Answer questions 1-7, and question 8 is for extra marks.

- 1. (a) Define:
 - i. Least upper bound of $S \subset \mathbb{R}$;
 - ii. $(x_k), x_k \in \mathbb{R}$, is a convergent sequence;
 - iii. Cauchy sequence;
 - iv. f is uniformly continuous on a set $S \subset \mathbb{R}$;
 - v. A real number m is the derivative of f at c.
 - (b) i. Define: $\lim_{x\to\infty} f(x) = L$;
 - ii. Let $f:[0,\infty)\to\mathbb{R}$ be periodic (ie., $\exists p>0$ such that f(x+p)=f(x) for all $x\in[0,\infty)$. Suppose $\lim_{x\to\infty}f(x)=0$, prove that f(x)=0 for all $x\in[0,\infty)$.
- 2. (a) State the Least Upper Bound Axiom (Completeness Axiom).
 - (b) Let S be any subset of \mathbb{R} . If for $x \in \mathbb{R}$ $f(x) = \operatorname{dis}(x, S) = \inf\{|x s| : s \in S\}$, prove that $|f(x) f(y)| \le |x y|$.
 - (c) Is the function f in (b) uniformly continuous on \mathbb{R} ? Justify your answer.
- 3. (a) i. Let a > 0, prove that $\lim_{n \to \infty} \sqrt[n]{a} = 1$;
 - ii. Suppose $a \ge 1$, show that $\lim_{n \to \infty} n(\sqrt[n]{a} 1)^2 = 0$.
 - (b) Suppose that (x_n) is a convergent sequence and (y_n) is a sequence such that for any $\varepsilon > 0$ we can find an $n_0 \in \mathbb{N}$ such that $|x_n y_n| < \varepsilon$ if $n \ge n_0$. Does it follow that (y_n) is a convergent sequence? Justify your answer.
- 4. (a) Let f be a continuous function defined on the closed and bounded interval [a,b]. If $f(a) < \gamma < f(b)$, prove that there exists a number $c \in (a,b)$ such that $f(c) = \gamma$.
 - (b) Let f be continuous on [0,2] and f(0) = f(2). Prove that there exists x_1 and x_2 in [0,2] such that $x_2 = 1 + x_1$ and $f(x_2) = f(x_1)$

- 5. (a) Let f be defined on the open interval (a, c). Suppose that for some $b \in (a, c)$ f is uniformly continuous on (a, b] and on [b, c), prove that f is uniformly continuous on (a, c).
 - (b) Let $f:[a,\infty)\to\mathbb{R}$ be continuous and $\lim_{x\to\infty}f(x)=L$. Prove that f is uniformly continuous on $[a,\infty)$.
- 6. (a) State and prove Rolle's Theorem.
 - (b) Show that the polynomial $p(x) = x^n + ax + b$, $(n \ge 2)$, (a, b arbitrary real numbers), has at the most two distinct zeros for n even and at most three distinct zeros for n odd.
 - (c) Prove that the equation $x^5 4x + 2 = 0$ has three real solutions.
- 7. (a) State and prove the mean value theorem of Lagrange.
 - (b) State the mean value theorem of Cauchy.

Question 8 is for extra marks, work on it only if you have solved Questions 1-7.

- 8. (a) Let f be continuous on $a \le x < b$ and differentiable on (a, b). If f(a) = 0 and f(x) > 0 for $x \in (a, b)$, prove that there can not be a constant M such that $0 \le \frac{f'(x)}{f(x)} \le M$ for a < x < b.
 - (b) Let 0 < a < b. If f is continuous on [a, b] and differentiable on (a, b), show that there exists a $\zeta \in (a, b)$ such that

$$\frac{bf(a) - af(b)}{b - a} = f(\zeta) - \zeta f'(\zeta).$$

[Hint: Let $F(x) = \frac{f(x)}{x}$ and choose a G(x).]