Winter 2011 — Mathematics 243 (Analysis 2)

Final Exam

Monday, April 11, 2011, 2:00pm.

INSTRUCTIONS

- (i) No books, no calculators.
- (ii) Work on all 6 problems.

(iii) Remember: $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$ $\frac{\pi^2}{6}$, $\lim_{n \to \infty} (1 + \frac{1}{n})^n = e$

DEFINITIONS

 $(F1)$ Let (a_n) be a sequence of real numbers.

- (a) Define what it means for the series $\sum a_n$ to be convergent.
- (b) Define what it means for the series $\sum a_n$ to be absolutely convergent.
- (c) How does one show that if $\sum a_n$ is absolutely convergent, then it is convergent? (Briefly state the main idea.)
- (d) Give an example of a series that is convergent, but not absolutely convergent.

SUBSTITUTION

(F2) For $n \in \mathbb{N}_0$, consider the integral

$$
c_n = \int_0^\infty x^n e^{-x^2} dx
$$

- (a) Show that for $n > 1$, $c_n = \frac{n-1}{2}$ $\frac{-1}{2}c_{n-2}.$
- (b) Evaluate c_1 , and c_{2m+1} for $m \geq 1$.
- *Hint:* You may integrate by parts, or first substitute $x^2 = y$, and then integrate by parts.

INTEGRATION

(F3) Let $|\cdot| : \mathbb{R} \to \mathbb{Z}$ be the function

 $x \mapsto |x| := n$ for the unique $n \in \mathbb{Z}$ with $x \in [n, n + 1)$.

(i.e., $\lfloor x \rfloor$ is the largest integer not larger than x). Show that the integral

$$
\int_0^1 \frac{1}{\left\lfloor \frac{1}{x} \right\rfloor} dx
$$

exists, and compute its value.

Please turn over

SEQUENCE OF FUNCTIONS

(F4) Consider the sequence of functions (f_n) on R defined by

$$
f_n(x) = (\cos x)^n
$$

- (a) On which subset of $\mathbb R$ does (f_n) converge, on which does it not?
- (b) Find an open interval on which (f_n) converges uniformly.

Weak Convergence

(F5) Recall that a function $F : [0, \infty) \to \mathbb{R}$ is called integrable on $[0, \infty)$ if it is integrable on [0, x] for any $x > 0$ and if $\lim_{x \to \infty} \int_0^x F$ exists. Consider the sequence of functions (g_n) on R defined by

$$
g_n(x) = \begin{cases} 1 & \text{for } x \in [n, n+1] \\ 0 & \text{else} \end{cases}
$$

Show that

- (a) (g_n) converges pointwise on $[0, \infty)$.
- (b) (g_n) does not converge uniformly on R.
- (c) For any $n \in \mathbb{N}$, g_n is integrable on $[0, \infty)$, but $\lim_{n\to\infty} \int_0^\infty g_n \neq \int_0^\infty \lim_{n\to\infty} g_n$.
- (d) If $f : [0, \infty) \to \mathbb{R}$ is integrable on $[0, \infty)$, then

$$
\lim_{n \to \infty} \int_0^\infty f \cdot g_n = 0
$$

Power Series

(F6) Determine the radius of convergence of the power series

$$
\sum_{n=1}^{\infty} \frac{n^n}{n!} x^n
$$