |𝑥 | | + ||𝑦 | |.

Proposition 37. Sets of orthonormal vectors are linearly independent. In particular, if dim(𝑉) = 𝑛

and 𝛽 ..= {𝑢1, . . . , 𝑢𝑛} an orthonormal set, 𝛽 forms a basis for 𝑉 , and for any 𝑣 ∈ 𝛽,

𝑣 = ⟨𝑣, 𝑢1⟩𝑢1 + · · · + ⟨𝑣, 𝑢𝑛⟩𝑢𝑛 = proj𝑢1
(𝑣) + · · · + proj𝑢𝑛 (𝑣).
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Proposition 38. 𝑣 ⊥ 𝑉 ⇐⇒ 𝑣 = 0𝑉 .

Theorem 21 (Gram-Schmidt). Every finite-dimensional vector space has an orthonormal basis.

One can be constructed "inductively" by starting with a basis 𝛽 ..= {𝑣1, . . . , 𝑣𝑛} for 𝑉 .

• (Base) set 𝑢1 ..= | |𝑣1 | |−1𝑣1; put 𝛼 ..= {𝑢1}.

• (Step) given 𝛼 ..= {𝑢1, . . . , 𝑢𝑘−1} a set of orthonormal vectors, set

𝑢̃𝑘
..= 𝑣𝑘 − proj𝛼(𝑣𝑘) = 𝑣𝑘 −

𝑘−1∑
𝑖=1

⟨𝑣𝑘 , 𝑢𝑖⟩𝑢𝑖 .

and normalize 𝑢𝑘
..= | |𝑢̃𝑘 | |−1 · 𝑢𝑘 , and let 𝛼 ..= 𝛼 ∪ {𝑢𝑘}.

• Repeat (Step) until 𝑘 = 𝑛.

Definition 40 (Orthogonal Complement). For 𝑆 ⊆ 𝑉 , put 𝑆⊥ ..= {𝑣 ∈ 𝑉 : 𝑣 ⊥ 𝑆}. Remark

that 𝑆⊥ a subspace regardless if 𝑆 is.

Theorem 22. Let 𝑊 ⊆ 𝑉 be a finite dimensional subspace.

(a) For 𝑣 ∈ 𝑉 , there exists a unique decomposition 𝑣 = 𝑤 + 𝑤⊥ such that 𝑤 ∈ 𝑊,𝑤⊥ ∈ 𝑊⊥.

We put proj𝑊 (𝑣) ..= 𝑤.

(b) 𝑉 = 𝑊 ⊕𝑊⊥.

Corollary 17. If 𝛼 ≠ 𝛽 two different orthonormal bases for 𝑊 , proj𝛼(𝑣) = proj𝛽(𝑣) ∀ 𝑣 ∈ 𝑉 .

Theorem 23. Putting 𝑑(𝑥, 𝑦) ..= | |𝑥 − 𝑦 | |, 𝑥, 𝑦 ∈ 𝑉 and letting 𝑊 ⊆ 𝑉-finite subspace, then

𝑑(𝑣, proj𝑊 (𝑣)) ⩽ 𝑑(𝑣, 𝑤) for any 𝑤 ∈ 𝑊 , that is, proj𝑊 (𝑣) is the closest vector to 𝑉 in 𝑊 ; it is

also unique.

Corollary 18. For 𝑊 ⊆ 𝑉-finite subspace, (𝑊⊥)⊥ = 𝑊 .

For the remainder of the notes, assume 𝑉 finite dimensional.
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Theorem 24 (Riesz Representation). For 𝑉-finite dimensional, then for every 𝑓 ∈ 𝑉∗ there

exists a unique 𝑤 ∈ 𝑉 such that 𝑓 = 𝑓𝑤 where 𝑓𝑤(𝑣) ..= ⟨𝑣, 𝑤⟩, 𝑣 ∈ 𝑉 . Ie, 𝑤 ↦→ 𝑓𝑤 a linear

isomorphism between 𝑉 ↦→ 𝑉∗.

Remark 10. Its helpful to recall what exactly 𝑤 looks like; namely, if {𝑢1, . . . , 𝑢𝑛} an or-

thonormal basis for 𝑉 , then 𝑤 = 𝑓 (𝑢1)𝑢1 + · · · + 𝑓 (𝑢𝑛)𝑢𝑛 .

Theorem 25 (Adjoint). Let 𝑇 : 𝑉 → 𝑉 , then, there exists a unique 𝑇∗ : 𝑉 → 𝑉 called the adjoint

of 𝑇 such that ⟨𝑇𝑣, 𝑤⟩ = ⟨𝑣, 𝑇∗𝑤⟩ for any 𝑣, 𝑤 ∈ 𝑉 .

Remark 11. This proof relies heavily on Riesz.

Proposition 39. For 𝑇 : 𝑉 → 𝑉 and 𝛽 orthonormal basis for 𝑉 , [𝑇∗]𝛽 = [𝑇]∗𝛽 (where 𝐴∗ ..= 𝐴𝑡

for 𝐴 ∈ 𝑀𝑛(F)).

Proposition 40 (Adjoint Properties). (a) 𝑇 ↦→ 𝑇∗ : hom(𝑉,𝑉) → hom(𝑉,𝑉) conjugate

linear.

(b) (𝑇1 ◦ 𝑇2)∗ = 𝑇∗
2 ◦ 𝑇∗

1 .

(c) 𝐼∗
𝑉
= 𝐼𝑉 .

(d) (𝑇∗)∗ = 𝑇.

(e) 𝑇 invertible =⇒ 𝑇∗ invertible with (𝑇∗)−1 = (𝑇−1)∗.

Proposition 41 (Kernel, Image of Adjoint). Im(𝑇∗)⊥ = Ker(𝑇) and Ker(𝑇∗) = Im(𝑇)⊥. Thus,

rank(𝑇) = rank(𝑇∗), nullity(𝑇) = nullity(𝑇∗).

Remark 12. To prove the second equality, apply the first to 𝑇∗∗.

Corollary 19. 𝜆 an eigenvalue of 𝑇 iff 𝜆 an eigenvalue of 𝑇∗.

Lemma 5 (Schur’s). Let 𝑇 : 𝑉 → 𝑉 such that 𝑝𝑇(𝑡) splits. Then there is an orthonormal basis 𝛽

for 𝑉 such that [𝑇]𝛽 upper triangular.
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Definition 41 (Normality). We call 𝑇 : 𝑉 → 𝑉 normal if 𝑇 ◦ 𝑇∗ = 𝑇∗ ◦ 𝑇 (𝑇, 𝑇∗ commute)

and self-adjoint 𝑇 = 𝑇∗.

Remark self-adjoint =⇒ normal, but not the converse; discussion of normal operators

applies to self-adjoint.

Proposition 42 (Properties of Normal Operators). For 𝑇 : 𝑉 → 𝑉 ,

(a) | |𝑇𝑣 | | = | |𝑇∗𝑣 | |.

(b) 𝑇 − 𝑎𝐼𝑉 is normal; moreover 𝑝(𝑇) for any polynomial 𝑝 normal.

(c) 𝑣 an eigenvector of𝑇 corresponding to an eigenvalue𝜆 iff 𝑣 an eigenvector of𝑇∗ corresponding

to 𝜆.

(d) For distinct 𝜆1 ≠ 𝜆2 eigenvalues Eig𝑇(𝜆1) ⊥ Eig𝑇(𝜆2).

Theorem 26 (★ Diagonalizability of Normal Operators over C). Let 𝑇 : 𝑉 → 𝑉 over C.

Then 𝑇 is normal iff there is an orthonormal eigenbasis for 𝑇.

Lemma 6. Eigenvalues of self-adjoint operators are always real.

Lemma 7. Characteristic polynomials of real symmetric matrices split over R. Moreover, if 𝑇

self-adjoint, 𝑝𝑇(𝑡) splits over R.

Theorem 27 (★ Diagonalizability of Self-Adjoint Operators over R). 𝑇 : 𝑉 → 𝑉 over R

self-adjoint iff there is an orthonormal eigenbasis for 𝑇.

Theorem 28 (★ Spectral Theorem). Let 𝑇 : 𝑉 → 𝑉 be self-adjoint if F = R and normal if

F = C. Then 𝑇 admits a unique spectral decomposition

𝑇 = 𝜆1𝑃1 + · · · + 𝜆𝑘𝑃𝑘 ,

where the 𝑃𝑖’s orthogonal projections, 𝐼𝑉 = 𝑃1+· · ·+𝑃𝑘 , and 𝑃𝑖 ◦𝑃𝑗 = 𝛿𝑖 𝑗𝑃𝑗 (ie,𝑉 =
⊕𝑘

𝑖=1 Im(𝑃𝑖)
and Im(𝑃𝑖) ⊥ Im(𝑃𝑗), 𝑖 ≠ 𝑗).
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