McGILL UNIVERSITY FACULTY OF SCIENCE

FINAL EXAMINATION

MATH 242-001

ANALYSIS 1

Examiner: Professor K. GowriSankran Associate Examiner: Professor S. Drury Date: Monday December 12, 2005

Time: 9:00 am - 12:00 pm

INSTRUCTIONS

- (a) Answer questions in the exam booklets provided.
- (b) All questions carry equal weight.
- (c) This is a closed book exam. No computers, notes or text books are permitted.
- (d) Calculators are not permitted.
- (e) Use of a regular and or translation dictionary is not permitted.

This exam comprises of the cover page, 2 pages of 6 questions.

Exam is PRINTED Dauble- SIDED

MATH 242 ANALYSIS 1 MCGILL UNIVERSITY FINAL EXAMINATION

This is a closed book exam. No Computers, notes or books allowed. All questions count equally

Monday December 12, 2005.

Time: 9:00 AM - 12:00 PM

- 1. (a) Define " $x_n \in \mathbb{R}$ and (x_n) converges to $a \in \mathbb{R}$ ".
 - (b) Let $x_n = \sqrt{n+1} \sqrt{n}$. Prove that (x_n) converges and also the sequence $y_n = \sqrt{n} x_n$ converges. Find the limit in each of the above two cases.
- 2. (a) Define what is meant by a Cauchy sequence.
 - (b) Prove that every Cauchy sequence is bounded.
 - (c) Give an example of a bounded sequence which is not Cauchy.
 - (d) Suppose $x_n > 0$ for each $n \in \mathbb{N}$. Suppose also that $(x_n^{1/n})$ converges to L < 1. Show that $x_n \to 0$.
- 3. (a) State the Bolzano-Weierstrass Theorem.
 - (b) Suppose $f:(0,1)\to\mathbb{R}$ is a bounded function such that $\lim_{x\to 0}f(x)$ DOES NOT EXIST. Show that there are two sequences $(x_n),(y_n)$ in (0,1) such that $\lim x_n=0=\lim y_n$ such that $\lim f(x_n)$ and $\lim f(y_n)$ exist but are not equal.
- 4. (a) State the Intermediate Value Theorem.
 - (b) Suppose $f:[a,b] \to [a,b]$ is continuous. Prove that there exists at least one $x \in [a,b]$ such that f(x) = x.

- 5. (a) Define what is meant by " $f: A \to \mathbb{R}$ is uniformly continuous".
 - (b) Suppose $f: A \to \mathbb{R}$ is uniformly continuous. Prove that if x_n is a Cauchy sequence in A then $(f(x_n))$ is a Cauchy sequence.
 - (c) Suppose $f:(a,b)\to\mathbb{R}$ is uniformly continuous. Prove that f is bounded on (a,b).
- 6. (a) Define what is meant by the derivative of a function f at a point $c \in I$, where f is defined on the interval I.
 - (b) State the Mean Value Theorem.
 - (c) Suppose $f:[a,b]\to\mathbb{R}$ is differentiable such that the derivative f' is continuous on [a,b]. Show that for every $\epsilon>0$, there exists a $\delta<0$ such that for all x,y in [a,b] with $0<|x-y|<\delta$ we have

$$\left|\frac{f(x) - f(y)}{x - y} - f'(x)\right| < \epsilon.$$