- 1. Let $f:[a,b]\to \mathbf{R}$ be a bounded function, and let P and Q be partitions of [a,b].
 - (a) Define the property: Q is a refinement of P.
 - (b) If Q is a refinement of P, state the inequalities which relate all four of the quantities U(P; f), U(Q; f), L(P; f), and L(Q; f).
 - (c) Suppose that there exist two partitions P_1 and P_2 of [a, b] with

$$U(P_1; f) - L(P_2; f) \le 1/10.$$

Prove that there exists a partition P_3 of [a, b] with

$$U(P_3; f) - L(P_3; f) \le 1/10.$$

(Do not assume that f is integrable.)

2. (a) Simplify the sum

$$\sum_{k=1}^{n} (y_k - y_{k-1})$$

and prove your result by induction on n. (Here $n \in \mathbb{N}$ and y_0, y_1, \dots, y_n are any real numbers).

(b) Assuming the result of (a), prove the identity

$$\sum_{k=0}^{n-1} x^k = \frac{x^n - 1}{x - 1}, \quad x \neq 1.$$

Hint: multiply both sides by x - 1.

(c) Prove that the series

$$\sum_{k=0}^{\infty} x^k$$

converges for any $x \in (-1, 1)$ and find its sum.

- 3. Let $F:[a,b]\to \mathbf{R}$ have a continuous derivative $F':[a,b]\to \mathbf{R}$ and let $P=(x_0,x_1,\ldots,x_n)$ be a partition of [a,b].
 - (a) Prove that for each k = 1, 2, ..., n

$$m'_k(x_k - x_{k-1}) \le F(x_k) - F(x_{k-1}) \le M'_k(x_k - x_{k-1}),$$

where m'_k and M'_k are the min and max of F' on $[x_{k-1}, x_k]$.

(b) Assuming the results of 2(a) and 3(a), prove that

$$L(P; F') \leq F(b) - F(a) \leq U(P; F').$$

- 4. State examples of the following and briefly explain each example.
 - (a) A bounded function on [0,1] which is not Riemann integrable.
 - (b) A function which is Riemann integrable on [0,1] but not continuous on [0,1].
 - (c) A Riemann integrable function $f:[0,2]\to \mathbf{R}$ such that the indefinite integral of f is not differentiable at x=1.
- 5. For n = 1, 2, ... let f_n be the functions defined by

$$f_n(x) = \frac{xne^{nx}}{1 + ne^{nx}}, \quad 1 \le x \le 2.$$

- (a) For $x \in [1, 2]$, let $f(x) = \lim_{n \to \infty} f_n(x)$. Evaluate f(x) and determine whether or not the limit is uniform on [1, 2] (prove your assertion).
- (b) Evaluate

$$\lim_{n\to\infty} \int_1^2 f_n(x) dx,$$

and justify your work.

- 6. In this problem you may assume the result that $\int_0^{\pi} \sin^2(nx) dx = \pi/2$ for any $n \in \mathbb{N}$.
 - (a) Prove that the series

$$\sum_{n=1}^{\infty} \frac{\sin^2(nx)}{n^2}$$

converges uniformly on \mathbf{R} .

(b) Let f(x) denote the sum of the series in (a). Prove that f is Riemann integrable on $[0, \pi]$ and that

$$\int_0^{\pi} f(x)dx = \frac{\pi}{2} \sum_{n=1}^{\infty} \frac{1}{n^2}.$$

- 7. For each statement below, state whether it is True or False. If it is False, give a counterexample. For the first 3 statements, suppose that the power series $\sum_{k=0}^{\infty} c_k x^k$ has radius of convergence R and that $0 < R < \infty$. Then this power series
 - (a) converges absolutely for each $x \in (-R, R)$.
 - (b) converges uniformly on (-R, R).
 - (c) defines a function p(x) which is differentiable at each point $x \in (-R, R)$.
 - (d) If a sequence of functions f_n converges uniformly to a function f on [0, 1] and if each f_n is differentiable on [0, 1], then f is differentiable on [0, 1].

FACULTY OF SCIENCE

FINAL EXAMINATION

$\underline{\text{MATHEMATICS 189-243B}}$

REAL ANALYSIS

Examiner: Professor I. Klemes

Associate Examiner: Professor S. Drury

Date: Wednesday, April 21, 1999

Time: 2:00 pm - 5:00 pm

INSTRUCTIONS

NO CALCULATORS PERMITTED Show your work. Answer all 7 questions. Keep this exam paper.

This exam comprises the cover and 2 pages of questions.