FACULTY OF SCIENCE

FINAL EXAMINATION

MATHEMATICS MATH 248

Honours Advanced Calculus

Examiner: Professor S. W. Drury

Date: Thursday, 17 December 2009

Associate Examiner: Professor A. Hundemer

Time: 9: 00 am. - 12: 00 noon.

INSTRUCTIONS

Answer all questions in the booklets provided.

This is a closed book examination.

Non-programmable calculators only are permitted.

Both regular and translation dictionaries are allowed.

Read the questions carefully before answering them.

Write your solutions in a clear, complete and logical way.

Simplify all answers as far as possible.

Do not use the calculator to replace exact expressions by approximations.

This exam has 7 questions and 2 pages

- 1. (10 points) Find the absolute maximum and absolute minimum values taken by the function $f(x, y, z) = 9x^2 + 12y^2 + 2z^3$ on the set $\{(x, y, z); x^2 + y^2 + z^2 \le 25, z \ge 0\}$. Justify that these absolute extrema exist.
- 2. (10 points) The transformation f(x,y,z)=(u,v,w) given by $u=x+\frac{1}{2}y^2,\ v=y+\frac{1}{2}z^2,\ w=z+\frac{1}{2}x^2$ is one-to-one on the cube $S=\{(x,y,z); 0\leq x\leq 1, 0\leq y\leq 1, 0\leq z\leq 1\}$. Find the volume and centre of mass of the region f(S) in uvw-space. In calculating the centre of mass be sure to assume a uniform distribution of mass relative to the (u,v,w) coordinates.
- 3. (10 points) Consider the transformation f(x,y,z)=(u,v,w) given by $u=x+\frac{1}{2}y^2, v=y+\frac{1}{2}z^2,$ $w=z+\frac{1}{2}x^2$. Note that $f(1,0,0)=(1,0,\frac{1}{2})$. Find the tangent vector to the curve $t\mapsto f^{-1}(1-t,t,\frac{1}{2})$ at t=0. What theorem guarantees that f^{-1} is differentiable at $(1,0,\frac{1}{2})$? Explain why the theorem is applicable in this situation.
- 4. (10 points) Find the volume of the region of \mathbb{R}^3 defined by the inequalities $\sqrt{x^2 + y^2} \le z \le 1 \max(|x|, |y|)$ (the intersection of a cone and a pyramid).
- 5. (10 points) Find the surface area of the portion of the surface in \mathbb{R}^3 parametrized by $(s,t) \mapsto (9s^2, 12st, 8t^2)$ corresponding to the range $0 \le s \le 1$, $0 \le t \le 1$ of the parameters. Find also the area of the region in the xy-plane obtained by projecting this portion of surface parallel to the z-axis onto the xy-plane.
- 6. (10 points) Use the Divergence Theorem to compute the integral $\iint_{\partial R} \vec{F} \cdot d\vec{S}$ representing the flux of the vector field $\vec{F}(x,y,z) = 3x^2\vec{\imath} + (-2xy+y)\vec{\jmath} + 5z\vec{k}$ out of the region R defined by the inequalities $|x| + |y| \le 1$, $|y| + |z| \le 1$ and $|z| + |x| \le 1$. Note: Be sure to exploit the symmetry of R to eliminate odd terms in the integrand.
- 7. (10 points) Use Stokes' Theorem to compute the integral $\int_{\partial S} \vec{F} \cdot d\vec{s}$ where $\vec{F}(x,y,z) = 3x^2\vec{\imath} + (-2xy + y)\vec{\jmath} + 5z\vec{k}$ where S is the portion of the cone $z = \sqrt{x^2 + y^2}$ satisfying the inequalities $x \ge 0, y \ge 0, z \le 1$ oriented in the direction of increasing z.