Final Examination **April 26, 1999** 189-251B

Conventions: throughout this exam, F is a field with $0 \neq 1$, V is a vector space over F, W is a subspace of V, and T is a linear operator on V; also n is a natural number, and p is a prime number. Each problem is worth 10%

1. Here,
$$
F = \mathcal{Z}_7
$$
. Let $A = \begin{pmatrix} 1 & 2 & 4 & 2 \\ 3 & 6 & 4 & 1 \\ 5 & 3 & 2 & 0 \end{pmatrix}$; $\vec{v} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$ and $\vec{b} = \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix}$.

Find a basis for the row space , column space and kernel of A. Find the set of solutions to $Av = v$.

- 2. Let V be the set of those polynomials P of degree \leq 4 over \mathcal{R} , and $T(P) = P' + 2P$. What are the eigenvalues and eigenvectors of T? Give the matrix A of T with respect to the usual basis $\{1, x, x^2, x^3, x^4\}.$ Give the Jordan canonical form J of T , and a matrix Q such that $Q^{-1}AQ = J.$
- 3. Solve the following system of differential equations:

$$
\begin{array}{rcl}\ny_1' &=& y_1 + y_2 + -6y_3 \\
y_2' &=& -4y_1 - 3y_2 + 13y_3 \\
y_3' &=& -y_3\n\end{array}.
$$

- 4. Show that if F is finite, it cannot be algebraically closed; conclude that the algebraic closure of a finite field is infinite, but countable. [Hint: Recall that if F has $q = p^*$ elements, then it is the splitting held over \mathcal{Z}_p of $x^q - x$.]
- 5. Let $\vec{v} \in V$ be any nonzero vector. Show that there is a subspace $W \leq V$ maximal such that:

(1) $\vec{v} \notin W$, and (2) W is T-invariant.

Give an example to show that in general W need not be a maximal proper subspace of V .

- 6. Show that if W is T-invariant and T_1 is another linear operator on V such that $T \circ T_1 = T_1 \circ T$, then the image $T_1(W)$ is also T-invariant. Give an example to show that it need not be T -invariant if we don't assume $T \circ T_1 = T_1 \circ T$.
- 7. Let $\langle \cdot | \cdot \rangle$ be an inner product on V (over $F = \mathcal{R}$ for this problem). Suppose that $S = \{\vec{v}_i : i \in I\}$ is a collection of nonzero vectors in V which are pairwise orthogonal (i.e., $\vec{v}_i \perp \vec{v}_j$ whenever $i \neq j$). Show that S is independent.
- 8. Recall that a matrix B over the complex numbers C is called Hermitian if $B = \bar{B}^t$, and let's call C skew-Hermitian if $C = -\bar{C}^t$. Show that, for any matrix A over C, $A + \overline{A}$ ^t is Hermitian. Show that any matrix over C can be represented uniquely as the sum of a Hermitian and a skew-Hermitian matrix.
- 9. Recall that $\langle f, g \rangle = \int_{-1}^{1} f(t)g(t)dt$ is an inner product on the set of real-valued polynomials of degree \leq 3. Use the Gram-Schmidt process to change the standard basis $\{1, t, t^2, t^3\}$ into an orthonormal basis. (Orthonormal meaning that the vectors are pairwise orthogonal and each vector has norm one.)
- 10. A permutation matrix is square and has exactly one 1 in each row and column, all the other entries being 0. Show that, under matrix multiplication, the set of $n \times n$ permutation matrices forms a group isomorphic to the symmetric group S_n .