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1 NoTATION

F denotes an arbitrary field; in section 6 we will restrict F to either R or C. Upper case
U,V,W will typically denote vector spaces, lower case Greek letters «, , y bases, and
lower case a, b, ¢ scalars from F. A subscript (eg I, Or) denote "where" an element comes
from (eg identity on V/, zero on F), but will often be omitted.

M,x,(F) :== {m X n matrices with entries in F}; if m = n we denote M, (F). GL,(F) :=
{A € M,,(F) : A invertible } € M,,(F).

F[t], = {ao + a1t +--- + a,t" : a; € F}.

Important (purely subjectively) results are highlighted with * for their use in proofs

and other results.
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2 VECTOR SPACES, LINEAR RELATIONS

Definition 1 (Vector Space). A vector space V defined over a field Fis an abelian group with
respect to an addition operation + with identity element 0 = Oy, and with an additional

scalar multiplication from the field such that for u,v € Vand a,b € F,
1. 1-v =v;1 € F (identity)
2. a-(b-v)=(a-p)v (associativity of multiplication)
3. (a + b)v = av + bo (distribution of scalar addition over scalar multiplication)

4. a(u +v) = au + av (distribution of scalar multiplication over vector addition)
To follow, unless otherwise specified, take V' to be an arbitrary vector space.
Proposition 1. Op- 0 =0y; -1-v =-v;a-0y =0y, a € F.

Definition 2 (Subspace). W C V, such that W nonempty and W closed under vector

addition and scalar multiplication.

Definition 3 (Linear Combination, Span, Spanning Sets). A linear combination of vectors
v; € S for some set S C V is a summation a1vq + - - - + a, v, for scalars a; € F.

Define Span({v1, ..., v,}) == {mv1 + - - + a,v, : a; € F}.

We say a set S spans V if Span(S) = V; we say S minimally spanning if v € S : S\ {v}
spanning.
Proposition 2. For any set S C V, Span(S) is a subspace, and moreover the smallest subspace

containing S (ie, any other subspace containing S must also contain Span(S)).
Sketch. Use the linearity definition of Span(S) on any other subspace containing S. O

Definition 4 (Linear Independence). A set S C V is linearly independent if there is no
nontrivial linear combinations equal to Oy; conversely, S is linearly dependent if such a

linear combination exists. Symbolically, letting S := {v1,...,v,}
S linearly independent <= (Z a;jv;i =0 < a;=0)
i
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S linearly dependent <= Ha;s, not all zero s.t. Z a;0; =0
i

Remark 1. Recall the a;’s from a field, so they have inverses unless equal to zero. A
common proof technique is to assume one is nonzero, hence has an inverse, and derive a

contradiction.

Definition 5 (Maximal Independence). A set S maximally independentifitisindependent,

and v € V s.t. S U {v} still independent.

Theorem 1. For S C V, S minimally spanning <= S linearly independent and spanning
&= S maximally linearly independent <= every v € V equals a unique linear combination

of vectors in S.

Definition 6 (Basis). If any (hence all) of the above requirements holds, we say S a basis

for V.

Lemma 1 (Steinitz Substitution). Let Y C V be independent and Z C V (finite) spanning. Then
Y| < |Z|and 32" C Z : |Z'| = |Z| = |Y|, and Y U Z’ still spanning.

Theorem 2. If V admits a finite basis, any two bases are equinumerous.
In such a case, we define diim(V') := |B| for any basis B for V, and put dim(V') = oo if V does

not admit a finite basis.
Sketch. Immediate corollary of Steinitz Substitution. O

Corollary 1 (x). For V finite dimensional, any independent set I can be completed to a basis p for

V such that I C B.

Remark 2. Other than the general definitions and equivalent notions of a basis, this corol-
lary is certainly the most important from this section, and is used extensively in proofs to

follow.



3 LiNEAR TRANSFORMATIONS

Throughout this section, assume V, W are vector spaces and T, S linear

transformations unless specified otherwise.

Definition 7 (Linear Transformation). A function T : V — W is a linear transformation if
it respects the vector space structures, namely T(avy + v2) = aT(v1) + T(v2) for any a € F,
v1,0p € V.

Welet Iy : V — V,v +— v be the identity transformation. We sometimes call a

transformation from a vector space to itself a linear operator.
Proposition 3. T(0) =0

Theorem 3 (x). Linear transformations are completely determined by their effects on a basis; if

To(vi) = Th(v;) for every v; € B for a basis B of V, then Ty = Tj.

Sketch. Define a transformation as mapping v := 4101 +-- -+ 4,0, = aqwy +- - - + a,wy, for

arbitrary w; € W. Show that this is linear, and uniquely determined. O

Definition 8 (Isomorphism). An isomorphism of vector spaces V, W is a linear transfor-

mation T : V — W that admits a linear inverse T~!. We write V = W in this case.
Proposition 4. T isomorphism <= T linear and bijection.

Theorem 4 (x). If dim(V) = n, V = F". Moreover, every n-dimensional vector spaces are

isomorphic.

Sketch. Define a transformation that maps v; +— e; where v; basis vectors for V and e; basis

vectors for F". Show that this is a linear bijection. O
Definition 9 (Kernel, Image). For T : V — W, and put
Ker(T) ={v e V:T(v) =0} =T {0} CV
Im(T) ={T(v):veV}=T(V)CW
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Proposition 5. Ker(T'), Im(T) subspaces of V, W resp; hence, put nullity(T) := dim(Ker(T)), rank(T) :=
dim(Im(T)).

Proposition 6. For T : V.— W and f a basis for V, T(B) spans Im(W); hence, T(B) spans W

&= T surjective.

Proposition 7 (x). Let T : V. — W; T injective <= Ker(T) = {0} (or, "is trivial")
T(B) independent for any B-basis for V. <= T(B) independent for some B-basis for V.

Remark 3. The second criterion in particular gives a usually quicker way to check injectivity.
Theorem 5 (x Dimension Theorem). For dim(V) < oo, nullity(T) + rank(T) = dim(V)

Sketch. Direct proof follows by constructing a basis for Ker(T'), completing it to a basis for
V, taking T(p) and noticing the number of redundant vectors.

Alternatively, the first isomorphism theorem gives that V /Ker(T) = Im(T) and thus
dim(V /Ker(T)) = dim(V) — dim(Ker(T)) = dim(Im(T)) where the second equality needs

some proof. O

Corollary 2. Let dim(V) = dim(W) = n. Then T : V — W injective <= surjective =

rank(T) = n.
Theorem 6 (First Isomorphism Theorem). V /Ker(t) = Im(T)

Definition 10 (Homomorphism Space). Put Hom(V, W) := {T : V. — W} for T linear. This
is a vector space under the natural operations endowed by the linearity of the transforms

themselves, ie (aT; + T3)(v) == a - T1(v) + To(v).

Theorem 7. Let 8, y be bases for V, W resp. Then {T,,, : v € B, w € y} where

/

Tow(®) =
0 v #v

a basis for Hom(V, W).



Corollary 3. dim(Hom(V, W)) = dim(V) - dim(W)
Sketch. A counting game. m|

For any discussion of linear transformations represented with matrices, assume V, W

finite dimensional.

Definition 11 (* Matrix representation of a linear operator). Let dim(V) = n, dim(W) = m.

Forabasis = {v1,...,vp}of Vand y .= {wy,...,wy}and T : V — W, put

[T])F; =Tl -+ [T(oa)ly | € Miuxn(F),
| |
ai
where, if T(v;) = a1w1 +- -+ + ayw;,, weput [T(v;)], =| : | We call this the coordinate
an

vector of T'(v;) in base .
Proposition 8. Let n = dim(V) and let I : V. — F", v + [v]g. This is an isomorphism.

Theorem 8 (x). Let T : V. — W, B,y bases for V,W respectively. The following diagram

commautes:
oV —)T oV
Iﬁ\L l/l},
oF" —__3% oF™
(r1y

B
iel,oT = L[T]E o Ig, where La(v) == A - v.

Moreover, Hom(V , W) — M;;x,,(F), T — [T]g an isomorphism.

Remark 4. This theorem is quite powerful (and has a pretty diagram): any m X n matrix
corresponds to a linear transformation between 7n- and m-dimensional spaces, and con-
versely, any such linear transformation can be represented as a matrix. It also allows us to

"be a little clever" with our definitions of matrix operations.
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Definition 12. For A € M,;x,,, B € Myx;;(F), define B+ A := [Lg o L4].

Corollary 4. Matrix multiplication associative.

Sketch. Indeed, as function composition is. m]
Corollary 5. For T : V. — W, S : W — U and bases &, f,y for V,W, U resp., [S o T]; =
[S1} - [T

Corollary 6. For A € M, (F), La invertible <= A invertible in which case L;xl = L.

Definition 13 (T-invariant subspace). LetT : V — V; W C V T-invariant if T(W) C W.

Proposition 9. Im(T") T-invariant for any n € Nie V 2 Im(T) 2 Im(T?) 2 --- 2 Im(T") 2

Similarly, Ker(T") T-invariant foranyn € N, ie {0} € Ker(T) € Ker(T?) C --- C Ker(T") C

Definition 14 (Nilpotent). T : V — V nilpotent if T" = 0 for some n € N.
Proposition 10. If T : V — V nilpotent, T%™") = 0,

Sketch. Nilpotent = 3k : TF = 0. If k < dim(V) this is clear. If k > dim(V), use

proposition 9. |

Definition 15 (Direct Sum). For Wy, W; C V, we write V = Wy & Wy if Wy NW; = {0y} and
V =Wy + Wy, and say V the direct sum of Wy, Wj.

Theorem 9 (Fitting’s Lemma). For V finite dimensional and a linear transformationT : V — V,

we can decompose V- = U & W such that U, W T-invariant, Ty; nilpotent and Tyy an isomorphism.

Sketch. Using proposition 9 and the finite dimensions, remark that IN such that W :=
Im(TN) = Im(TN*1) and U = Ker(TN) = Ker(TN*1). Proceed. O

Definition 16 (Dual Space). Let V* := Hom(V, F).
Proposition 11. For V finite dimensional, dim(V*) = dim(V'); moreover V* = V.
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Sketch. Follows directly from the more general corollary 3, or, more instructively, by

considering the dual basis: m|

Proposition 12. Let V finite dimensional. For a basis p .= {v1,...,v,} for V, the dual basis
1 =7
B ={f1,..., fu}, where fi(v;) = 0;j = a basis for V*.
0 i#j
Definition 17. For each x € V, define X € V* by £ : V* = F, 2(f) = f(x).
For S QV,put§:: {X:x €S}

Theorem 10 (). x — X, V +— V™ a linear injection, and in particular, an isomorphism if V
finite dimensional.

Moreover, V** =V,

Sketch. Isomorphism also follows directly from V** = V* (being the dual of the dual) and

= being an equivalence relation. O
Definition 18 (Annihilator). For S C V aset, S+ :={f e V*: f|s = 0}.

Proposition 13. S* a subspace of V*,S1 €S, CV = 57 2S5

Theorem 11. If V finite dimensional and U C V a subspace, (U+)*+ = U,

Definition 19 (Transpose). For T : V — W, define T! : W* > V*, ¢ ¢oT,ie T'(g)(v) =
8(T(v)).

Proposition 14. (1) T' linear, (2) Ker(T') = (Im(T))*, (3) Im(T*) = (Ker(T))*, and (4) if V, W
finite and f, y bases resp, then ([T]g)t = [Tt]ii, where A' represents the typical matrix transpose.

Sketch. Remark that (1), (2), (3) hold for infinite dimensional spaces; (2) is fairly clear, but

the converse direction of (3) is a little tricky. (4) is just a pain notationally. O

Theorem 12. Let V finite dimensional and U C 'V a subspace. Then (1) dim(U*) = dim(V) —
dim(U) and (2) (V/U)* = U+ by themap f — fu, fu:V = F,v - f(v+U).

Sketch. For (1), construct a basis for U, complete it, then take the basis and "stare". O
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Corollary 7. T! injective &< T surjective; if V, W finite dimensional, T' surjective &= T

injective.

Definition 20 (Matrix Rank, C-Rank, R-Rank). For A € M;,x,(F), define rank(A) :=
rank(L4), c-rank(A) := size of maximally independent subset of columns (A, .., AW},

and r-rank(A) := the same definition but for rows.
Proposition 15. rank(A) = c-rank(A) = r-rank(A)

Sketch. First equality should be clear; second follows either from remarking that rank(A) =

rank(A’) = r-rank(A), or by using tools of the next section. O

4 ELEMENTARY MATRICES; DETERMINANT

Proposition 16. For A € My,x,(F),b € Im(L,), the set of solutions to AX = b is precisely the

coset 3 + Ker(L) where 3 € F" such that A = b.
Proposition 17. If m < n and A € Myxy(F), there is always a nontrivial solution to AX = 0.

Definition 21 (Elementary Row/Column Operations). For A € M,,x,(F), an elementary

row (column) operation is one of

1. interchanging two rows (columns) of A

2. multiplying a row (column) by a nonzero scalar

3. adding a scalar multiple of one row (column) to another.
Remark each operation is invertible.

Definition 22 (Elementary Matrix). An elementary matrix E € M, (F) is one obtained from

I, by a elementary row /column operation.

Proposition 18. Elementary matrices are invertible.



Proposition19. LetT : V — W,S: W — Wand R :— V where V, W finite dimensional, and
S, R invertible. Then rank(S o T) = rank(T) = rank(T o R).

In the language of matrices, if A € Myxn(F), P € GL,,(F), Q € GL,(F), then rank(PA) =
rank(A) = rank(AQ).

Proposition 20. For any two bases a,  for V, there exists a Q € GL,(F) such that [T],Q =

QIT]p.
Conversely, for any Q € GL,(F), there exists bases e, p for V such that Q = [I ]ﬁ.

Corollary 8 (x). Elementary matrices preserve rank.

Sketch. Elementary matrices are invertible by proposition 18, so directly apply proposi-

tion 19. O

Theorem 13 (Diagonal Matrix Form). Every matrix A € M, (F) can be transformed into a
matrix
I, 0rx(rn-r)
O-rx(r) Ou=r)x(n-r)

via row, column operations. Moreover, rank(A) = r.
Sketch. By induction. Not very enlightening proof. O

Corollary 9. For each A € M, (F), there exist P,Q € GL,(F) such that B := PAQ of the form

above.
Corollary 10. Every invertible matrix a product of elementary matrices.
Definition 23 ((r)ref). A matrix is said to be in row echelon form (ref) if
1. All zero rows are at the bottom, ie each nonzero row is above each zero row;

2. The first nonzero entry (called a pivot) of each row is the only nonzero entry in its

column;

3. The pivot of each row appears to the right of the pivot of the previous row.
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If all pivots are 1, then we say that B is in reduced row echelon form (rref).

Theorem 14. There exist a sequence of row operations 1., 3., to bring any matrix to ref; there
exists a sequence of row operations of type 2. to bring a ref matrix to rref. We call such operations

"Gaussian elimination”.

Theorem 15. Applying Gaussian elimination to the augmented matrix (A|b) — (A|b) in rref,

then Ax = b has a solution <= rank(A|b) = rank(A) = § non-zero rows of A.
Corollary 11. Ax =b <= if (A|b) in ref, there is no pivot in the last column.

Lemma 2. Let B be the rref of A € Myxn(F). Then, (1) § non-zero rows of B = rank(B) =
rank(A) =: 7, (2) foreach i = 1,...,r, denoting j; the pivot of the ith row, then BU) = ¢; € F™;
moreover, {BU, ..., BUDY linearly independent, and (3) each column of B without a pivot is in

the span of the previous columns.
Corollary 12. The rref of a matrix is unique.

Remark 5. See here for a "thorough" derivation of the determinant. It won't be repeated

here.

Definition 24 (Multilinear). We say a function 6 : M, (F) — F is multilinear if it is linear

in every row ie

— — —

On On On

Proposition 21. For 6 : M,(F) — F, if A has a zero row, then 6(A) = 0.

Definition 25 (Alternating). A multilinear form 6 : M,(F) — F called alternating if

0(A) = 0 for any matrix A with two equal rows.

Proposition 22. Let 6 : M, (F) — F be alternating and multilinear; then if B obtained from A by
swapping two rows 6(B) = —0(A).
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Proposition 23. A multilinear 6 : M,,(F) — F is alternating iff 6(A) = 0 for every matrix A

with two equal consecutive rows.

Proposition 24. If 6 : M, (F) — F be an alternating multilinear form. Then for A € M,(F),

0(A) = Z Air(1)A2r2) * * * Anr(m)O(tl),

TES,

— 67'((1) —

where 11, :=
€n(n)

Definition 26 (sgn). Denote sgn(m) = (-1)¥ where #7 = parity of 7 = number of inver-

sions by 7.
Corollary 13. If 6 : M, (F) — F be an alternative multilinear form. Then for A € M, (F),

0(A) = Z sgn(1) A1) A2 (2) * * * Anr(n)0I).

neSy,
Moreover, 6 uniquely determined by its value on I,,.

Definition 27 (*x Determinant). Let 6 : M,(F) — F be the unique normalized (6(I,) = 1)

alternating multilinear form, ie det(A) = > cs sgn(m)Aix1) -+ * Ann(n)-

Lemma 3. Let 0 : M,,(F) — F be an alternating multilinear form. Then for any A € M, (F) and
an elementary matrix E, then 5(EA) = c - 6(A) for some non-zero scalar c.
In particular, if E swaps 2 rows, then ¢ = =1; if E multiplies a row by a scalar c, ¢ = c; if E

adds a scalar multiple of one row to another, c = 1.
Theorem 16. For A € M, (F), det(A) =0 <= A noninvertible.

Sketch. Follows from lemma 3 by writing A" = E; - -- ExA where A’ in rref and applying
det. O

Theorem 17. det(AB) = det(A) det(B) for any A, B € M, (F).
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Sketch. Consider two cases, where A either invertible or not. In the former, write A as a

product of elementary matrices and apply lemma 3. m|
Corollary 14. det(A™!) = (det(A))™! for any A € GL,(F).

Corollary 15. det(A") = det(A) for any A € M, (F).

5 DIAGONALIZATION

Motivation to keep in mind: linear transformations are icky. How can we represent
them more simply on particular subspaces? Namely, scalar multiplication is the
simplest linear transformation (verify that is indeed linear) - can we pick subspaces

such that T becomes scalar multiplication on these subspaces?

Definition 28 (Linearly Independent Subspaces). For Vi, ...,V €V, wesay {V1,..., Vi}
linearly independent if V; N };.; V; = {Oy} and call V1 & - - - @ Vi a direct sum.

Definition 29 (Diagnolizable). Wesay T : V — V is diagnolizable if there exists V;’s such
that V = EBL Vi and Ty, is multiplication by a fixed scalar A; € F.

Definition 30 (Eigenvalue/vector). For a linear operator T : V — V and A € F, we call A
an eigenvalue if there exists a nonzero vector v such that T(v) = Av; we call such a v an

eigenvector.
Remark 6. v must be nonzero! This is important for proofs to go forward.

Definition 31 (Eigenspace). For an eigenvalue A of T : V. — V, let Eig|,(1) = {v € V :
Tv = Av} be the eigenspace of T corresponding to A.

Proposition 25. Eig,,(A) a subspace of V.

Proposition 26. Trace and determinant are conjugation-invariant; ie for A, B € My(F), if there

exists Q € GL,(F) such that AQ = QB, tr(A) = tr(B) and det(A) = det(B).
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Definition 32 (Trace, Determinant of Transformation). For T : V' — V where V finite
dimensional, put tr(T) := tr(T) := tr([T]s) and det(T) := det([T]g) for some/any basis for
V.

Remark 7. This is well-defined; [T]4, [T]s are conjugate for any two bases «, f8.

Proposition 27 (x). T diagonalizable <= there exists a basis p for V such that [T]g diagonal

&= there is a basis for V consisting of eigenvectors for T

Proposition 28. A diagonalizable iff 3Q € GL,,(F) such that Q"1 AQ diagonal, with the columns
of Q eigenvectors of A.

Proposition 29. (1) v € V an eigenvector of T with eigenvalue A <= € Ker(AI -T), (2) A € F

an eigenvalue <= Al — T not invertible &= det(AI -T) =0.

Definition 33 (Characteristic polynomial). For T : V — V, put pr(t) = det(tly — T). For
A € M, (F), put pa(t) = det(tl, — A).

Proposition 30 (x). pr(t) = t" —tr(T)t" ! + - -- + (=1)" det(T), ie pr a polynomial of degree n

and - - - some polynomials of degree n — 2.
Corollary 16. T : V. — V has at most n distinct eigenvalues.

Proposition 31. Foreigenvalues A1, . .., Ax and corresponding eigenvectors vy, ..., vk, {v1,..., 0k}

linearly independent. Moreover, the eigenspaces Eigr(A;) are linearly independent.

Definition 34 (Geometric, Algebraic Multiplicity). For an eigenvalue A of T : V — V, put
mg() = dim(Eig; (1))
and call it the geometric multiplicity of A, and
ma(A) = max{k > 1: (t — 1)*|pr(t)}

and call it the algebraic multiplicity of T
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Proposition 32. If T : V. — V has eigenvalues A1, ..., Ak, Zle mg(Ai) < n; moreover,

Zle mq(Aj) =n <= T diagonalizable.
Proposition 33. mg(A) < mu(A) for any A.

Sketch. To prove this, you need to use the fact that the characteristic polynomial of T

restricted to any T-invariant subspace of V divides the characteristic polynomial of T. O

Definition 35. A polynomial p(t) € F[t] splits over Fif p(t) = a(t —rq)--- (t — r,) for some

aekF,r el
Remark 8. For an eigenvalue A of T : V — V, Zle my(Ai) =n

Theorem 18 (* Main Criterion of Diagonalizability). T diagonalizable iff pr(t) splits and
mg(A) = m,(A) for each eigenvalue A of T.

Definition 36 (T-cyclic subspace). For T : V. — V and any v € V, the T-cyclic subspace
generated by v is the space Span({T"(v) : v € N}).

Lemma 4. For V finite dimensional, let v € V and W := T-cyclic subspace generated by v. Then
(1) {v,T(v),..., T*Y(v)} isa basis for W where k := dim(W) and (2) ika(v) =apgv+aT(v)+

coo 4 ag1 T N(0), then pr,, (1) = t5 — ag_1t*1 — - — agt — ay.
Sketch. For (2), write down [Ty |g where 8 as in part (1). O

Theorem 19 (x Cayley-Hamilton). T satisfies its own characteristic polynomial, namely p(T) =
0.

6 INNER ProODUCT SPACES

All vector spaces in this section should be assumed to be inner product spaces, and all

fields F € {C,R}.

Definition 37 (Inner Product). A function (.,.) : V XV — F is called an inner product if

foru,v,weV,a€kF,
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e (v+w,uy=(v,u)+{w,u)

e (au,v) = alu,v)

e (u,u) >0and (1, u) =0 < u =0.

We call V equipped with such a function an inner product space. Given an inner product,

we can define an associated norm ||v|| := 4/{v, v),v € V, and call vectors u such that ||u||
unit; any vector can be "normalized" to a unit by & = ||v||™! - v.

Remark 9. Requirement 3 also gives us that (u, u) always real.

Proposition 34 (Properties of Inner Products). For u,v,w € V, a« € F, (u,v + w) =

(u,0) + (u,w), (u, av) = au,v), |lav|| = |af [|v|], and (v, 0v) = Oy, v) = 0.

Definition 38 (Orthogonal). u, v € V orthogonal if (u, v) = 0; we write u L v.
We say a set S C V orthogonal if vectors in S are pair-wise orthogonal, and if in
addition each are units, we say S orthonormal.

We say a set S C V orthogonal to a vectorv € Vifv L sVs € S.

Theorem 20 (Pythagorean). If u L v, then ||[u||>+||v||* = ||lu +v||?; in particular ||u||, ||v]] <

|lu +o].

Definition 39. For u a unit, put proj, (v) = (v, u) - u.

Proposition 35. For any v € V, u-unit, v — proj,(v) L u.

Proposition 36. For any x,y € V, |(x, y)| < llxlllyll and |1x + y| < ||x]| + Iyl

Proposition 37. Sets of orthonormal vectors are linearly independent. In particular, if dim(V') = n

and B = {u1, ..., u,} an orthonormal set, B forms a basis for V, and for any v € p,
v={(v,upuy + -+ {0, uy)u, = projul(v) +--- 4 projun(v).
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Proposition 38. v L V <= v =0y.

Theorem 21 (Gram-Schmidt). Every finite-dimensional vector space has an orthonormal basis.

One can be constructed "inductively” by starting with a basis p := {v1,...,v,} for V.
e (Base) set uy = ||v1|| " vy; put a = {uy}.
o (Step) given o := {uy, ..., ux—1} a set of orthonormal vectors, set

k-1
iy = v — proj, (vx) = vk — Z(Uk, Ui)U;.
i=1
and normalize uy = ||iix||™" - ug, and let a = a U {uy}.

* Repeat (Step) until k = n.

Definition 40 (Orthogonal Complement). For S € V, put S* := {v € V : v L S}. Remark

that S* a subspace regardless if S is.
Theorem 22. Let W C V be a finite dimensional subspace.

(a) For v € V, there exists a unique decomposition v = w + w, such that w € W,w, € W+.

We put projy, (v) == w.
(b)) V=WeoW
Corollary 17. If a # p two different orthonormal bases for W, proj,(v) = projg(v)Vo € V.

Theorem 23. Putting d(x,y) = ||x —yl|,x,y € V and letting W C V-finite subspace, then
d(v, projy (v)) < d(v, w) for any w € W, that is, proj,, (v) is the closest vector to V in W it is

also unique.
Corollary 18. For W C V-finite subspace, (W+)* = W.

For the remainder of the notes, assume V finite dimensional.
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Theorem 24 (Riesz Representation). For V-finite dimensional, then for every f € V* there
exists a unique w € V such that f = f,, where f,,(v) = (v,w),v € V. le, w — f, a linear

isomorphism between V + V™.

Remark 10. Its helpful to recall what exactly w looks like; namely, if {u1,...,u,} an or-

thonormal basis for V, then w = f(u1)uy + -+ - + f(un)uy,.

Theorem 25 (Adjoint). Let T : V. — V, then, there exists a unique T* : V. — V called the adjoint
of T such that (Tv,w) = (v, T*w) forany v, w € V.

Remark 11. This proof relies heavily on Riesz.

Proposition 39. For T : V. — V and f orthonormal basis for V, [T*]g = [T]}; (where A* = At
for A € M, (F)).

Proposition 40 (Adjoint Properties). (a) T — T* : hom(V,V) — hom(V, V) conjugate

linear.
(b) (TyoT) =T} o T".
(c) I}, = Iy.
@) (T") =T.
(e) T invertible = T* invertible with (T*)™! = (T~1)*.

Proposition 41 (Kernel, Image of Adjoint). Im(T*)* = Ker(T) and Ker(T*) = Im(T)*. Thus,
rank(T) = rank(T™), nullity(T) = nullity(T").

Remark 12. To prove the second equality, apply the first to T*.
Corollary 19. A an eigenvalue of T iff A an eigenvalue of T*.

Lemma 5 (Schur’s). Let T : V. — V such that pr(t) splits. Then there is an orthonormal basis p
for V such that [T |g upper triangular.
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Definition 41 (Normality). WecallT : V — Vnormal if T o T* = T* o T (T, T* commute)
and self-adjoint T = T~.
Remark self-adjoint = normal, but not the converse; discussion of normal operators

applies to self-adjoint.

Proposition 42 (Properties of Normal Operators). For T : V — V,
(@) [|Tol| = ||T*0]|.
(b) T — aly is normal; moreover p(T) for any polynomial p normal.

(c) vaneigenvector of T corresponding to an eigenvalue A iff v an eigenvector of T* corresponding

to A.
(d) For distinct Ay # Ay eigenvalues Eigp(A1) L Eigp(A2).

Theorem 26 (x Diagonalizability of Normal Operators over C). Let T : V. — V over C.

Then T is normal iff there is an orthonormal eigenbasis for T.
Lemma 6. Eigenvalues of self-adjoint operators are always real.

Lemma 7. Characteristic polynomials of real symmetric matrices split over R. Moreover, if T

self-adjoint, pr(t) splits over R.

Theorem 27 (x Diagonalizability of Self-Adjoint Operators over R). T : V. — V over R

self-adjoint iff there is an orthonormal eigenbasis for T.

Theorem 28 (x Spectral Theorem). Let T : V — V be self-adjoint if F = R and normal if

F = C. Then T admits a unique spectral decomposition
T =AMP1+---+ APy,

where the P;'s orthogonal projections, Iy = Py+-- -+ Py, and PioP; = 6;;P; (ie, V = @:;1 Im(P;)
and Im(P;) L Im(P]'), i#j)
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