McGILL UNIVERSITY

FACULTY OF SCIENCE

FINAL EXAMINATION

MATH 251

HONOURS ALGEBRA 2

Examiner: Professor H.Darmon

Associate Examiner: Professor O. Kharlampovich

Date: Tuesday April 18, 2006

Time: 2:00 PM - 5:00 PM

INSTRUCTIONS

- 1. Please answer all questions in the exam booklets provide.
- 2. This is a closed book exam. No notes or texts allowed.
- 3. Calculators are not permitted.
- 4. Use of a regular or translation dictionary is not permitted.

This exam comprises the cover page, and 3 pages of 7 questions.

MATH 251: Algebra 2

Final Exam

Tuesday, April 18, 2006

- 1. Let $T: V \longrightarrow W$ be a surjective linear transformation of vector spaces over a field F, and suppose that W is finite-dimensional.
- (a) Show that there is a subspace $U \subset V$ with the property that the restriction $T|_U: U \longrightarrow W$ is an isomorphism between U and W.
 - (b) Show that $V = U \oplus \ker(T)$.
 - (c) Prove or disprove: there is only one subspace U of V satisfying (b).
- 2. Let V be a finite-dimensional real vector space and let $T: V \longrightarrow V$ be a linear transformation.
 - (a) Show that if $\dim(V)$ is odd, then T has an eigenvector.
- (b) Give an example to show that this is not true in general when $\dim(V)$ is even.
- 3. Let $T: V_1 \longrightarrow V_2$ be a linear transformation between finite-dimensional vector spaces, and let $T^*: V_2^* \longrightarrow V_1^*$ denote the resulting linear transformation on the dual spaces. (Recall from the class that T^* is defined by $T^*(\ell) = \ell \circ T$, for all $\ell \in V_2^*$.)
 - (a) Show that if T is surjective then T^* is injective.
 - (b) Show that if T is injective then T^* is surjective.

- 4. Let V be a vector space of dimension n over a field F, and let $T: V \longrightarrow V$ be a linear transformation whose minimal polynomial has degree n and is *irreducible* over F.
 - (a) Show that the subring of $\mathcal{L}(V, V)$ defined by

$$K = \{g(T), \text{ with } g \in F[x]\}$$

is a field which contains F. What is its dimension as a vector space over F?

(b) Show that the set V becomes a vector space over K with the scalar multiplication defined by

$$(f(T), v) \mapsto f(T)(v).$$

What is the dimension of V over K?

- (c) Let $U: V \longrightarrow V$ be a linear transformation of vector spaces over F which commutes with T. Show that U is also linear with respect to the scalar multiplication by K, i.e., it is a linear transformation on V viewed as a vector space over K.
- (d) Use (c) to show that any linear transformation U that commutes with T can be expressed as a polynomial in T.
- 5. Let V be an inner product space over **R** and let $T: V \longrightarrow V$ be a self-adjoint transformation on V.
 - (a) State (without proof) what the spectral theorem tells us about T.
- (b) Let $U \subset V$ be a subspace of V which is stable under T (i.e., $T(U) \subset U$.) Show that U has a complementary T-stable subspace, i.e., a subspace $W \subset V$ such that $T(W) \subset W$ and $V = U \oplus W$.
- (c) Give an example to show that the statement of (b) can be false when T is not self-adjoint.

6. Find the linear function f(x) = ax + b which minimizes the quantity

$$\int_0^{\pi} (f(t) - \sin(t))^2 dt$$

- 7. True or false? (You do not need to justify your answer.)
- (a) If $T:V\longrightarrow W$ is a linear transformation, and V is a finite-dimensional vector space, then

$$\dim(\ker(T)) + \dim(\operatorname{Im}(T)) = \dim(V).$$

(b) If $T:V{\longrightarrow}V$ is a linear transformation, and V is a finite-dimensional vector space, then

$$\ker(T) \oplus \operatorname{Im}(T) = V.$$

- (c) Every invertible linear transformation on a finite-dimensional complex vector space has a square root.
- (d) The characteristic and minimal polynomials of a linear transformation acting on a finite-dimensional complex vector space have exactly the same roots.
- (e) A linear transformation is diagonalisable if its characteristic polynomial factors into distinct linear factors.
- (f) A linear transformation is diagonalisable if and only if its minimal polynomial factors into distinct linear factors.