McGill UNIVERSITY

FACULTY OF SCIENCE

FINAL EXAMINATION

<u>MATH 242</u>

COMPLEX VARIABLES AND TRANSFORMS

Examiner: Professor R.Vermes Date: Monday December 20, 2004

Associate Examiner: Professor S. Drury

Time: 2:00 P.M – 5:00 P.M

INSTRUCTIONS

- 1. Please answer all 7 questions.
- 2. Calculators are not permitted.
- 3. Please answer in exam booklets provided.
- 4. This is a closed book exam.
- 5. No notes or text books are allowed.
- 6. Dictionaries are not permitted.
- 7. This exam consists of the cover page and 2 pages of 7 questions.

Answer questions 1-7.

1. Define:

- (a) Least upper bound of a bounded subset of R;
- (b) $(x_k), x_k \in \mathbb{R}$, is a convergent sequence;
- (c) Λ is the upper limit (limit superior) of a bounded real sequence (x_k) ;
- (d) f is continuous at c;
- (e) f is uniformly continuous on a set $S \subset \mathbb{R}$;
- (f) A real number m is the derivative of f at c.
- 2. (a) State the Least Upper Bound Axiom.
 - (b) Let A and B non-empty bounded sets of positive numbers. Define a set C by

$$C=\{ab:a\in A,b\in B\}.$$

Prove that $\sup C = \sup A \sup B$.

3. (a) State and prove the "squeeze" theorem for sequences.

(b) Find:
$$\lim_{n \to \infty} \sum_{k=1}^{n} \left(\sqrt{1 + \frac{k}{n(n+1)}} - 1 \right)$$
.

- 4. (a) State the Cauchy convergence criterion for sequences.
 - (b) Let (x_n) be a sequence and let r be a real number that satisfies 0 < r < 1. Suppose that $|x_{n+1} x_n| \le r|x_n x_{n-1}|$ for all n > 1. Prove that the sequence (x_n) converges.

- 5. (a) Let f be continuous on the interval $[a, b], (-\infty < a < b < \infty),$ prove that f is bounded on [a, b].
 - (b) Let f be uniformly continuous function on the open interval $(a,b), (-\infty < a < b < \infty)$. Prove that f is bounded on (a,b). Show that the conclusion is false on the interval (a,∞) .
- 6. (a) State and prove the Intermediate Value Theorem.
 - (b) A function $f: \mathbb{R} \to \mathbb{R}$ is periodic if there exits a positive number p such that f(x+p) = f(x) for all $x \in \mathbb{R}$. Suppose that $f: \mathbb{R} \to \mathbb{R}$ is a continuous periodic function, prove that the equation f(x) x = 0 has a solution.
- 7. (a) State Rolle's Theorem.
 - (b) State and prove The Mcan Value Theorem of Differential Calculus.
 - (c) Let f be a continuous function on (-1,1) and differentiable on $\{x: 0 < |x| < 1\}$. If $\lim_{x \to 0} f'(x)$ exists, show that f is differentiable also at x = 0.

McGill UNIVERSITY

FACULTY OF SCIENCE

FINAL EXAM

MATH 248

ADVANCED CALCULUS 1

Examiner: Professor R. Rigelhof

Associate Examiner: Professor I. Klemes

Date: Tuesday December 21, 2004

Time: 9:00 a.m -12:00 p.m

INSTRUCTIONS

- 1. Please answer all 12 questions.
- 2. Please answer in the exam booklets provided.
- 3. This is a closed book exam.
- 4. No books or notes are permitted
- 5. No calculators are allowed.
- 6. No Dictionaries are allowed.
- 7. This exam consists of the cover page and 2 pages of 12 questions.

Examiner: R. Rigelhof

Associate Examiner: I. Klemes

All questions are of equal value. Do question 1 OR 2 and nine of the remaining questions.

1. Show that the equations

$$xy^2 + zu + v^2 = 3$$

$$x^3z + 2v - uv = 2$$

$$xu + vv - xvz = 1$$

can be solved for x, y and z in terms of u and v near the point where

$$(x, y, z, u, v) = (1, 1, 1, 1, 1)$$

and evaluate $\frac{\partial y}{\partial u}$ at (u, v) = (1, 1).

2. Show that the equations $x = u^2 + v^3$ and $y = uv - v^3$ can be solved for u and v in terms of x and y, near the point where u = v = 1 and evaluate:

$$\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$$
 and $\frac{\partial (u, v)}{\partial (x, y)}$ at the point $(u, v) = (1, 1)$

- 3. If F(x, y, z) = 0 determines z as a function of x and y, calculate $\frac{\partial^2 z}{\partial x^2}$ in terms of the partial derivatives of F.
- 4. Change the order of integration and evaluate the integral $I = \int_0^1 dx \int_{-\sqrt{x}}^1 e^{y^3} dy$.
- 5. Compute the volume of the intersection of two cylinders of radius a, one with axis on the x-axis, the other with axis on the y-axis.
- 6. Compute the surface area of that part of the sphere $x^2 + y^2 + z^2 = 4a^2$ which is inside the cylinder $x^2 + y^2 = 2ax$.
- 7. Use spherical coordinates to set up the integral to calculate the volume of the solid inside the sphere $x^2 + y^2 + z^2 = 16$ and outside the cone $z^2 = x^2 + y^2$.

8. Show that for a smooth scalar function ϕ and a smooth vector function \vec{F} , the following vector identity is valid:

$$\nabla \times \phi \overrightarrow{F} = (\nabla \phi) \bullet \overrightarrow{F} + \phi (\nabla \bullet \overrightarrow{F})$$

9. Let C be a positively oriented, simple closed curve in the xy-plane, bounding a region R and not passing through the origin. Show that

$$\oint_C \frac{xdy - ydx}{x^2 + y^2} = 2\pi$$

if the origin is inside the region R, and 0 if the origin is outside R.

- 10. Show that the flux of the field $\vec{F} = m\vec{r}/|r|^3$ through any sphere centred at (0,0,0) is 4π , and hence that the flux through any smooth oriented surface with outward directed normal which is the boundary of a regular domain containing the point (0,0,0) is 4π .
- 11. Let C_1 be the straight line joining (-1,0,0) to (1,0,0), and let C_2 be the semicircle $x^2+y^2=1, z=0, y\geq 0$. Let S be a smooth surface joining C_1 to C_2 having upward normal, and let

$$\vec{F}(x, y, z) = (\alpha x^2 - z)\vec{i} + (xy + y^3 + z)\vec{j} + \beta y^2(z + 1)\vec{k}$$

Find the values of α and β for which $I=\int_S \vec{F} \cdot d\vec{S}$ is independent the choice of S, and find

the value of I for these values of α and β .

12. Let C be the curve $(x-1)^2+4y^2=16$, 2x+y+z=3, oriented counter clockwise when viewed from high on the z-axis. Let

$$\vec{F}(x, y, z) = (z^2 + y^2 + \sin(x^2))\vec{i} + (2xy + z)\vec{j} + (xz + 2yz)\vec{k}$$

Use Stokes' Theorem to evaluate $\oint_C \vec{F}(x, y, z) \cdot d\vec{r}$.